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The article contains the results of computational experiments for the Dzeczer
mathematical model and the generalized Fisher – Kolmogorov mathematical model.
Information on the solvability of the studied models is given. We describe both an
algorithm to find an approximate solution of mathematical models of thermodynamics
and hydrodynamics, and implementation of the algorithm as a program in the computer
mathematics system Maple. The results of computational experiments for the studied
models are presented.
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Introduction
Let Ω be a bounded domain in Rd with infinitely smooth boundary ∂Ω. Consider the

Cauchy problem
w(x, 0) = w0(x), x ∈ Ω (1)

for Dzektser mathematical model

(λ−∆)wt = (β∆− α∆2)w, λ, β ∈ R, α ∈ R+, (2)

w = ∆w = 0 on ∂Ω. (3)

Note that the equation (2) is a generalization of the equation of groundwater movement
with a free surface [1] and simulates an evolution of the filtering liquid free surface. The
equation (2) is called the Dzekzer equation [2]. Point out that the operator on the left
in the equation (2) can be degenerate for some values of the parameter λ. Therefore the
equation belongs to the large class of nonclassical equations of mathematical physics[3].

We also consider the generalized linearized Fisher – Kolmogorov mathematical model

∂w

∂t
= −α∆2w + β∆w + γw, (x, t) ∈ Ω× (0, T ], (4)

∂w

∂n
=

∂∆w

∂n
= 0 on ∂Ω (5)
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with the initial condition (1), where Ω is a bounded domain in Rd, d ≤ 2 with boundary
∂Ω, and α > 0 is a hyperdiffusion coefficient. The equation (4) is a generalization of the
classical Fisher –Kolmogorov equation for α = 0, which appeared recently in the study
of phase transitions of critical points (Lifshitz points) [4] and was studied as a high-order
model equation for the bistable systems [5].

Both models can be considered within the abstract Sobolev type equation [6]

Lu̇ = Mu, (6)

with operators L ∈ L(U;F) and M ∈ Cl(U;F) in the Banach spaces U и F. The vector
function u ∈ C∞(R+;U) is said to be the solution of the equation (6), if we get an identity
after substituting u ∈ C∞(R+;U) in (6). The solution u = u(t) of such equation is called
the solution of the Cauchy problem

u(0) = u0, (7)

if in addition it satisfies the Cauchy condition (7) for some u0 ∈ U. Several researchers (see,
for example, [7, 8]) note that the Cauchy problem (7) for the equation (6) is unsolvable for
arbitrary initial data. To solve this problem, we apply the phase space method [6, 7]. Note
that for the first time for numerical study the method was applied in the finite-dimensional
case in [9].

The article is devoted to analytical and numerical study of the models (1)–(3) and
(1),(4),(5) for numerical study we apply a method developed for quasi-Sobolev spaces
[10]. The results confirm an effectiveness of the developed numerical method to find an
approximate solution for the studied models.

1. Solvability of the Dzektser and Fisher – Kolmogorov
mathematical models
Consider the Dzektser mathematical model (2), (3) in spaces U=Wm+2

q (Ω) and
F=Wm

q (Ω), m ∈ R for q = 2. As is well known, in this case the Laplace operator spectrum
is real-valued, nonpositive, discrete, finite-fold, and condensed only to the point −∞.
Denote the spectrum of the operator ∆ by {νk} ⊂ R−, and denote the corresponding
eigenfunctions by {φk} ⊂ Wm

q (Ω). Here the spectrum points are numbered according
to nondecreasing, taking into account their multiplicity. Since the eigenfunctions of the
Laplace operator form a basis, then any function from Wm

q (Ω) can be represented as

w =
∞∑
k=1

ukφk.

We set a definitional domain dom( − α∆2+β∆) =Wm+4
q (Ω). Then the operators are

L = (λ−∆) ∈ L(U;F), M = (− α∆2+β∆) ∈ Cl(U;F).
The relative spectrum for the equation (2) has the form

σL(M) =

{
µk : µk =

βνk − αν2
k

λ− νk
for k ∈ N : νk ̸= λ

}
. (8)

It is clear that µk → −∞ for νk → −∞. Hence, in view of [6], there exists a resolving
semigroup for the equation (2) and it has the form

U t=

{ ∑∞
k=1 e

µkt<., φk>φk, if λk ̸= λ for all k ∈ N;∑
k∈N:k ̸=ℓ e

µkt<., φk>φk, if there exists ℓ ∈ N:λℓ=λ.
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In view of [6], there are the following theorems.

