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A unique solvability of the Cauchy problem for a class of semilinear Sobolev

type equations of the second order is proved. The ideas and techniques, developed by

G.A. Sviridyuk for the investigation of the Cauchy problem for a class of semilinear Sobolev

type equations of the �rst order and by A.A. Zamyshlyaeva for the investigation of the

high-order linear Sobolev type equations are used. We also used theory of the di�erential

manifolds which was �nally formed in S. Leng's works. In article we considered two cases.

The �rst one is when an operator at the highest time derivative is continuously invertible.

In this case for any point from a tangent bundle of an original Banach space there exists a

unique solution lying in this space as trajectory. The second case when the operator isn't

continuously invertible is of great interest for us. Hence we used the phase space method.

Besides the Cauchy problem we considered the Showalter � Sidorov problem. The last

generalizes the Cauchy problem and is more natural for Sobolev-type equation. In the last

section described an algorithm of the numerical solution of Showalter � Sidorov problem

for Sobolev-type equation of the second order.

Keywords: Sobolev-type equation, phase space, Showalter � Sidorov problem, algorithm

of the numerical solution.

Introduction

Mathematical models of di�erent physical processes, for instance, �ltration of a
viscoelastic liquid, creep buckling, vibration of a molecule DNA, shallow-water waves
propagation, and the propagation of longitudinal deformation waves in an elastic rod,
ion-acoustic waves are described by initial problems for Sobolev-type equations, which
are frequently nonlinear. Sviridyuk G.A. and Zagrebina S.A. wrote a good review about
nonclassical mathematical models in [1]. The initial-boundary value problems for nonlinear
equations often don't have analytic solutions, thus necessity of development of algorithms
a numerical method was appeared.

The Cauchy problem for the Sobolev-type equation is not solvable for arbitrary initial
values. Before �nding a numerical solution we have to de�ne conditions of existence a
uniqueness of solution. The one way for investigation of these equations is the phase space
method, which was proposed by G.A. Sviridyuk and T.G. Sukacheva in the study of
the semilinear Sobolev type equations of the �rst order [2]. Essence of the method is in
reducing of a singular equation to a regular one de�ned on a subset of original Banach
space consisting of admissible initial values, which is understood as a phase space of given
equation.

In addition we use the relatively polynomially bounded operator pencil theory, which
was developed by A.A. Zamyshlyaeva, and theory of p-bounded operators, developed by
G.A. Sviridyuk [3].
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Let Ω be a bounded domain in Rn, n ∈ N with boundary ∂Ω of C∞ class. Consider the
mathematical model of shallow-water waves propagation, provided that motion is potential
and the law of conservation of mass in layer is ful�lled:

(λ−∆)ü = α2∆u+∆f(u), (1)

u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ Ω, (2)

u(x, t) = 0, (x, t) ∈ ∂Ω× R. (3)

Function u(x, t) de�nes the height of the wave at time t in point x. Coe�cients λ, α are
responsible for gravitational constant, deep and Bond number [4, 5].

The mathematical model of propagation of longitudinal deformation waves in an elastic
rod (Boussinesq � Löve model) is described by following initial-boundary value problem

(λ−∆)ü = α(∆− λ′)u̇+ β(∆− λ′′)u+∆f(u), (4)

u(x, t) = 0, (x, t) ∈ ∂Ω× R. (5)

u(x, 0) = u0(x), u̇(x, 0) = u1(x). (6)

Function u(x, t) de�nes the longitudinal deformation of an elastic rod, α, β, λ, λ′, λ′′

characterize properties of the rod material such as density, Young's modulus, Poisson's
ratio and coe�cient of elasticity. If f(u) = u3 then equation (4) is called a damped
IMBq equation, it describes the damping shallow-water waves propagation, where α is the
coe�cient of hydrodynamical damping. A.A. Zamyshlyeva studied linearization equation
(4), G. Chen studied non-degenerate case [6].

