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THE BOUNDED SOLUTIONS ON A SEMIAXIS
FOR THE LINEARIZED HOFF EQUATION
IN QUASI-SOBOLEV SPACES
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In this paper we investigate the properties of the linearized Hoff equation in quasi-
Sobolev spaces. Hoff equation, specified on the interval, describes the buckling of the H-
beam. Due to the fact that for certain values of the parameters in the equation may be
missing the derivative with respect to time, this equation refers in a frame of class of
nonclassical equations of mathematical physics. The article by relatively spectral theorem
describes the morphology of the phase space and the existence of invariant spaces of
solutions. Using these results, we prove the existence of bounded on the semiaxis solutions
for homogeneous evolution equations of Sobolev type in quasi-Sobolev spaces. Apart of the
introduction and bibliography the article contains three parts. The first one shows the results
on the solvability of the investigated class of equations. The second part shows the existence
of bounded on the semiaxis solutions for the homogeneous equations of the research class.
Finally, the third part presents the results of the existence of solutions bounded on the
semiaxis for analog linearized Hoff equation in quasi-Sobolev spaces.

Keywords: Sobolev type equations; phase space; invariant subspaces of solutions; group
of solving operators.

Introduction

Consider an analogue of the linearized Hoff equation
(A4 AN)uy = au, AaeR (1)
with Laplace quasi-operator A : £;7% — (7 in quasi-Sobolev spaces [1]

[e.e]

le=qu={u} CR: Z(A,§|ukl)q<+oo :

k=1

where 7 € R and ¢ € (0,1), and sequence {\;} C R, is such that klim Ay = +00.
— 00

The prototype of the equation (1) is the boundary value problem for the linearized Hoff
equation [2]
(A = A)u = au, AaeR (2)

in quasi-Sobolev spaces W3 (2). Here  is a bounded domain in R? with infinitely smooth
boundary 0f). Equation (2) describes the dynamics of H-beam construction. An operator
in left side of (2) can degenerate and by this reason equation (2) is contained in wide class
of nonclassical equations of mathematical physics [3].
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In more general case we can consider equation (1) in frame of a class of dynamical
equations

P,(N)i = Qum(A)u, (3)
where P,(x) = icixi, ¢ € C,cp, # 0 and Q,(z) = idjxj, dj € C, d,, # 0 are
i=0 Jj=0

polynomials such that m < n. The Sobolev type equation (3) is called dynamical if it’s
solutions exist on whole R, and evolutionary if solutions of (3) exist only on R,. Note
that dynamical Sobolev type equations was researched in space of "differentiable noises"
[4]. Solvability of equation (3) was research in [5]. Main aim of this article is conditions for
boundness of solutions for equations (3) and (1). To archive this aim we have to consider
invariant spaces of solutions for Sobolev type equation [6]

Li= Mu (4)

with operators L, M € L(;F) in quasi-Sobolev spaces { and §. Vector-function u €
C>®(R;4) is called a solution of equation (4), if it satisfies this equation. The solution
u = u(t) of the equation (4) is called solution of the Cauchy problem

u(0) = ug (5)

for equation (4) (shortly, the problem (4), (5)), if in addition it satisfies the Cauchy
condition (5) at a some ug € 4L

Besides the introduction and the references the article contains three parts. The first
part provides preliminaries concepts, such that the relative resolvents in quasi-Sobolev,
relatively (L, p)-bounded operators and solvability of problem (4),(5). The second one
consider the bounded solutions on a semiaxis for homogeneous equations of the class
(3). The third is considered an analog of the linearized equation Hoff (1) in quasi-Sobolev
spaces. Existence the bounded solutions on a semiaxis for a homogeneous linearized analog
Hoff equation.

1. Solvability for One Class of Dynamical Equations

Let $ and § be a quasi-Sobolev spaces, operators L, M € L(;§). Considerate an
L-resolvent set p*(M) = {u € C: (uL — M)™' € L(F;U)} and L-spectrum o(M) =
C\ p“(M) of operator M. By [7] the set pP(M) is always opened, therefore the o*(M) is
always closed.

Let p“(M) # @ then the operator functions (uL — M)~", R:(M) = (uL — M)~'L and
L{;(M) = L(uL — M)~! are called respectively L-resolvent, the right and left L-resolvent
of an operator M.

Let for the relative spectral of an operator o*(M)

ot (M) = o5 (M)U ot (M), o (M) # 0,
such that there exists a bounded domain ; C C : (6)
with 99 of class Ct QDA M) and QN ol(M) = 0.

