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1 South Ural State University, Chelyabinsk, Russian FederationThe mathematial model (MM) of the measuring transduer (MT) is disussed. TheMM is intended for restoration of deterministi signals distorted by mehanial inertia of theMT, resonanes in MT's iruits and stohasti perturbations. The MM is represented bythe Leontie� type system of equations, re�eting the hange in the state of MT under usefulsignal, deterministi and stohasti perturbations; algebrai system of equations modellingobservations of distorted signal; and the Showalter � Sidorov initial ondition. In additionthe MM of the MT inludes a ost funtional. The minimum point of a ost funtional isa required optimal measurement. Qualitative researh of the MM of the MT is ondutedby the methods of the degenerate operator group's theory. Namely, the existene of theunique optimal measurement is proved. This result orresponds to input signal withoutstohasti perturbation. To onsider stohasti perturbations it is neessary to introdue soalled Nelson � Gliklikh derivative for random proess. In onlusion of artile observationsof "noises"(random perturbation, espeially "white noise") are under onsideration.Keywords: mathematial model of the measuring transduer, the Leontie� type system,the Showalter � Sidorov ondition, ost funtional, the Nelson � Gliklikh derivative, "whitenoise".IntrodutionNew approah to restoration of deterministi signals distorted by a mehanial inertiaof the measuring transduer (MT) was proposed in [17℄. In the basis of this approah is amathematial model (MM) of MT one part of whih is a Leontie� type system of equations

Lẋ =Mx+Du. (1)Here L, M and D are square matries of order n modelling the onstrution of the MT.The vetor funtions x = col(x1, x2, . . . , xn) and u = col(u1, u2, . . . , un) are responsible forthe state of the MT and the input signal (hereinafter � measurement) aordingly. Thesystem of algebrai equations
y = Cx (2)is another part of the MM, where y = col(y1, y2, . . . , yn) is the vetor funtionorresponding to output signal (hereinafter observation). Square matrix C of order nmodels the output devie (for example, osillograph or reording devie). Note that wean observe less parameters than we measure. For this purpose orresponding rows of thematrix C are replaed by zeros (i.e. the "orresponding reorder" is turned o�). Anotherpart of the mathematial model of the MT is represented by the Showalter � Sidorov initialondition

P (x(0)− x0) = 0, (3)2014, vol. 1, no. 1 3



A.L. Shestakov, A.V. Keller, G.A. Sviridyukhere P is the projetor in the spae Rn, whih is onstruted using the matries L and M .Let us note that we onsider the Leontie� type system of equations as a �nite-dimensionalanalogues of Sobolev type equations to be able to use the methods of the theory ofdegenerate operator semigroups (for example see [23℄, h. 4). The initial ondition (3)is more natural for the Sobolev type equations, than the Cauhy ondition [25℄. Moreover,the ondition (3) is more onvenient for the algorithms of numerial alulations [6℄.In [18℄ the MM (1) � (3) of the MT has been extended to the ase when themeasurement is distorted by resonanes in the iruits of the MT in addition to itsmehanial inertia. Initially it was supposed that detL 6= 0, however the areful analysis[9℄ reveals the neessity of detL = 0 to take into aount the resonanes in the model. Theondition detL = 0 �nally pulls together the system (1) and the Leontie�'s balane model(for example, see [8℄).Finally, the ost funtional
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dt, (4)presents the last (and most important) part of the mathematial model of the MT. Where
y0 = y0(t) is the observation, obtained in natural experiment on the real MT, modelledby (1) � (4). The oe�ients α ∈ (0, 1], β ∈ R̄+, α + β = 1; Nk are symmetri positivelyde�ned matries of order n, ||·|| and 〈·, ·〉 are the Eulidean norm and salar produt in
Rn respetively. The restored signal is a minimum point v of funtional (4),