We consider these mathematical models with Showalter � Sidorov and Cauchy
conditions. The Showalter � Sidorov conditions are more general then the Cauchy
conditions and are more natural for Sobolev-type equations. Moreover, there is no need
for checking that initial values lie in the phase space. Nonlinear nonclassical mathematical
models with Cauchy conditions were studied by N.A. Manakova and E.A. Bogatyreva [7].

1. Mathematical model of shallow-water waves

Consider the Cauchy problem

u(0) = u0, u̇(0) = u1 (7)

for the Sobolev-type equation
Lü = Mu+N(u), (8)

where operators L, M ∈ L(U; F), N ∈ C∞(U; F), moreover operator M is (L, 0)-bonded.

De�nition 1. If a vector-function u ∈ C2((−τ, τ);U), τ ∈ R+ satis�es equation (8) then
it is called a solution of this equation. If it in addition satis�es condition (7) then it is
called a solution of the problem (7), (8).

De�nition 2.

The set P is called a phase space of (8) if
(i) for all (u0, u1) ∈ TP there exists a unique solution of (7), (8);
(ii) the solution u = u(t) of (8) lies in P as trajectory, i.e. u(t) ∈ P for all t ∈ (−τ, τ).

Let kerL ̸= {0} and operator M be (L, 0)-bounded, then due to splitting theorem [2]
equation (8) can be reduced to the equivalent system of equations
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{
0 = (I−Q)(M +N)(u0 + u1),
ü1 = L−1

1 Q(M +N)(u0 + u1),
(9)

where u1 = Pu, u0 = (I− P )u.
Consider the set M = {u ∈ U : (I − Q)(M + N)(u0 + u1) = 0}. Let u0 be a point of

M. Denote u1
0 = Pu0 ∈ U1.

Let the following condition be ful�lled:

(I−Q)(M −N ′
u0
) : U0 → F0is a toplinear isomorphism. (10)

According to implicit function theorem [8] there exist neighborhoods O0 ⊂ U0

and O1 ⊂ U1 of points u0
0 = (I − P )u0, u1

0 = Pu0 respectively and the operator
B ∈ C∞(O1; O0) such that u0

0 = B
(
u1
0

)
. Construct the operator δ = I + B : O1 → M,

δ
(
u1
0

)
= u0. The operator δ−1 together with the set O1 makes a map of M and is a

restriction of P on δ[O1] = O ⊂ M. Thus holds

Lemma 1. If condition (10) is ful�lled, the set M is a C∞-manifold at the point u0.

Act with the Frechet derivative of the second order δ′′
(u1

1,u
1
0)
onto the second equation

of system (9). Then, since

δ′′(u1
1,u

1
0)
ü1 =

d2

dt2
(
δ(u1)

)
è δ(u1) = u,

we obtain the equation
d2u

dt2
= δ′′(u1

1,u
1
0)
L−1
1 Q(M −N)(u),

de�ned on O. By the theorem for nondegenerate equation [9] we obtain

Theorem 1. Let the operator M be (L, 0)-bounded and operator N ∈ C∞(U;F). Then
for any pair (u0, u1) ∈ TM under the condition (10) there exists a unique solution of the
problem (7)�(8) lying in M as trajectory.

In order to reduce the problem (1)�(3) to problem (7)�(8) set

U = {u ∈ Wm+2
2 (Ω) : u(x) = 0, x ∈ ∂Ω}, F = Wm

2 (Ω). (11)

Operators L,M,N are de�ned by formulas:

L = λ−∆, M = α2∆, N(u) = ∆f(u).

For anym ∈ {0}∪N operators L,M ∈ L(U;F). Denote by σ(∆) = {λl} the eigenvalues
of the Dirichlet problem for the Laplace operator ∆, numbered nonincreasingly taking into
account their multiplicity. Denote by {φk} corresponding eigenfunctions orthonormal in
the sense of the scalar product in L2(Ω).

The regularity lemma holds [10]

Lemma 2. Let f ∈ C∞(R) and k > n/2 − 2. Then N ∈ C∞(
W k

2 (Ω)
)

where
N : u → ∆f(u).

