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1 South Ural State University, Chelyabinsk, Russian FederationThe mathemati
al model (MM) of the measuring transdu
er (MT) is dis
ussed. TheMM is intended for restoration of deterministi
 signals distorted by me
hani
al inertia of theMT, resonan
es in MT's 
ir
uits and sto
hasti
 perturbations. The MM is represented bythe Leontie� type system of equations, re�e
ting the 
hange in the state of MT under usefulsignal, deterministi
 and sto
hasti
 perturbations; algebrai
 system of equations modellingobservations of distorted signal; and the Showalter � Sidorov initial 
ondition. In additionthe MM of the MT in
ludes a 
ost fun
tional. The minimum point of a 
ost fun
tional isa required optimal measurement. Qualitative resear
h of the MM of the MT is 
ondu
tedby the methods of the degenerate operator group's theory. Namely, the existen
e of theunique optimal measurement is proved. This result 
orresponds to input signal withoutsto
hasti
 perturbation. To 
onsider sto
hasti
 perturbations it is ne
essary to introdu
e so
alled Nelson � Gliklikh derivative for random pro
ess. In 
on
lusion of arti
le observationsof "noises"(random perturbation, espe
ially "white noise") are under 
onsideration.Keywords: mathemati
al model of the measuring transdu
er, the Leontie� type system,the Showalter � Sidorov 
ondition, 
ost fun
tional, the Nelson � Gliklikh derivative, "whitenoise".Introdu
tionNew approa
h to restoration of deterministi
 signals distorted by a me
hani
al inertiaof the measuring transdu
er (MT) was proposed in [17℄. In the basis of this approa
h is amathemati
al model (MM) of MT one part of whi
h is a Leontie� type system of equations

Lẋ =Mx+Du. (1)Here L, M and D are square matri
es of order n modelling the 
onstru
tion of the MT.The ve
tor fun
tions x = col(x1, x2, . . . , xn) and u = col(u1, u2, . . . , un) are responsible forthe state of the MT and the input signal (hereinafter � measurement) a

ordingly. Thesystem of algebrai
 equations
y = Cx (2)is another part of the MM, where y = col(y1, y2, . . . , yn) is the ve
tor fun
tion
orresponding to output signal (hereinafter observation). Square matrix C of order nmodels the output devi
e (for example, os
illograph or re
ording devi
e). Note that we
an observe less parameters than we measure. For this purpose 
orresponding rows of thematrix C are repla
ed by zeros (i.e. the "
orresponding re
order" is turned o�). Anotherpart of the mathemati
al model of the MT is represented by the Showalter � Sidorov initial
ondition

P (x(0)− x0) = 0, (3)2014, vol. 1, no. 1 3



A.L. Shestakov, A.V. Keller, G.A. Sviridyukhere P is the proje
tor in the spa
e Rn, whi
h is 
onstru
ted using the matri
es L and M .Let us note that we 
onsider the Leontie� type system of equations as a �nite-dimensionalanalogues of Sobolev type equations to be able to use the methods of the theory ofdegenerate operator semigroups (for example see [23℄, 
h. 4). The initial 
ondition (3)is more natural for the Sobolev type equations, than the Cau
hy 
ondition [25℄. Moreover,the 
ondition (3) is more 
onvenient for the algorithms of numeri
al 
al
ulations [6℄.In [18℄ the MM (1) � (3) of the MT has been extended to the 
ase when themeasurement is distorted by resonan
es in the 
ir
uits of the MT in addition to itsme
hani
al inertia. Initially it was supposed that detL 6= 0, however the 
areful analysis[9℄ reveals the ne
essity of detL = 0 to take into a

ount the resonan
es in the model. The
ondition detL = 0 �nally pulls together the system (1) and the Leontie�'s balan
e model(for example, see [8℄).Finally, the 
ost fun
tional
J(u) = α

1
∑

k=0

τ
∫

0

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣
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dt+ β

K
∑

k=0

τ
∫

0

〈

Nku
(k)(t), u(k)(t)

〉

dt, (4)presents the last (and most important) part of the mathemati
al model of the MT. Where
y0 = y0(t) is the observation, obtained in natural experiment on the real MT, modelledby (1) � (4). The 
oe�
ients α ∈ (0, 1], β ∈ R̄+, α + β = 1; Nk are symmetri
 positivelyde�ned matri
es of order n, ||·|| and 〈·, ·〉 are the Eu
lidean norm and s
alar produ
t in
Rn respe
tively. The restored signal is a minimum point v of fun
tional (4),