Let v; = 0€), then we construct the operators

1 L 1 L
P =— RH(M)dM and QlZ%/Lu(M)d/%

21
71 71
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and the integrals are understood in the sense of Rieman [8]. By the construction of the
operators P € L(U) u Q1 € L(F).

Theorem 1. 9] Let 4, § be a quasi-Sobolev spaces, operators L, M € L(;F), pX(M) # 0
and condition (6) is holds, then the operators Py € L(U) and Q1 € L(F) are projectors.

Definition 1. The operator M is called a relatively spectral bounded of the operator L
(or shortly, (L,0)-bounded), if Ja € Ry Vu € C (lu| >a) = (n€ p“(M)).

Let v = {p € C: |u| = h, h > a}, where constant a is from definition 1, then

1 1
operators P = — /RL(M)du, Q=— /LL(M)d,u and we have the following
2mi K 27 K
g y

Corollary 1. Let an operator M (L,o)-bounded, then the operators P € L(4) and
Q € L(F) are projectors.

Let 4° (U') = kerP (imP), §F° (F') = ker@Q (imQ), then by L, (M;) be denote a
restriction of an operator L (M) into 4*, k = 0,1. From a Corollary 1 it follows, that the
projectors P and @ are splitting the spaces Y and § into direct sums & = 4° @ U and
F=3oF"

Theorem 2. 7| Let an operator M (L, o)-bounded, then
(i) the operators Ly, My € L(U¥;F¥), k=0, 1;
(ii) there exists an operator Ly' € L(F;UY) and Myt € L(F0;U°).

By Theorem 2 there exists the operators
H=M"Loe LU") and S=L;'M; € L.

Definition 2. (L, o)-bounded an operator M is called
e (L,0)-bounded, it H = O
o (L, p)-bounded, if H? # O, and HP™ = Q at p € N.

Corollary 2. |7| Let an operator L is a continuously invertible, then holds oX(M) = o(9).

> r q
The quasi-Sobolev spaces — (; = qu={uz} CC: Z ()\,3 |uk|> < 400 with

r € R, g € R, are not normed, but quasi-normed. The quasi-norm gl - || differ from norm
by "triagle axiom", which for quasi-norm has the following form

ullu+ol] <C(ullull +ullol)  Vu,ved
with C' > 1. The spaces ; are quasi-Banach spaces for all € R, ¢ € R, with quasi-norm
o 1/q
AR (Z (n |uk|)q) ,
k=1

and they are also Banach only if ¢ € [1,+00). If ¢ € (0,1), then the constant C' = 273",
Note also, that if » = 0, then gg = ¢,, and the sequence {\;} C R, such that lim X, =

k—oo
+00.
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Remark 1. [1] The spaces £ (r € R) for ¢ € (0,1) are metrizable.

Consider the solvability Cauchy problem (5) for dynamical equations (4) in quasi-
Sobolev spaces. Note, that the solution of the Cauchy problem (5) for the equation (4) for
an arbitrary initial condition is not always exist [6].

Definition 3. The set P C 4l is called the phase space of the equation (4), if
1) for every ug € B there exists a unique solution of the Cauchy problem (4), (5),
2) any solution u = u(t) of (4) lies in %P as the trajectory (ie u(t) € B for all t € R).

Theorem 3. [7| Let the operator M (L, p)-bounded, p € {0} UN. Then the phase space of
the equation (4) is the subspace 4.

Remark 2. If there exists an operator L™ € L(§F; ) then the phase space of the equation
(4) is all the space 4. In the case of the irreversibility of the operator L phase space of B3
be a subspace of L.

Let us return to consideration of the equation (3). Consider the power of the Laplace
quasi-operators A"u = {A\fu;} (n € N) [10]. It is easy to sce, the operator A™ : ;72" — (7
is a toplinear isomorphism, » € R. Choose a space iU = Eg“” and § = (;. Operators

L = P,(A) and M = @Q,,(A), where P,(z) = > ¢;z* (¢; € C, ¢, #0) and Qun(z) = 3 dja?
i=0 =0
(d; € C, d,,, # 0) are polynomials, such that m < n. Then by [5] operators L, M € L(4; F).

Theorem 4. 5| Let the numbers Ay, being the roots of the polynomial P,(x), are not roots
of Qm(z). Then the operator M (L,0)-bounded.

The L-spectrum of operator M have the form

L . _ Qm()‘k)

a0 = {ue e = G

Further, let {U' : t € R} is a holomorphic degenerate group of operators, and U? is

an its identity. Consider the image of imU® = imU° and the kernel kerU® = kerU° of the

group. Let us call the group {U" : t € R} a resolution group of the equation (4), if in the

first, the vector function u(t) = Ulug is a solution of equation (4) for every uy € 4, a and
secondly, the image of imU*® coincides with phase space of equation (4).