Constructs projector

P =

{
I, if λ /∈ σ(∆),

I−
∑
λ=λl

⟨·, φl⟩φl, if λ ∈ σ(∆).
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Projector Q has the same form but it is given on the space F.
Fix m > n/2− 2 and construct the set

M =

{
U, if λ /∈ σ(∆),

{u ∈ U : ⟨Mu+N(u), φl⟩ = 0, λ = λl}

Thus reduction is �nished and due to abstract theorem 1 there is

Theorem 2. (i) For all λ /∈ σ(∆), m > n/2 − 2, u0, u1 ∈ U and τ = τ(u0, u1) > 0 there
exists a unique solution u ∈ C∞(

(−τ, τ),U
)
of the problem (1) � (3).

(ii) Let λ ∈ σ(∆), m > n/2− 2, (u0, u1) ∈ TM and condition (10) be ful�lled. Then there
exists a unique local solution u ∈ C∞(

(−τ, τ),M
)
of the problem (1)�(3).

Proof.
In the �rst case, when λ /∈ σ(∆), since the set M coincides with space U it is C∞-

manifold. In the second case, when λ ∈ σ(∆), if condition (10) is ful�lled then by lemma 1
M is a Banach C∞-manifold at point u0 ∈ M.

2
Now consider mathematical model of shallow-water waves propagation with Showalter

� Sidorov conditions

P (u(x, 0)− u0(x)) = 0, P (u̇(x, 0)− u1(x)) = 0, x ∈ Ω, (12)

where P is a projector along the kernel of L.
Using procedure described above mathematical model (2), (3), (12) can be reduced to

the Showalter � Sidorov problem

P (u(0)− u0) = 0, P (u̇(0)− u1) = 0 (13)

for incomplete Sobolev-type equation of the second order

Lü = Mu+N(u). (14)

Theorem 3. Let m > n/2 − 2 and condition (10) be ful�lled. For all u0, u1 ∈ U and
τ = τ(u0, u1) > 0 there exists a unique solution u ∈ C∞((−τ, τ),U) of the problem (1),
(3), (12).

2. Boussinesq � L�ove mathematical models

Investigate mathematical model (4)�(6) in the frame of the relatively polynomially

bounded operator pencil theory [3]. By
−→
B denote the pencil of operators B1, B0. The

sets ρA(
−→
B ) = {µ ∈ C : (µ2A − µB1 − B0)

−1 ∈ L(F;U)} and σA(
−→
B ) = C \ ρA(

−→
B ) are

called A-resolvent set and A-spectrum of pencil
−→
B respectively. The operator-function

RA
µ (
−→
B ) = (µ2A− µB1 −B0)

−1 with domain ρA(
−→
B ) is called A-resolvent of pencil

−→
B .

If ∃ a ∈ R+∀µ ∈ C : (|µ| > a) ⇒ (RA
µ (B⃗) ∈ L(F;U)) then operator pencil B⃗ is called

polynomially A-bounded.
Introduce the additional condition [3]∫

γ

RA
µ (B⃗)dµ ≡ O, (A)

20 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

where the circuit γ = {µ ∈ C : |µ| = r > a}.

Lemma 3. [3] Let the pencil B⃗ be polynomially A-bounded and condition (A) be ful�lled.
The operators

P =
1

2πi

∫
γ

RA
µ (B⃗)µAdµ, Q =

1

2πi

∫
γ

µARA
µ (B⃗)dµ

are projectors in spaces U and F respectively.

Denote U0 = kerP, F0 = kerQ, U1 = im P, F1 = im Q. According to lemma 3
U = U0 ⊕ U1, F = F0 ⊕ F1. By symbols Ak (Bk

l ) denote restriction of operators A (Bl)
on Uk, k = 0, 1; l = 0, 1.