Theorem 1. For any m,λ, β ∈ R, q, α ∈ R+ a phase space of the model (2), (3) is a set

U1=

{
U, if νk ̸= λ for all k ∈ N;
{u ∈ U: <u,φk>= 0, if k ∈ N : νk=λ}.

Theorem 2. For any m,λ, β ∈ R, τ, α ∈ R+ and for any w0 ∈ U1 there exists a unique
solution w ∈ C1((0, τ);U) of the problem (1) for the model (2), (3) of the form

w(t) =
∞∑
k=1

eµkt<w0, φk>φk, where µk from (8).

Now consider the Fisher – Kolmogorov mathematical model (4), (5) in spaces
U=Wm+2

q (Ω) and F=Wm
q (Ω), m ∈ R, q = 2.

We set a definitional domain dom(−α∆2 + β∆+ γ) = Wm+4
q (Ω). Then the operators

are L = I ∈ L(U;F), M = (−α∆2 + β∆+ γ) ∈ Cl(U;F).
In view of [6], there are the following theorems.

Theorem 3. For any m,β, γ ∈ R, α ∈ R+ a phase space of the model (4), (5) is a set U.

Theorem 4. For any m,β, γ ∈ R, τ, α ∈ R+, w0 ∈ U there exists a unique solution
w ∈ C1((0, τ);U) of the problem (1) for the model (4), (5), which has the form

w(t) =
∞∑
k=1

eµkt<w0, φk>φk, where µk = −αν2
k + βνk + γ.

2. Numerical study of models

Let U = Wm+2n
q (Ω), F = Wm

q (Ω), m ∈ {0} ∪ N, q ≥ 2, Qn (λ) =
n∑

i=0

ciλ
i and

Rs (λ) =
s∑

j=0

djλ
j be polynomials with real coefficients such that the polynomials do not

have common roots and powers of the polynomials are n and s, respectively, where n < s
and dscn < 0, the operators are L = Qn(∆), M = Rs(∆). Let {λk} be a set of eigenvalues
of the operator −∆ with a homogeneous Dirichlet condition, numbered in nondecreasing
order taking into account the multiplicity, and let {φk} be a family of corresponding
eigenfunctions, orthonormalized with respect to the scalar product < ·, · > from L2(Ω).
Since the family {φk} forms a basis in the space L2(Ω), then the initial function can

be expanded in a Fourier series w0(x) =
∞∑
k=1

< w0, φk > φk(x), x ∈ Ω.In order to

find the approximate solution w̃(x, t) we use the representation w̃(x, t) = wN(x, t) =
N∑
k=1

ũk(t)φk(x), where both the number N ∈ N and the approximate solution in quasi-

Sobolev spaces ũ(t) = {ũk(t)} are found by the previously developed numerical method
[10] for a given accuracy ε.

The developed algorithm of the numerical method to study this class of evolutionary
mathematical models is implemented in a complex of programs in the computer
mathematics system Maple 15.0.
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Fig. 1. A block diagram of the algorithm

Functionality of the program, range of the program application
The complex consists of two modules. First module allows to obtain a numerical

solution of the Cauchy problem for the class of equations in quasi-Sobolev spaces. Second
module allows to to solve the Cauchy problem for the Dzekzer and Fisher –Kolmogorov
models on a closed interval or in a rectangle, depending on the given parameters and the
initial data for the quasinorm parameter q ≥ 2. The phase space method and the modified
projection method are implemented in the program complex. The program allows to draw
graphs of components of the numerical solution in quasi-Sobolev spaces and graphs of the
solutions of the considered models as a function of time and spatial variables.

Description of the logical structure
The first module of the program complex is described in [10].
Fig. 1 shows a scheme for the algorithm of the second module of the program complex.
The developed program allows:
1. Enter the parameters of the equation and the initial function.
2. Take into account the degeneracy of the mathematical model and apply the phase

space method.
3. Find and show an approximate solution of the problem.
4. Get a graphical representation of the solution as a function of time and spatial

variables.
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A detailed description of the algorithm (here each block of the diagram corresponds
to one step) is the following:

Step 1. Start the program and require to enter parameters of the Dzektser or Fisher-
Kolmogorov equation, an initial function w0(x), a time interval T : t ∈ [0, T ] and an
accuracy of the approximate solution ε.