J(v) = min
u∈Ua∂

J(u), (5)on a losed onvex set Ua∂ , whih is understood as a set of admissible measurements. Thisset ontains a priori information about the target value of the optimal measurement v.Metrologists onsider that suh information should always be beause "the unknown isimpossible to be measured" [15℄.As a result of profound theoretial researh of MM for MT (1) � (5) the numerialalgorithms for �nding the optimal measurement have been developed. The y based on thethesis [7℄ whih represents a wide range of numerial algorithms for solving of the optimalontrol problems for the Leontie� type systems. The algorithm adapted to the situation(1) � (5) is presented in [5℄. The results of omputational experiments are given in [16℄.Now turn to the restoration of the stohasti signals. The MM of MT is representedby (1) � (5), where u is a random proess (for example, white noise) and x0 is a randomvariable. Firstly make a digression about stohasti di�erential equations.In the simplest ase the system of linear stohasti equations is given by
dη = (Sη + ψ)dt+ Adω. (6)Here S and A are some matries, ψ = ψ(t) is a deterministi external in�uene, ω = ω(t)is a stohasti external in�uene, η = η(t) is a target random proess. Originally under

dω we understood the generalized di�erential of the Wiener proess, whih is traditionallytreated as a white noise. The �rst equations of the type (6) were studyied by K. Ito,then R.L. Stratonovih and A.V. Skorohod joined this investigation. The Ito-Stratonovih-Skorokhod approah is still popular [3℄. Moreover, it was suessfully extended to the4 Journal of Computational and Engineering Mathematis



SURVEY ARTICLESin�nite-dimensional situation [1, 10℄ and even to the Sobolev type equations [10, 27℄. Notealso the Melnikova � Filinkov � Alshansky approah [12, 13℄ in whih the equation (6) isonsidered in Shwartz spaes and where the generalized derivative of the Wiener proessmakes sense.Meanwhile there arose [19℄ and is atively developing [4, 20℄ a new approah in thestudy of equations of the form (6) where the "white noise" is understood as the Nelson �Gliklikh derivative of the Wiener proess. (Note that this "white noise" is more appropriateto the Einstein � Smoluhowski theory of the Brownian motion than a traditional whitenoise [19, 20℄). There was onstruted the spae of "noises" [4℄, whih was developed tothe in�nite-dimensional spae of "white noise" [21℄.This artile is spei�ed as survey of last results of the optimal measurements theory.It's organized as follows. Setion 1 ontains well-known results of the theory of relatively
p-regular matries in the standpoint of the Weierstrass theorem about regular matrixpenils. Setion 2 is devoted to establishment of existene and uniqueness theorem foroptimal measurement. In setion 3 we give very brie�y an algorithm of numerial solutionof optimal measurement problem. The main result here is the theorem of onvergene ofapproximative solutions sequene to the strit solution whih is obtained in setion 2. Allresults of this setion belong to Yury V. Khudyakov [9℄. In setion 4 we give some fatsabout the Nelson � Gliklih derivative and the Wiener proess, and in �nal setion 5 weonsider observations of "noises", espeially "white noise".1. Relatively p-Regular Matries and Degenerate HolomorphiResolving GroupsLet L and M be square matries of order n. Consider the L-resolvent set
ρL(M) = {µ ∈ C : det(µL−M) 6= 0} and the L-spetrum σL(M) = C\ρL(M) of thematrix M . Obviously, the L-resolvent set ρL(M) = ρ(L−1M) = ρ(ML−1) if detL 6= 0.Further, the L-resolvent set ρL(M) = ∅ if kerL∩kerM 6= {0}. De�ne the matrixM to beregular with respet to the matrix L (brie�y, L-regular), if the L-spetrum of matrix M isbounded (in partiular, the set σL(M) = ∅ for M = In, and L being a nilpotent matrix).Note that the term "L-regular matrixM" is equivalent to the term "regular matrix penil
µL−M" in the sense of K. Weierstrass (ited by [2℄, Ch. 12). This term appeared similarlyto the term "(L, σ)-bounded operator M"(see. for example, [23℄, Ch. 5).Lemma 1. Let the matrix M be L-regular. Then matries

P =
1

2πi

∫

γ

RL
µ(M)dµ and Q =

1

2πi

∫

γ

LL
µ(M)dµ (7)are idempotent.Here γ ⊂ C is the (losed) ontour bounding a domain ontaining the L-spetrum

σL(M) of matrix M ; RL
µ(M) = (µL−M)−1L is the right, and LL

µ(M) = L(µL−M)−1 isthe left L-resolvent of matrix M . The proof of lemma an be found in [23℄, Ch. 5.Corollary 1. Let the matrix M be L-regular, then dimkerP = dimkerQ and LP = QL,
MP = QM .2014, vol. 1, no. 1 5