Consider the Cauchy problem

u(0) = u0, u̇(0) = u1 (15)

for semilinear Sobole-type equation

Aü = B1u̇+B0u+N(u) (16)

provided that the operator A has a nontrivial kernel, operators pencil B⃗ is (A, 0)-bounded
and the condition (A) is ful�lled. Then due to splitting theorem [2] equation (16) can be
reduced to equivalent system of equations{

0 = (I−Q)(B0 +N)(u0 + u1),
ü1 = A−1

1 QB1(u̇
0 + u̇1) + A−1

1 Q(B0 +N)(u0 + u1),
(17)

where u1 = Pu, u0 = (I− P )u.
Introduce the set M = {u ∈ U : (I−Q)(B0u+N(u)) = 0}.
Let M ̸= ∅, i.e. exists a point u0 ∈ M and the following condition be ful�lled:

(I−Q)(B0 +N ′
u0
) : U0 → F0 is a toplinear isomorphism. (18)

We can show that the set M is a C∞-manifold at the point u0 like in previous section.
The following theorem holds due to classical theorem about existence of unique local
solution of nondegenerate di�erential equation [9]

Theorem 4. Let the operator pencil B⃗ be (A, 0)-bounded, operator N ∈ C∞(U;F) and
condition (18) be ful�lled. Then for any pair (u0, u1) ∈ TM there exists a unique solution
of the problem (15), (16) lying in M as trajectory.

Now reduce mathematical model (4)�(6) to the Cauchy problem (15) for equation (16).
Introduce spaces as in (11) and de�ne

A = λ−∆, B1 = α(∆− λ′), B0 = β(∆− λ′′).

For any m ∈ {0} ∪N operators A,B1, B0 ∈ L(U,F). If m > n/2− 2 then the operator
N(u) de�ned as N(u) = ∆f(u), is from the class C∞ due to lemma (2).

Denote by {λk}(= σ(∆)) eigenvalues of the Dirichlet problem for the Laplace operator
∆ numbered nonincreasingly taking into account their multiplicity. Denote by {φk}
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corresponding orthonormal eigenfunctions in the sense of the scalar product in L2(Ω).
Since {φk} ⊂ C∞(Ω) then

µ2A− µB1 −B0 =
∞∑
k=1

[(λ− λk)µ
2 + α(λ′ − λk)µ+ β(λ′′ − λk)] < φk, · > φk

where < ·, · > is the scalar product in L2(Ω).

Lemma 4. [3] Let one of the following conditions be ful�lled:
(i) λ ̸∈ σ(∆);
(ii) (λ ∈ σ(∆)) ∧ (λ ̸= λ′);
(iii) (λ ∈ σ(∆)) ∧ (λ = λ′) ∧ (λ ̸= λ′′).

Then the pencil B⃗ is polynomially A-bounded.

Let conditions (i) or (iii) of lemma 4 be ful�lled then condition (A) takes place. If
(λ ∈ σ(∆)) ∧ (λ ̸= λ′), i.e. the condition (ii) of lemma 4 is ful�lled, then (A) doesn't

take place, therefore we eliminate it from further consideration. A-spectrum of pencil B⃗
consists of solutions µ1,2

k of the equation

(λ− λk)µ
2 + α(λ′ − λk)µ+ β(λ′′ − λk) = 0, k ∈ N.

Fix m > n/2− 2 then according to regularity lemma the operator N(u) : u → ∆f(u)
belongs to C∞(U;F).

Thus we �nished reduction. All condition of theorem 4 are ful�lled and the following
statement takes place.

Theorem 5. (i) For all λ /∈ σ(∆), lm > n/2 − 2, u0, u1 ∈ U and τ > 0 there exists a
unique solution u ∈ C∞(

(−τ, τ),U
)
of the problem (4)�(6).

(ii) Let (λ = λ′ = λl ̸= λ′′), m > n/2 − 2, (u0, u1) ∈ TM and condition (18) be ful�lled.
Then for τ > 0 there exists a unique solution u ∈ C∞(

(−τ, τ),M
)
of the problem (4)�(6).