Step 2. Construct polynomials Qn(x) =
n∑

k=1

ckx
k, Rs(x) =

s∑
k=1

dkx
k by the equation

parameters.
Step 3. Solve Sturm-Liouville problem: find eigenfunctions and eigenvalues of the

operator −∆ in the corresponding domain. That is, obtain a monotonically increasing
sequence {λk} and a sequence of eigenfunctions {φk}.

Step 4. Expand the initial function in a Fourier series of eigenfunctions. Obtain the
initial sequence u0 from its coefficients.

Step 5. Start the first module [10], and find an approximate solution in quasi-Sobolev
spaces by data obtained in the previous steps.

Step 6. Obtain an approximate solution of the initial model in the form
N∑
k=1

ũk(t)φk(x).

Step 7. Display the obtained solution both as a function and as a graph.

Technical means used
In order to implement the computational algorithms, we use the built-in functions and

standard operators of the computer mathematics system Maple 15.0. In order to create
dialog boxes, we connect the package called the Maplets[Elements]. In order to obtain a
graphic image, we connect the package called plots. The author of the program created
a M-file to study (to find a solution) one class of evolutionary models in quasi-Sobolev
spaces, as well as the Dzektser and Fisher – Kolmogorov mathematical models on a closed
interval or in a rectangle. The program is operated on a personal computer having Intel
(80× 86) platform, running under Microsoft Windows.

Output data
The output data is an on-screen display of both the solution components uk(t) and a

graph of the solution w(x, t) at certain time intervals.

3. Computational experiments for the Dzektser and Fisher –
Kolmogorov mathematical models
Let us give the results of computational experiments for the Dzektser mathematical

model
(λ−∆)wt = (β∆− α∆2)w, λ, β ∈ R, α ∈ R+ (9)

w(x, 0) = w0(x), x ∈ [0, l] (10)

w(0, t) = w(l, t) = wxx(0, t) = wxx(l, t) = 0, t ∈ [0, T ] (11)

in the Banach spaces U = Wm+2
2 (0, l) and F = Wm

2 (0, l), m ∈ {0} ∪ N.

Example 1. The problem is to find the numerical solution of the mathematical model
(9) – (11), where λ = −4, β = 0, α = 1,m = 1, l = π, T = 0.4. Obviously, λk = k2

and φk = sin kx are eigenvalues and eigenfunctions of the operator −∆ with homogeneous
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Dirichlet boundary condition. Assume

w0(x) =
∑
k ̸=2

1

k2
sin kx.

The mathematical model (9) – (11) is degenerate, but the initial function belongs to the
phase space of the equation (9). Then for a given accuracy ε = 0.1, as a result of the
program, we get

ũ(t)=(e0.33t, 0, 0.11e−16.2t, 0, 0,..., 0,...) , which are coefficients of the approximate
solution. Fig. 2 presents their graphs. Since µ1 = 0.33 > 0, then, in view of [11], the
equation (9) has an exponential dichotomy. It can be seen from Fig. 2 that the first
component of the solution grows and the others decrease.

The approximate solution has the form
w̃(x, t)=e0.33t sin x + 0.11e−16.2t sin 3x.
The graph of the approximate solution is shown in Fig. 3.

Fig. 2. Components of the solution from
the example 1 Fig. 3. Solution graph from the example 1

Example 2. The problem is to find the numerical solution of the mathematical model
(9) – (11), where λ = −4, β = 0, α = 1,m = 1, l = π, T = 0.4. Obviously, λk = k2 and
φk = sin kx are eigenvalues and eigenfunctions of the operator −∆ with the homogeneous
Dirichlet boundary condition, respectively. Assume

w0(x) = sin x+ 3 sin 3x.

The mathematical model (9) – (11) is degenerate. In this case, the initial function does
not belong to the phase space of the equation (9) and the program gives the message: "No
solutions".
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Example 3. The problem is to find the numerical solution of the mathematical model
(9) – (11), where λ = −4, β = 0, α = 1,m = 1, l = π, T = 0.4. Assume

w0(x) = sin x+ 3 sin 3x.

The mathematical model (9) – (11) is degenerate, but the initial function belongs to the
phase space of the equation (9). Then for a given accuracy ε = 0.1, as a result of the
program, we get

ũ(t)=(e0.33t, 0, 3e−16.2t, 0, 0,..., 0,...), which are the coefficients of the approximate
solution. Fig. 4 shows their graphs. Since µ1 = 0.33 > 0, then, in view of [11], the equation
(9) has an exponential dichotomy. Fig. 4 shows that the first component of the solution
grows and the others decrease.