A.L. Shestakov, A.V. Keller, G.A. SviridyukTheorem 1. (K. Weierstrass, [2℄, Ch.12). Let the matrix M be L-regular. Then thereexist non-degenerate matries A and B suh that for any µ ∈ C there is the representation
B(µL−M)A = diag{Nn1

, Nn2
, . . . , Nnk

, µIl − Sl}, (8)here on the right is a quasidiagonal matrix, Nm = µHm − Im, Hm is a matrix of order m,wherein elements above the diagonal are equal to one, while the remaining elements areequal to zero.From (8) we get the following
FLU = diag{Hn1

, Hn2
, . . . , Hnk

, Il}, FMU = diag{In−l, Sl}. (9)Let p = max{n1, n2, . . . , nk}. Obviously, p ∈ N is an order of the pole at the point ∞of L-resolvent (µL −M)−1 of matrix M . Add here the ase when p = 0 (i.e. det L 6= 0or det L = 0 and dimkerL = dimkerP ) and all the L-regular matrix M (L, p)-regular,
p ∈ {0} ∪ N. Moreover, (8), (9) derive

A−1PA =
1

2πi

∫

γ

A−1(µL−M)−1B−1dµBLA = diag{On−l, Il}, (10)
BQB−1 = BLA

1

2πi

∫

γ

A−1(µL−M)−1B−1dµ = diag{On−l, Il}. (11)Substituting
Λ =

1

2πi

∫

γ

(µL−M)−1dµ, (12)we get
BLΛB−1 = A−1ΛLA = diag{On−l, Il}. (13)Corollary 2. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N, and detM 6= 0. Then thematrix H ≡ (In − P )M−1(In −Q)L(In − P ) is nilpotent of degree p.Proof. Indeed, in view of (9) we get

A−1HA = A−1(In − P )AA−1M−1B−1B(In −Q)B−1BLAA−1(In − P )A =

= diag{Hn1
, Hn2

, . . . , Hnk
,Ol}.

2Lemma 2. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N. Then matries
P ′ = lim

µ→∞

[

µRL
µ(M)

]p+1 and Q′ = lim
µ→∞

[

µLL
µ(M)

]p+1are idempotent.Using the theorem 1 we an obtain
A−1
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A = µp+1
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=6 Journal of Computational and Engineering Mathematis



SURVEY ARTICLES
= µp+1

[

diag(On−l, (µIl − Sl)
−1
]p+1

= diag
(

On−l, (Il − µ−1S)−p−1
)

.It means that
A−1P ′A = diag(On−l, Il), (14)and also
BQ′B−1 = diag(On−l, Il). (15)Corollary 3. Under assumptions of lemma 1 (or lemma 2)
P ′ = P and Q′ = Q.Substituting

Λ′ = lim
µ→∞

µp+2
[

RL
µ (M)

]p+1
(µL−M) (16)we an obtain from (13) by analogy with (10) → (14) and (11) → (15) the following result.Corollary 4. Under assumptions of orollary 3 Λ′ = Λ.Consider now the Leontie� type system of equations

Lẋ =Mx. (17)The vetor funtion x ∈ C∞(R;Rn) satisfying (17) is alled a lassial solution of thissystem. The lassial solution x = x(t) is alled a lassial solution of the Cauhy problem
x(0) = x0 (18)for (17) (in short, a lassial solution of the problem (17), (18)) if it satis�es in addition(18) for some x0 ∈ Rn. The matrix funtion U• ∈ C∞(R;R2n) is alled the group (and isindiated by its graph {U t : t ∈ R}) if

UsU t = Us+t (19)for all s, t ∈ R. The group {U t : t ∈ R} is alled holomorphi, if it is analytially ontinuedto the whole omplex plane with onservation of the property (19); it is alled a resolvinggroup if x(t) = U tx0 is a lassial solution of (17) for any x0 ∈ Rn; and it is alled adegenerate group if its identify is a projetor P (i.e. P = U0).Theorem 2. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N. There exists a uniquedegenerate holomorphi resolving group of (17).It is easy to show (see for example, [23℄, Ch.5), that the searhed group is representedby the integral
U t =

1

2πi

∫

γ

RL
µ(M)eµtdµ, t ∈ R,here the ontour γ ⊂ C is the same as in Lemma 1. Moreover, U tA = Adiag{On−l, e

tSl},where etSl =
∞
∑

k=0

Sk

l

k!
tk. Clearly, the solution x(t) = U tx0 of (17) is a solution of (17), (18) if2014, vol. 1, no. 1 7