Now consider the Showalter � Sidorov conditions

P (u(0)− u0) = 0, P (u̇(0)− u1) = 0 (19)

for the Sobolev-type equation (16). Note that initial data of a Showalter � Sidorov problem
is projected on the image of operator at the highest time derivative. In particulaly case,

when∞ is a removable singularity of A-resolvent of pencil
−→
B , the image coincides with the

image of the projector P . Thus the initial data enters the phase space of given equation
automatically as distinct from initial data of the Cauchy problem. The following statement
takes place

Theorem 6. Let the pencil B⃗ be polynomially A-bounded, ∞ be a removable singularity
of A-resolvent of the pencil B⃗, the operator N be from the class C∞ and condition (18) be
ful�lled. For all u0, u1 there exists a unique local solution of problem (16), (19).

Consider the equation (4) with boundary condition (5) and the Showalter � Sidorov
conditions

(λ−∆)(u(x, 0)− u0) = 0, (λ−∆)(u̇(x, 0)− u1) = 0, (20)
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where α, β, λ, λ′, λ′′ ∈ R , f(u) is a function from the class C∞.
The mathematical model (4), (5), (20) can be reduced to the abstract problem (16),

(19) in the spaces
U = {u ∈ Wm+2

2 (Ω)|u(x) = 0, (x) ∈ ∂Ω},

F = Wm
2 (Ω).

Thus, due to theorem (6), the following theorem true.

Theorem 7. Let m > n/2 − 2, λ ̸∈ σ(∆) or ((λ ∈ σ(∆)) ∧ (λ = λ′ ̸= λ′′)) and (18)
be ful�lled. Then for all u0, u1 ∈ U and τ = τ(u0, u1) > 0 there exists a unique solution
u ∈ C2((−τ, τ),U) of the problem (4), (5), (20).

3. Algorithm of the numerical solution

Now consider the algorithm of the numerical solution for mathematical model which can
be reduced to the problem (16), (19). The �owchart of the method algorithm is shown on
�gure 1. In A.V. Keller works the algorithms of numerical solution of Showalter � Sidorov
problem for Leontiev-type systems [11] are studied.

Fig. 1. The �owchart of the method algorithm solution of the problem (16), (19).

Describe the algorithm in details. Each step is responsible for one block.
1 step. After program starts, input data: m � number of Galerkin terms; λ, λ′, λ′′,

α, β � parameters of equation; f(u) � right side of equation; u0, u1 � initial data; Ω �
domain; ∆t, ∆x � approximation steps of solution.
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2 step. Generation of approximate solution ũ in form of series
m∑
i=1

ui(t)φi(x).

3 step. Substitution ũ into equation.
4 step. Multiplication of the equation by φi(x) in sense of L2(Ω).
5 step. Combining of equations received on previous step in a system.
6 step. Expanding of the initial data to a Galerkin sum. Finding the initial data for

system of equations from 5th step.
7 step. Checking, if λ belongs to the spectrum of Laplace operator.
If 7 step is false:
8 step. System from the 5th step with initial data from the 6th step is solved by Runge

� Kutta method.
If 7 step is true:
9 step. Exclude the algebraic equation �k form the system and corresponding the

initial data.
10 step. Solve the algebraic equation with respect to uk(t).
11 step. Solution of the algebraic equation is substituted into the system.
12 step. System from the 11th step with the initial data from the 9th step is solved by

Runge � Kutta method.
13 step. Combine solution and output it in the form of a graph and set of points.
Solve the following problem using that algorithm.

(−9−∆)ü = (∆ + 9)u̇+∆u+∆(u3), (21)

u(0, t) = u(π, t) = 0 (22)

(−9−∆)(u(x, 0)− sin(x) + 2 sin(2x)− 3 sin(3x)) = 0,
(−9−∆)(u̇(x, 0)− 5 sin(x)) = 0.

(23)

Equation (21) is degenerate. Galerkin sum for m = 3 has form

ũ(x, t) =

√
2

π
(u1(t) sin(x) + u2(t) sin(2x) + u3(t) sin(3x)) .

Algorithm was realized in Maple. The numerical solution of the problem (21)�(23) is shown
on �gure 2.

Fig. 2. Graph of the numerical solution of (21)�(23)
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