J(v) = min
u∈Ua∂

J(u), (5)on a 
losed 
onvex set Ua∂ , whi
h is understood as a set of admissible measurements. Thisset 
ontains a priori information about the target value of the optimal measurement v.Metrologists 
onsider that su
h information should always be be
ause "the unknown isimpossible to be measured" [15℄.As a result of profound theoreti
al resear
h of MM for MT (1) � (5) the numeri
alalgorithms for �nding the optimal measurement have been developed. The y based on thethesis [7℄ whi
h represents a wide range of numeri
al algorithms for solving of the optimal
ontrol problems for the Leontie� type systems. The algorithm adapted to the situation(1) � (5) is presented in [5℄. The results of 
omputational experiments are given in [16℄.Now turn to the restoration of the sto
hasti
 signals. The MM of MT is representedby (1) � (5), where u is a random pro
ess (for example, white noise) and x0 is a randomvariable. Firstly make a digression about sto
hasti
 di�erential equations.In the simplest 
ase the system of linear sto
hasti
 equations is given by
dη = (Sη + ψ)dt+ Adω. (6)Here S and A are some matri
es, ψ = ψ(t) is a deterministi
 external in�uen
e, ω = ω(t)is a sto
hasti
 external in�uen
e, η = η(t) is a target random pro
ess. Originally under

dω we understood the generalized di�erential of the Wiener pro
ess, whi
h is traditionallytreated as a white noise. The �rst equations of the type (6) were studyied by K. Ito,then R.L. Stratonovi
h and A.V. Skorohod joined this investigation. The Ito-Stratonovi
h-Skorokhod approa
h is still popular [3℄. Moreover, it was su

essfully extended to the4 Journal of Computational and Engineering Mathemati
s



SURVEY ARTICLESin�nite-dimensional situation [1, 10℄ and even to the Sobolev type equations [10, 27℄. Notealso the Melnikova � Filinkov � Alshansky approa
h [12, 13℄ in whi
h the equation (6) is
onsidered in S
hwartz spa
es and where the generalized derivative of the Wiener pro
essmakes sense.Meanwhile there arose [19℄ and is a
tively developing [4, 20℄ a new approa
h in thestudy of equations of the form (6) where the "white noise" is understood as the Nelson �Gliklikh derivative of the Wiener pro
ess. (Note that this "white noise" is more appropriateto the Einstein � Smolu
howski theory of the Brownian motion than a traditional whitenoise [19, 20℄). There was 
onstru
ted the spa
e of "noises" [4℄, whi
h was developed tothe in�nite-dimensional spa
e of "white noise" [21℄.This arti
le is spe
i�ed as survey of last results of the optimal measurements theory.It's organized as follows. Se
tion 1 
ontains well-known results of the theory of relatively
p-regular matri
es in the standpoint of the Weierstrass theorem about regular matrixpen
ils. Se
tion 2 is devoted to establishment of existen
e and uniqueness theorem foroptimal measurement. In se
tion 3 we give very brie�y an algorithm of numeri
al solutionof optimal measurement problem. The main result here is the theorem of 
onvergen
e ofapproximative solutions sequen
e to the stri
t solution whi
h is obtained in se
tion 2. Allresults of this se
tion belong to Yury V. Khudyakov [9℄. In se
tion 4 we give some fa
tsabout the Nelson � Gliklih derivative and the Wiener pro
ess, and in �nal se
tion 5 we
onsider observations of "noises", espe
ially "white noise".1. Relatively p-Regular Matri
es and Degenerate Holomorphi
Resolving GroupsLet L and M be square matri
es of order n. Consider the L-resolvent set
ρL(M) = {µ ∈ C : det(µL−M) 6= 0} and the L-spe
trum σL(M) = C\ρL(M) of thematrix M . Obviously, the L-resolvent set ρL(M) = ρ(L−1M) = ρ(ML−1) if detL 6= 0.Further, the L-resolvent set ρL(M) = ∅ if kerL∩kerM 6= {0}. De�ne the matrixM to beregular with respe
t to the matrix L (brie�y, L-regular), if the L-spe
trum of matrix M isbounded (in parti
ular, the set σL(M) = ∅ for M = In, and L being a nilpotent matrix).Note that the term "L-regular matrixM" is equivalent to the term "regular matrix pen
il
µL−M" in the sense of K. Weierstrass (
ited by [2℄, Ch. 12). This term appeared similarlyto the term "(L, σ)-bounded operator M"(see. for example, [23℄, Ch. 5).Lemma 1. Let the matrix M be L-regular. Then matri
es