L at k: P\ 7Ao}. (7)

Theorem 5. 7] Let the operator M (L, p)-bounded, p € {0} UN. Then there is a unique
group of resolving the equation (4), which also has the form

1
Ut:T R(M)etdp, te€R,
VY
v

where the contour vy ={p € C:|u| =h > a}.

By Theorems 4 and 5 it is easy to show a group of a holomorphic resolution of equation
(3) have the form

o0

Ze“kt<'7€k>ek7 if Pn(Ak) ?é O, ke N,

k=1
ST etkt(. ep)eg, if there exist I € N: P,(\) =0,
=

Ut. =
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where y € o%(M) from (7). Here the vectors e;, = (0,0, ...,0,1,0,...), where the identity is
worth in the k-th place. By Theorems 3 and 4 the phase space of (4) is the set

gl — s it Py(M\g) #£0, k eN;
|l {ued: uy =0, P,(\)=0}.

Definition 4. Let 3 C il is a phase space of equation (4). Set J C ‘B is called an invariant
subspace, of this equation, if any uy € J there exists a unique solution u = wu(t) Cauchy
problem (5) for the equation (4), and u(t) € J for all t € R.

Theorem 6. [11] Let operator M be an (L,p)-bounded, p € {0} UN and condition (6) is
holds. Then the image of group

1
i L ut R
U; - R, (M)e"dp, teR, (8)
71

be an invariant space for equation (4). Here v; = 0y and 0y from condition (6).

Remark 3. Condition analogously (6) is important for wide class of multipoint initial-
final problems [12].

2. Boundness on a Semiaxis of Solutions for a Class of Dynamical
Equations
Let 4 and § are quasi-Sobolev spaces, operators L, M € L(;F). Let us find the

necessary and sufficient conditions for existing the bounded solution of the Cauchy problem
(4), (5) on a semiaxis in terms of the L-spectrum of the operator M.

Lemma 1. Let the operator M (L, p)-bounded, p € {0} UN, and any non-trivial solution
of the equation (4) is bounded on Ry. Then L is the spectrum of the operator M lies in
the closed left half-plane.

Proof. By virtue of Theorem 5 the solution of problem (4), (5) has the form w(t) = Utuy,
where U' is a resolution group and ug € 4t Since by hypothesis any solution of equation
(4) is bounded on R, then

K
ul[uo|

for all K; > 0 and ¢ > 0 such that condition g||u(t)|| < K is satisfied. By virtue of

ullu@ = ullUuo|| < Kulluoll at =0, K=

consequence group of Ut| = e where S = L{'M,; € L().
L(l
Let us fix ¢ > 0. A mapping of the spectrum has the form o(e%) = €/7®) and means
the set of the form to(S) lies in a halfplane {ReA < In K'}. Consequently, the spectrum
o(S) lies in a halfplane

{Reu <In K/t}.

Since the ¢t > 0 is arbitrary and, by Corollary 2, o(S) = ol(M), then we obtain the
required result.
|
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Let 4 = €T+2" and § = / are quasi-Sobolev spaces, where 7 € R and ¢ € (0, 1), and the
sequence {)\k} C R4, such that khm Ak = +00. The operators P, (A), Qm(A) € L(£;72™07),
—00

m < n and the number A, the root of polynomial P,(x), is not root of @,,(z). Consider
bounded solutions of the class of equations of the form

Fu(A)i = Qm(A)u. (9)

Theorem 7. Let m < n, the operators L = P,(A), M = Q,,(\) and the numbers A\, the
roots of the polynomial P,(x), are not roots of Qu(x), and satisfy the condition

o!(M) = oy (M) U oz (M), (10)

where o (M) = {p€o™(M) : Rep <0}, o3 (M) = {p€ o™ (M) : Rep>0}.
Then the solution of problem (5), (9) is bounded on R if and only if a ug € UM.

Proof. The problem (4), (5) can be represented in the form of an equivalent system of
problems
Llﬂ:bn = MHUH, UII(O) = u(l]l, (11)

L217:L21 == M21U21, u21(0) = U,gl. (12)

By the condition (10) there exists a contour 74, lying in the left half-plane, and a
contour 4, which bound the domains containing of(M) and ok (M) respectively. It’s
clearly that from (10) follows that (6) holds. By Theorem 5, we construct the groups U}

1
T __ L ut
Ui =5 /RN(M)e du, teR,

and also U}, where the contour ~ first is replaced by 71, and then by ~5. We denote the

invariant spaces of equation (4) U = imU} and U?* = imUs, which exists by Theorem 5.