A.L. Shestakov, A.V. Keller, G.A. Sviridyuk
Px0 = x0. Show that the su�ient ondition x0 ∈ imP is a neessary ondition. Introduethe phase spae of (17), whih is understood as the set P ⊂ Rn suh that, �rstly, anysolution of system (17) lies in P, i.e. the x(t) ∈ P for all t ∈ R. Seondly, there exists aunique solution of the problem (17), (18) for any x0 ∈ P.Theorem 3. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N, detM 6= 0. The subspae
imP is a phase spae of (17).Proof. Indeed, redue (17) to the equivalent form

Hẋ0 = x0, ẋ1 = PΛQMx1, x1 = Px, x0 = x− x1. (20)Di�erentiating the �rst equation in (20) with respet to t and onsistently multiplyingby H on the left, due to the orollary 2, we get
0 = Hp+1x0(p+1) = Hpx0(p) = · · · = Hẋ0 = x0.The solution of the seond equation in (20) has the form x1(t) = Px(t) = PU tx0 =

U tx0, i.e. it belongs to imP . Existene of solutions and the uniqueness are obvious.
2Remark 1. The degenerate holomorphi resolving group is also given by the formula

U t = lim
k→∞

[

k(kL− tM)−1L
]k(p+1)

.2. The Optimal Measurement Problem: Strit SolutionConsider now the nonhomogeneous Leontie� type system
Lẋ =Mx+ f, (21)where the vetor funtion f : [0, τ) → Rn, τ ∈ R+ will be determined later. The vetorfuntion x ∈ C([0, τ);Rn)∩C1((0, τ);Rn) is alled a lassial solution of (21) if its satis�es(21) on the (0, τ). The solution x = x(t) of (21) is alled a lassial solution of the Showalter� Sidorov problem (3) (brie�y, a lassial solution of the problem (21), (3)) if it satis�es inaddition (3). Note that the ondition (3) ours only in the ase of the (L, p)-regularity ofthe matrix M, p ∈ {0} ∪ N. In this ase, the ondition (3) is equivalent to the ondition

[RL
α(M)]p+1(x(0)− x0) = 0 (22)for any α ∈ ρL(M) [25℄. And if detL 6= 0 then (22) is equivalent to (18).Theorem 4. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N, and detM 6= 0. For all

τ ∈ R+, x0 ∈ R
n, f 0 = (In − Q)f ∈ Cp+1([0, τ);Rn), and f 1 = Qf ∈ C([0, τ);Rn) thereexists a unique lassial solution x = x(t) of the problem (22), (3) given by the formula
x(t) = −

p
∑

k=0

HkM−1f 0(k)(t) + U tx0 +

t
∫

0

U t−sΛf 1(s)ds.Here U t is a degenerate holomorphi resolving group (see setion 1), and the matrix
Λ is given by 12 or 16 (orollary 4).8 Journal of Computational and Engineering Mathematis



SURVEY ARTICLESLet us turn to the system (1). Denote by X = {x ∈ L2((0, τ);R
n) : ẋ ∈ L2((0, τ);R

n)}a state spae of the MT, and by U = {u ∈ L2((0, τ);R
n) : u(p+1) ∈ L2((0, τ);R

n)} denotea measurement spae, τ ∈ R+ is some �xed number. The vetor funtion x ∈ X is alled astrong solution of (1) if it satis�es (1) for some u ∈ U and almost all t ∈ (0, τ). The strongsolution x = x(t) of (1) is alled a strong solution of the problem (1), (3), if it satis�es inaddition (3) for some x0 ∈ R
n. Note that in this ase the ondition (3) is orret due tothe embedding X →֒ C([0, τ ] : Rn).Corollary 5. Let all assumptions of Theorem 4 be ful�lled. Then for every

τ ∈ R+, x0 ∈ R
n and u ∈ U there exists a unique strong solution to the problem (1),(3)given by the formula

x(t) = −

p
∑

k=0

HkM−1(In −Q)Du(k)(t) + U tx0 +

t
∫

0

U t−sΛQu(s)ds. (23)Introdue the spae of observations Y = C (X) and new ost funtional
J(u) = α
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Nku
(k)(t), u(k)(t)