P =
1

2πi

∫

γ

RL
µ(M)dµ and Q =

1

2πi

∫

γ

LL
µ(M)dµ (7)are idempotent.Here γ ⊂ C is the (
losed) 
ontour bounding a domain 
ontaining the L-spe
trum

σL(M) of matrix M ; RL
µ(M) = (µL−M)−1L is the right, and LL

µ(M) = L(µL−M)−1 isthe left L-resolvent of matrix M . The proof of lemma 
an be found in [23℄, Ch. 5.Corollary 1. Let the matrix M be L-regular, then dimkerP = dimkerQ and LP = QL,
MP = QM .2014, vol. 1, no. 1 5



A.L. Shestakov, A.V. Keller, G.A. SviridyukTheorem 1. (K. Weierstrass, [2℄, Ch.12). Let the matrix M be L-regular. Then thereexist non-degenerate matri
es A and B su
h that for any µ ∈ C there is the representation
B(µL−M)A = diag{Nn1

, Nn2
, . . . , Nnk

, µIl − Sl}, (8)here on the right is a quasidiagonal matrix, Nm = µHm − Im, Hm is a matrix of order m,wherein elements above the diagonal are equal to one, while the remaining elements areequal to zero.From (8) we get the following
FLU = diag{Hn1

, Hn2
, . . . , Hnk

, Il}, FMU = diag{In−l, Sl}. (9)Let p = max{n1, n2, . . . , nk}. Obviously, p ∈ N is an order of the pole at the point ∞of L-resolvent (µL −M)−1 of matrix M . Add here the 
ase when p = 0 (i.e. det L 6= 0or det L = 0 and dimkerL = dimkerP ) and 
all the L-regular matrix M (L, p)-regular,
p ∈ {0} ∪ N. Moreover, (8), (9) derive

A−1PA =
1

2πi

∫

γ

A−1(µL−M)−1B−1dµBLA = diag{On−l, Il}, (10)
BQB−1 = BLA

1

2πi

∫

γ

A−1(µL−M)−1B−1dµ = diag{On−l, Il}. (11)Substituting
Λ =

1

2πi

∫

γ

(µL−M)−1dµ, (12)we get
BLΛB−1 = A−1ΛLA = diag{On−l, Il}. (13)Corollary 2. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N, and detM 6= 0. Then thematrix H ≡ (In − P )M−1(In −Q)L(In − P ) is nilpotent of degree p.Proof. Indeed, in view of (9) we get

A−1HA = A−1(In − P )AA−1M−1B−1B(In −Q)B−1BLAA−1(In − P )A =

= diag{Hn1
, Hn2

, . . . , Hnk
,Ol}.

2Lemma 2. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N. Then matri
es
P ′ = lim

µ→∞

[

µRL
µ(M)

]p+1 and Q′ = lim
µ→∞

[

µLL
µ(M)

]p+1are idempotent.Using the theorem 1 we 
an obtain
A−1

[

µRL
µ(M)

]p+1
A = µp+1

[

A−1(µL−M)−1BB−1LA
]p+1

=6 Journal of Computational and Engineering Mathemati
s
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= µp+1

[

diag(On−l, (µIl − Sl)
−1
]p+1

= diag
(

On−l, (Il − µ−1S)−p−1
)

.It means that
A−1P ′A = diag(On−l, Il), (14)and also
BQ′B−1 = diag(On−l, Il). (15)Corollary 3. Under assumptions of lemma 1 (or lemma 2)
P ′ = P and Q′ = Q.Substituting

Λ′ = lim
µ→∞

µp+2
[

RL
µ (M)

]p+1
(µL−M) (16)we 
an obtain from (13) by analogy with (10) → (14) and (11) → (15) the following result.Corollary 4. Under assumptions of 
orollary 3 Λ′ = Λ.Consider now the Leontie� type system of equations