By virtue of the fact that U} + Ul = U* the equality 4 @ U?! = (' = imU* is holds.
Now let ug € 4!, then following the estimate holds

q
r+2n

ol | Ukug||* = Z e ug, ep)er|| = Z (e“’“t/\

9 ||k pr€ak (M) k: prpeat (M)

o) <

r4+2n q
<actemt 3 (N fual) = Cren iyl < Gl

k: prpeat (M)

where a; = max Rey.
,UE’Yl

If the solution u(t) = Uluy of the problems (4), (5) is bounded on R, then, by
Lemma 1, L-spectrum of the operator M lies in the left half-plane, and hence o (M) = 0.
Hence We get that the problem (12) has a solution, trivial, only for 4*! = {0}. Therefore,
ug = ugt € Y.

O
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Corollary 3. If in the Theorem T change the condition of the spectrum to condition
o (M) = of (M) U oy (M), where of (M) = {p € o"(M) : Rep < 0}, 05 (M) = {u €
ol(M) : Reu > 0}. Then the solution of problems (4), (5) is bounded on R_ if and only
Zf Uy € L(Zl.

By Theorems 4 and 7 we have the following

Theorem 8. Let n > m, the numbers Xy, which are the roots of the polynomial P,(z),

are not roots of Qu(x), for all k € N and points of the form % with condition
n\ Nk
Re (Ci)m((;\k))) < 0 finite number. Then the solution of problem (5), (9) is bounded on R,
n\ Nk
A
if and only if  (ug,ex) =0 for keN: Re <Qm( k)) > 0.
Pa(Ar)
By Corollary 3 we have
Corollary 4. If in Theorem 8 we require that points with condition Re P Ov) >0
n\"\k
has a finite number. Then the solution of problem (5), (9) is bounded on R_ if and only if

(ug,ex) =0 for keN: Re (Qm()\k)) <0.

Pn(Ak)

Theorem 9. Let n = m, the numbers \,, which are the roots of the polynomial P,(x),

are not roots of Qu(x). Then, if the points of the form C;m((;\k)) with the condition
n\ Nk
Re (?Dm((;\k))) < 0 a finite number, then the solution of problem (5), (9) bounded on
n\ Nk
_ (X
Ry if and only if  (ug,ex) =0 for ke€N: Re (Q ( k)) > 0.
P,(Ax)

Remark 4. If we change the conditions in Theorem 9 as in Corollary 4, then we obtain
the conditions for existence the bounded solution of the problem (5), (9) on R_.

Remark 5. Results of Theorem 9 and Remark 4 can be applied to research properies of
solution for Barenblatt—Zheltov—Kochina equation [3], linearized Oskolkov equation [13]
and other [3].

Remark 6. All result of this part in Banach spaces investigate in [14].

3. Boundness on a Semiaxis of Solutions for the Hoff Equation in
Quasi-Sobolev Spaces

Consider the analog of the linearized Hoff equation
A+ ANy = au, A a€eR, (13)

in quasi-Sobolev spaces U = 62*2 and § = (; at r € R and ¢ € R;. But the operators
L =P (A)=X+Aand M = Qo(A) = al, Then the operators L, M € L(¢;72 (7).
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Lemma 2. Let {4 = 82” and § = {;, at v € R and ¢ € Ry. Then for any A € R and
a € R\ {0} the operator M is (L, 0)-bounded.

Proof. The L-spectrum of the operator M has the form
L(M) = = Atk Mg £ =M. 14
o"(M)=qpeC: o k7 (14)

Since A\, — 400, then the points of the relative spectrum (M) converge to zero. Hence,
the set oZ(M) is bounded.
Space
(0 — { {0}, if \p # —Aforall k € N;
{uel:u, =0, ke N\ {l: N =—-A}};

Therefore the operator H = M; 'Ly = Q. Hence, the operator M is (L, 0)-bounded.