〉

dt, (24)whih di�ers from (4) by summand ỹ(k)0 (t). This vetor funtion responds to the observationobtained on real MT without useful input signal. In other words, ỹ(k)0 is responsible fornoise aused by resonanes in hains of the MT. The neessity of suh modernization of thefuntional (4) was substantiated in [9℄. Note also that originally [18℄ it was supposed that
K = p+1, however areful analysis [11℄ reveals that K ∈ {0, 1, ..., p+1}. Finally isolate aset of admissible measurements Ua∂ , i.e.losed and onvex subset of U. A minimum point
v ∈ Ua∂ of the funtional (24) is alled an optimal measurement.Theorem 5. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N, detM 6= 0. Then for all
τ ∈ R+, x0 ∈ Rn, K ∈ {0, 1, ..., p+ 1} there exists a unique optimal measurement.Remark 2. Theorem 5 will be valid if we replae the funtional (24) by (4). The proof ofthis theorem you an �nd in [23℄, Ch.7.3. The Optimal Measurement Problem: Approximate SolutionsIn this setion we present a numerial algorithm for solution of the optimalmeasurement problem (1)-(3),(5) where the funtional J has the form (24). In the �rststep of this algorithm we note that the spae U is separable by onstrution. It meansthat there exists a sequene of the �nite-dimensional (dimUℓ = ℓ) subspaes Uℓ ⊂ Umonotonously exhausting the spae U (i.e. Uℓ ⊂ Uℓ+1 and ∞

⋃

ℓ=1

Uℓ is densely embedded in
U). An approximation uℓ ∈ Uℓ of the measurement u is represented in the form

uℓ = col

(

ℓ
∑

j=1

a1jϕj ,

ℓ
∑

j=1

a2jϕj, . . . ,

ℓ
∑

j=1

anjϕt

)

, (25)2014, vol. 1, no. 1 9



A.L. Shestakov, A.V. Keller, G.A. Sviridyukwhere {ϕj}
ℓ
j=1 is an orthonormal basis of the subspae U ℓ, and the oe�ients

a11, ..., a1ℓ, a21, ..., a2ℓ, ..., anℓ are unknown. It is natural to assume that the resonanesarising in hains of the MT are the perturbations of the measurements uℓ, i.e. insteadof uℓ onsider
ũℓ = col

(

uℓ1 + A1 sinω1t, u
ℓ
2 + A2 sinω2t, ..., u

ℓ
n + An sinωnt

)

, (26)where the resonane frequenies ω1, ω2, ..., ωn are assumed to be known, and the amplitudes
A1, A2, ..., An are not. Construt an approximate solution xℓk = xℓk(t) based on (23). Thissolution has the form

xℓk(t) = −

p
∑

j=0

H
j
kM

−1(In −Qk)Dũ
ℓ(j)(t) + U t

kx0+ (27)
J
∑

j=0





(

(

L−
t− sj

k
M

)

−1

L

)k(p+1)−1
(

L−
t− sj

k
M

)

−1

QkDũ
ℓ(sj)



∆cj ,where sj and cj are nodes and weights of the Gauss quadrature formula. Note that thehoie of k should be bounded below [6℄. By substituting xℓk in (2) instead of x we �nd anapproximate observation yℓk = yℓk(t).Remark 3. Note that the funtion ϕj = ϕj(t) (25) has the form ϕj(t) = sin jt [9℄.In the seond step of the algorithm substitute the data y(j)0 and ỹ(j)0 , j = 0, 1, theapproximation yℓk instead of y and uℓ instead of u in the ost funtional (24). Note thatthe seond summand in (24) ats as a �lter that dereases the high amplitudes of theresonanes. After the alulations in (24) we obtain a funtional J ℓ = J ℓ(a), where thevetor ā = col(a11, ..., a1ℓ, a21, ..., a2ℓ, ..., anℓ, A1, A2, ..., An) belongs to the spae Rℓ × Rn.Where the subspae Rn is alled a spae of resonanes amplitudes.Refer to the set of admissible measurements Ua∂ . Typially, in appliations it is not onlya losed and onvex, but in addition it is bounded. Let the set Ua∂ be losed, onvex andbounded then there exists a sequene of onvex ompats {Uℓ
a∂}, Uℓ

a∂ ⊂ Uℓ monotoniallyexhausting the set Uℓ. In our onsiderations we an onstrut a onvex ompat set inthe spae Rℓn isomorphi to Uℓ
a∂ . Further this ompat set will be denoted by the samesymbol Uℓ

a∂ . In the spae of resonanes amplitudes Rn hoose a onvex ompat set
Un
a∂ aumulating a priori information about the MT resonane's amplitudes. Find theminimum of the funtional J ℓ on the set Uℓ