The approximate solution has the form
w̃(x, t)=e0.33t sin x + 3e−16.2t sin 3x.
The approximate solution graph is shown in Fig. 5.

Fig. 4. The components of the solution
from the example 3 Fig. 5. Solution graph from the example 3

Let us give the results of computational experiments for the Fisher – Kolmogorov
mathematical model

wt = (−α∆2 − β∆+ γ)w, β, γ ∈ R, α ∈ R+, (12)

w(x, 0) = w0(x), x ∈ [0, l] (13)

wx(0, t) = wx(l, t) = wxxx(0, t) = wxxx(l, t) = 0, t ∈ [0, T ] (14)

in the Banach spaces U = Wm+2
2 (0, l) and F = Wm

2 (0, l), m ∈ {0} ∪ N.

Example 4. The problem is to find the numerical solution of the mathematical model
(12) – (14), where α = 1, β = 1, γ = −15, m = 0, l = π, T = 0.4. Obviously, λk = k2
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and φk = cos kx are eigenvalues and eigenfunctions of the operator −∆ with homogeneous
Dirichlet boundary condition. Assume

w0(x) =
∞∑
k=1

1

k2
cos kx.

Then for a given accuracy ε = 0.001, as a result of the program, we get
ũ(t)=(e15t, 0.25e3t, 0.11e−57t, 0.06e−225t, 0.04e−585t, 0.03e−1245t, 0.02e−2337t, 0, 0,...,

0,...) which are coefficients of the approximate solution. Fig. 6 presents their graphs.
Since µ1 = 15 > 0 and µ2 = 3 > 0, then, in view of [11], the equation (12) has an

exponential dichotomy. It can be seen from Fig. 6 that the first and the second components
of the solution grows and the others decrease.

The approximate solution has the form
w̃(x, t) = e15t cos x + 0.25e3t cos 2x + 0.11e−57t cos 3x + 0.06e−225t cos 4x +

0.04e−585t cos 5x+ 0.03e−1245t cos 6x+ 0.02e−2337t cos 7x.
The approximate solution graph is shown in Fig. 7. The solution is unstable, because

there are exponential dichotomies [11].

Fig. 6. Solution components from the
example 4 Fig. 7. Solution graph from the example 4

Example 5. The problem is to find the numerical solution of the mathematical model
(12) – (14), where α = 1, β = 12, γ = −12, m = 0, l = π, T = 0.4, with the initial
function

w0(x) =
∞∑
k=1

1

k2
cos kx.

Then for a given accuracy ε = 0.001, as a result of the program, we get
ũ(t)=(e−t, 0.25e20t, 0.11e15t, 0.06e−76t, 0.04e−337t, 0.03e−876t, 0.02e−1825t, 0, 0,..., 0,...)

which are coefficients of the approximate solution. Fig. 8 presents their graphs. Since
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µ2 = 20 > 0 and µ3 = 15 > 0, then, in view of [11], the equation (12) has an exponential
dichotomy. It can be seen from Fig. 8 that the second and the third components of the
solution grow and the others decrease.

The approximate solution has the form
w̃(x, t) = e−t cosx+0.25e20t cos 2x+0.11e15t cos 3x+0.06e−76t cos 4x+0.04e−337t cos 5x+

0.03e−876t cos 6x+ 0.02e−1825t cos 7x.
The approximate solution graph is shown in Fig. 9. The solution is unstable, because

there are exponential dichotomies [11].

Fig. 8. Solution components from the
example 5 Fig. 9. Solution graph from the example 5

Remark 1. We note that the exponential dichotomies illustrated by the numerical
experiments are in agreement with the results obtained earlier [12].
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ВЫЧИСЛИТЕЛЬНЫЕ ЭКСПЕРИМЕНТЫ
ДЛЯ ОДНОГО КЛАССА МАТЕМАТИЧЕСКИХ
МОДЕЛЕЙ ТЕРМО- И ГИДРОДИНАМИКИ

Д.К.Т. Аль Исави

Статья содержит результаты вычислительных экспериментов для математической
модели Дзекцера и обобщенной математической модели Фишера – Колмогорова. При-
водятся сведения о разрешимости исследуемых моделей. Описан алгоритм метода на-
хождения приближенного решения математических моделей термо- и гидродинамики
и его реализация в виде программы в среде Maple. Представлены результаты вычис-
лительных экспериментов для исследуемых моделей.

Ключевые слова: эволюционное уравнение; математическая модель Дзекцера;
обобщенная математическая модель Фишера – Колмогорова; численное решение; про-
екционный метод.
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