By Theorem 5 there exists a resolving group of equation (13), which has the form

S e er)er, if M # =N kEN;
U'=4q k1
S emt(-,ek>ek, if there exist [ e N: N\, = —A\.
k#l

The initial value {uo,} = ug € €2+2, the vector e, = (0, ...,0,1,0,...), where a unit stands
for k-th place By Theorem 3, the image of imU*® coincides with the phase space of equation
(13). And this phase space has the form

gl — 0, if A\, # =\ for all k € N;
a {U, S €Z+2 cup =0, \p = —)\}

Now let consider the properties of the solutions of equation (13). First we consider
invariant subspaces of solutions (13). The relative spectrum has the form (14), and hence
it is discrete and obviously is satisfied, the condition (6) And so, we have the

Lemma 3. Suppose that the conditions of Lemma 2 are satisfied and A < 0 such that
there exist k € N, for which A\ < —\. Then there exist at least two invariant subspaces of
solutions of equation (13).

Moreover, the invariant subspace of equation (13) of the form span{e; : A\; < —A} is
finite-dimensional. Finally, we consider solutions of the homogeneous analog of the Hoff
equation that are bounded on the semiaxis. By the Theorem 7, the following

Theorem 10. Let A € R, a € Ry and there exist k € N such that A < —A; either
a < 0 and there exist k € N such that Aj, > —A. Then the solution of problem (5), (13) is
bounded on R if and only if

(up,er) =0 for k: X\ > —A\

Similarly the Corollary 4, we formulate the following
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Corollary 5. Let A € R, o € R_ and there exists k € N such that \ < —\j; either
a > 0 and there exists k € N such that A > —\;. Then the solution of problem (5), (13)
1s bounded on R_ if and only if

(ug,ex) =0 for k:X\. > —\
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OI'PAHMYEHHOCTDB HA II0JIYOCHU PEIIIEHUN
JINHEAPN30BAHHOI'O YPABHEHUA XOPDA
B KBA3MCOBOJIEBBIX ITPOCTPAHCTBAX

@D.JI. Xacan

B nmannoit pabore mcciiemoBaHBI CBOWCTBA PENIEHU JIMHEAPW30BAHHOIO YPaBHEHUS
Xodda B kBa3nCcoOOJIEBBIX TPOCTPAHCTBAX. ¥ paBHeHUsS Xodda 3aJanHoe HA OTPE3KE, OIH-
CBHIBAET BBIIIYYUBaHKE JBYTABPOBOil baiku. B cuity Toro, 9ro mpu onpeieIeHHbIX 3HATEHUSIX
[IapaMeTpoOB B yPaBHEHHHM MOXKET OTCYTCTBOBATH ITPOU3BOJHAS N0 BPEMEHHU, TO 9TO ypaB-
HEHUE OTHOCHUTCS K OOIIMPHOMY KJIACCY HEKJIACCMYECKUX YpPaBHEHUN MaTeMaTHYecKoi (u-
3uKku. B craThbe ¢ MOMOIIBIO OTHOCUTEIBHO CIIEKTPAIbHON TeOpeMbl OIMUCAHA MOPMOJIOTHS
$da30BOro MpOCTPAHCTBA U MOKA3AHO CYIIECTBOBAHUE WHBAPUAHTHBIX MPOCTPAHCTB YpaB-
mernsi. C UCIIOIB30BAHUEM STUX PE3YJIBTATOB JIOKA3AHO CYIECTBOBAHNE OTDAHUYCHHBIX HA
[IOJIyOCH PEIEeHUl OTHOPOJIHBIX BOJIIOIMOHHBIX YPaBHEHH CODOJIEBCKOIO TUIA B KBA3UCO-
60s1eBBIX mpocTpaHcTBax. CTaThs KpOMe BBEJCHHsS M CIHCKA JIUTEPATYPhI COJEPKUT TPH
JacTu. B mepBoil M3 HUX NPUBEIEHBI PE3YJIBTATHI O PA3PEITNMOCTH UCC/IEYEMOrO KJIACCa
ypaBHeHuii. Bo BTOpoii 4acTu MOKa3bIBAETCs CYIECTBOBAHME OIPAHUYIEHHBIX Ha, IIOJIyOCH
peIlieHns Jjis OMHOPOIHBIX yPABHEHMII MCCIIeLyeMoro Kjacca. Hakomer, B TpeTbell JacTu
[IPUBEJIEHBI PE3YJIBTATHI O CYIIECTBOBAHUU OTPAHUYEHHBIX HA MMOJIYOCH PENIeHWil JJisi aHa-
Jiora JIMHEPU30BAHHOTO ypaBHeHusa Xodda B KBa3ucoOOIEBbIX TPOCTPAHCTBAX.

Karouesvie crosa: ypashenus coboaesckozo muna; $aso6oe nNpocmpancmeo; uwHeapu-

AGHMHDLE NOONPOCTMPAHCNEN PEWEHUT; PA3PEULGIOULAA 2DYNNG ONEPATNOPOS.
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