∂ × Un
∂ that exists (and is unique) due to theMazur Theorem.Substituting the values ã11, ..., ã1ℓ, ã21, ..., ãnℓ of the minimum pointã = col(ã11, ..., ã1ℓ, ã21, ..., ã2ℓ, ..., ãnℓ, Ã1, Ã2, ..., Ãn)of the funtional J ℓ on the set Uℓ

a∂ × Un
a∂ into (25) we get the vetor funtion

uℓk = col

(

ℓ
∑

j=1

ã1jϕj,

ℓ
∑

j=1

ã2jϕj, . . . ,

ℓ
∑

j=1

ãnjϕj

)

, (28)whih is alled an approximate optimal measurement. The supersript of uℓk de�nes thedependene on "approximate spae" Uℓ, and the subsript de�nes the dependene on10 Journal of Computational and Engineering Mathematis



SURVEY ARTICLESapproximation (27). Note that we have simultaneously found the resonane amplitudes
Ã1, Ã2, ..., Ãn that we are not interested in as an approximate state of MT. The state ofMT an be found from (27) by substitution of the vetor funtion

ũℓk = col
(

uℓk1 + Ã1sinω1t, u
ℓ
k2 + Ã2sinω2t, ..., u

ℓ
kn + Ãnsinωnt

)instead of ũℓ. Note also that, for simpliity, the time t in the algorithm ranges within (0, π)(i.e. in (24) we assume τ = π). To onsider the other intervals it is neessary to use theorretion oe�ients for t in (25), (28). The following theorem ompletes the algorithmTheorem 6. Let the onditions of the theorem 5 be ful�lled. Then lim
ℓ→∞

lim
k→∞

uℓk = u.Proof an be found in [9℄.4. The Nelson � Gliklikh DerivativeThe mean derivative of the random proess was introdued by E. Nelson [14℄. Thetheory of suh derivatives was developed by Y.E. Gliklikh [3℄. In [19℄ the symmetri meanderivative of the random proess η = η(t) was suggested to be alled the Nelson � Gliklikhderivative and to be denoted η̊ = η̊(t). Suh derivatives are widely used in the study ofthe Leontie� type systems (1) with additive "white noise" [4, 20℄.Consider (one-dimensional) Wiener proess β = β(t) whih models the Brownianmotion on the line in Einstein � Smolukhovsky theory. It possesses the following properties:(W1) almost surely (a.s.) β(0) = 0, a.s. all trajetories β(t) are ontinuous and for all
t ∈ R+(= {0} ∪ R+) β(t) is a Gaussian random variable;(W2) mathematial expetation E(β(t)) = 0 and the autoorrelation funtion
E((β(t)− β(s))2) = |t− s| for all s, t ∈ (R)+;(W3) trajetories of β(t) are not di�erentiable at any point t ∈ R+ and at anyarbitrarily small interval have unbounded variation.Theorem 7.With probability equal to one there exists a unique random proess β satisfyingthe properties (W1) � (W2) and it an be given by

β(t) =
∞
∑

k=0

ξk sin
π

2
(2k + 1)t,where ξk are independent Gaussian random variables, Eξk = 0, Dξk = [π

2
(2k + 1)]−2.Further the random proess β satisfying the properties (W1) � (W3) will be alleda Brownian motion. This random proess belongs to the spae C(R+;R) of randomproesses whih trajetories are ontinuous a.s. on R+. The spaes of di�erentiable "noises"

C
m((ξ, τ);R) as the spaes of random proesses with trajetories of Nelson � Gliklikhderivatives to order m ∈ N being ontinuous a.s. on the (ξ, τ) ⊂ R were introdued in [24℄.By β̊(m) denote the Nelson � Gliklih derivative of order m ∈ N of the Brownian motion

β.Theorem 8. (Yu.E. Gliklih) β̊(m)(t) = (−1)m+1(2t)−mβ(t) for all t ∈ R+ and m ∈ N.Due to the same theorem the Brownian motion β ∈ C
∞(R+;R), where C

∞(R+;R)is the spae of stohasti proesses with trajetories of Nelson � Gliklih derivatives2014, vol. 1, no. 1 11



A.L. Shestakov, A.V. Keller, G.A. Sviridyukbeing ontinuous a.s. on R+ to any order. Moreover the Nelson � Gliklih derivative β̊,alled one-dimensional "white noise", is also an element of the spae C
∞(R+;R). Now�x the interval (ε, τ), the number n ∈ N and take n independent random proesses

{η1, η2, . . . , ηn} ⊂ C((ε, τ);R). By formula
η(t) =

n
∑

j=1

ηj(t)ej,where ej are orts of the spae Rn, j = 1, n, de�ne the n-dimensional stohasti proess(brie�y, n-stohasti proess). By analogy with the previous introdue the spae ofontinuous C((ε, τ);Rn), ontinuously Nelson � Gliklih di�erentiable to order m ∈ N

C
m((ε, τ);Rn) and in�nitely Nelson � Gliklih di�erentiable C

∞((ε, τ);R) n-dimensional"noises". As an example, onsider the n-dimensional Wiener proess (n-Wiener proess)
Wn(t) =

n
∑

j=1

βj(t)ej , t ∈ R+, (29)where βj , j = 1, n are independent Brownian motions. Due to Theorem 8, the followingstatement takes plae.Corollary 6. W̊ (m)
n (t) = (−1)m+1(2t)−mWn(t) for all t ∈ R+, m,n ∈ N.It follows from [2℄ that the n-Wiener proess Wn satis�es onditions (W1) � (W3) ifwe substitute β for Wn. Considering that this substitution was done we getTheorem 9. With probability equal to one there exists a unique n-Wiener proess Wn forany n ∈ N that satis�es onditions (W1) � (W3), and it an be given by (29).Remark 4. Emphasize that under "noises" we understand random noises only.5. Observations of "noises"By analogy with the spaes of di�erentiable "noises" introdue the spae of integrable"noises". Fix the interval (ε, τ) and by L2((ε, τ);R) denote the spae of stohasti proesseswith any trajetory a.s. lying in L2((ε, τ);R). The spae L2((ε, τ);R) is a Hilbert spae withinner produt [η, ξ] =

τ
∫

ε

Eη(t)ξ(t)dt. Similarly onstrut the Hilbert spae L2((ε, τ);R
n)with inner produt [η, ξ]n =

τ
∫

ε

E < η(t), ξ(t) > dt where < ·, · > is a Eulidean salarprodut in Rn.Further, by analogy with (1), (6) onsider the stohasti Leontie� type equations
Lξ̊ =Mξ +Dϕ. (30)It models the random hanges of the MT states ξ = ξ(t) under the in�uene of inertiaand resonanes (the matries L, M and D are the same as in (1)), ξ̊ denotes the Nelson �Gliklikh derivative of random proess ξ. The random proess ϕ = ϕ(t) desribes theadditive stohasti disturbane (i.e. "noise").12 Journal of Computational and Engineering Mathematis



SURVEY ARTICLESAssuming that the matrix M is (L, p)-regular, p ∈ {0} ∪ N supply the system (30)with the Showalter � Sidorov initial ondition
P (ξ(0)− ξ0) = 0. (31)Fix the interval (0, τ) ⊂ R+ and onstrut a stohasti MT statespae Ξ = {ξ ∈ L2((0, τ);R

n) : ξ̊ ∈ L2((0, τ);R
n)} and a stohasti measurements spae

Φ = {ϕ ∈ L2((0, τ);R
n) : ϕ̊(p+1) ∈ L2((0, τ);R

n}. Note that if any trajetory of a randomproess ψ̊k+1 = ψ̊k+1(t), t ∈ (0, τ), k ∈ {0} ∪ N lies in L2((0, τ);R
n) then the sametrajetory of the random proess ψ̊k+1 is absolutely ontinuous on [0, τ ] by the Sobolevimbedding theorems. Therefore, the ondition (31) and stohasti spaes Ξ, Φ are de�nedorretly. Fix ϕ ∈ Φ. The random proess ξ ∈ Ξ is alled a strong solution of (30), iffor any trajetory of ϕ there exists a trajetory ξ almost everywhere (a.e.) on the (0, τ)satisfying (30). It is alled a strong solution of the problem (30), (31) if it satis�es (31) forsome ξ0 ∈ L2.Theorem 10. Let the matrixM be (L, p)-regular, p ∈ {0}∪N, detM 6= 0. For all τ ∈ R+,

ϕ ∈ Φ, ξ0 ∈ L2 independent from ϕ there exists a unique strong solution ξ = ξ(t) of theproblem (30), (31) and a.s. all its trajetories are given by
ξ(t) = −

p
∑

k=0

HkM−1(In −Q)Dϕ̊(k)(t) + U tξ0 +

t
∫

0

U t−sΛQϕ(s)ds. (32)Supplementing (30) by equations
η = Cξ (33)we obtain the observation η of the "noise" ϕ where ξ = ξ(t) is given by (32). To get anobservation of the "white noise" we need to replae ϕ in (30) by W̊n and besides that toreplae ondition (31) by the wakened (in the sense of S.G. Krein) Showalter � Sidorovondition

lim
t→0+

P (ξ(t)− ξ0) = 0. (34)Corollary 7. Let all assumptions of the Theorem 10 be ful�lled. Then for every ξ0 ∈ L
n
2independent from W̊n there exists a unique solution ξ ∈ Ξ of the Leontie� type system

Lξ̊ =Mξ +DW̊n (35)whih satis�es the initial ondition (34). All trajetories of this solution a.s. are given bythe formula
ξ(t) = −

p
∑

k=0

HkM−1(In −Q)DW̊ (k)
n (t) + U tξ0 +

t
∫

0

U t−sΛQDW̊n(s)ds. (36)for every t ∈ R+.Sine
P

[

p
∑

k=0

HkM−1(In −Q)DW̊ (k)
n (t)

]

= 02014, vol. 1, no. 1 13



A.L. Shestakov, A.V. Keller, G.A. Sviridyukfor every t ∈ R+ we are to show that the integral in the right hand side of (36) exists.Taking ε ∈ (0, t), t ∈ R+, and integrating this integral by parts we obtain
t
∫

0

U t−sΛQW̊n(s)ds = ΛQWn(t)− U t−εΛQWn(ε)− ΛM

t
∫

ε

U t−sΛQWn(s)ds. (37)Sine
lim
ε→0+

t
∫

ε

U t−sΛQWn(s)ds =

t
∫

0

U t−sΛQWn(s)ds,

lim
ε→0+

U t−εΛQWn(ε)ds = On,then from (37) we get required. Finally from (33), where ξ = ξ(t) is given by (36), weobtain the observation of "white noise" W̊n.Referenes1. Da Prato G., Zabzyk J. Stohasti Equations in In�nite Dimensions. Cambridge,Cambridge University Press, 1992.2. Gantmaher F.R. The Theory of Matries. AMS Chelsea Publishing, Reprinted byAmerian Mathematial Soiety, 2000.3. Gliklikh Yu.E. Global and Stohasti Analysis with Appliations to MathematialPhysis. London, Springer, 2011. DOI: 10.1007/978-0-85729-163-94. Gliklikh Yu.E. Study of the Leontie� Type Equations with White Noise by theMethods of Mean Derivatives of Stohasti Proesses. Bulletin of the South Ural StateUniversity. Series "Mathematial Modelling, Programming & Computer Software",2012, no. 27 (286), issue 13, pp. 24�34. (in Russian)5. Keller A.V. Numerial Solution of the Optimal Control Problem for Degenerate LinearSystem of Equations with Showalter�Sidorov Initial Conditions. Bulletin of the SouthUral State University. Series "Mathematial Modelling, Programming & ComputerSoftware", 2008, no. 27 (127), issue 2, pp. 50�56. (in Russian)6. Keller A.V. The Leontie� type systems: lasses of problems with the Showalter-Sidorov intial ondition and numerial solving The Bulletin of Irkutsk State University.Series "Mathematis", 2010, vol. 3, no. 2, pp. 30�43. (in Russian)7. Keller A.V. [Numerial Study of Optimal Control Problems for Leontie� Type Models.Dotoral Thesis of Physiomathematial Siene℄. Chelyabinsk, South Ural StateUniversity, 2011. (in Russian)8. Keller A.V., Nazarova E.I. The Regularization Property and the ComputationalSolution of the Dynami Measure Problem. Bulletin of the South Ural StateUniversity. Series "Mathematial Modelling, Programming & Computer Software",2010, no. 16 (195), issue 5, pp. 32�38. (in Russian)14 Journal of Computational and Engineering Mathematis
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