Lẋ =Mx. (17)The ve
tor fun
tion x ∈ C∞(R;Rn) satisfying (17) is 
alled a 
lassi
al solution of thissystem. The 
lassi
al solution x = x(t) is 
alled a 
lassi
al solution of the Cau
hy problem
x(0) = x0 (18)for (17) (in short, a 
lassi
al solution of the problem (17), (18)) if it satis�es in addition(18) for some x0 ∈ Rn. The matrix fun
tion U• ∈ C∞(R;R2n) is 
alled the group (and isindi
ated by its graph {U t : t ∈ R}) if

UsU t = Us+t (19)for all s, t ∈ R. The group {U t : t ∈ R} is 
alled holomorphi
, if it is analyti
ally 
ontinuedto the whole 
omplex plane with 
onservation of the property (19); it is 
alled a resolvinggroup if x(t) = U tx0 is a 
lassi
al solution of (17) for any x0 ∈ Rn; and it is 
alled adegenerate group if its identify is a proje
tor P (i.e. P = U0).Theorem 2. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N. There exists a uniquedegenerate holomorphi
 resolving group of (17).It is easy to show (see for example, [23℄, Ch.5), that the sear
hed group is representedby the integral
U t =

1

2πi

∫

γ

RL
µ(M)eµtdµ, t ∈ R,here the 
ontour γ ⊂ C is the same as in Lemma 1. Moreover, U tA = Adiag{On−l, e

tSl},where etSl =
∞
∑

k=0

Sk

l

k!
tk. Clearly, the solution x(t) = U tx0 of (17) is a solution of (17), (18) if2014, vol. 1, no. 1 7



A.L. Shestakov, A.V. Keller, G.A. Sviridyuk
Px0 = x0. Show that the su�
ient 
ondition x0 ∈ imP is a ne
essary 
ondition. Introdu
ethe phase spa
e of (17), whi
h is understood as the set P ⊂ Rn su
h that, �rstly, anysolution of system (17) lies in P, i.e. the x(t) ∈ P for all t ∈ R. Se
ondly, there exists aunique solution of the problem (17), (18) for any x0 ∈ P.Theorem 3. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N, detM 6= 0. The subspa
e
imP is a phase spa
e of (17).Proof. Indeed, redu
e (17) to the equivalent form

Hẋ0 = x0, ẋ1 = PΛQMx1, x1 = Px, x0 = x− x1. (20)Di�erentiating the �rst equation in (20) with respe
t to t and 
onsistently multiplyingby H on the left, due to the 
orollary 2, we get
0 = Hp+1x0(p+1) = Hpx0(p) = · · · = Hẋ0 = x0.The solution of the se
ond equation in (20) has the form x1(t) = Px(t) = PU tx0 =

U tx0, i.e. it belongs to imP . Existen
e of solutions and the uniqueness are obvious.
2Remark 1. The degenerate holomorphi
 resolving group is also given by the formula

U t = lim
k→∞

[

k(kL− tM)−1L
]k(p+1)

.2. The Optimal Measurement Problem: Stri
t SolutionConsider now the nonhomogeneous Leontie� type system
Lẋ =Mx+ f, (21)where the ve
tor fun
tion f : [0, τ) → Rn, τ ∈ R+ will be determined later. The ve
torfun
tion x ∈ C([0, τ);Rn)∩C1((0, τ);Rn) is 
alled a 
lassi
al solution of (21) if its satis�es(21) on the (0, τ). The solution x = x(t) of (21) is 
alled a 
lassi
al solution of the Showalter� Sidorov problem (3) (brie�y, a 
lassi
al solution of the problem (21), (3)) if it satis�es inaddition (3). Note that the 
ondition (3) o

urs only in the 
ase of the (L, p)-regularity ofthe matrix M, p ∈ {0} ∪ N. In this 
ase, the 
ondition (3) is equivalent to the 
ondition

[RL
α(M)]p+1(x(0)− x0) = 0 (22)for any α ∈ ρL(M) [25℄. And if detL 6= 0 then (22) is equivalent to (18).Theorem 4. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N, and detM 6= 0. For all

τ ∈ R+, x0 ∈ R
n, f 0 = (In − Q)f ∈ Cp+1([0, τ);Rn), and f 1 = Qf ∈ C([0, τ);Rn) thereexists a unique 
lassi
al solution x = x(t) of the problem (22), (3) given by the formula
x(t) = −

p
∑

k=0

HkM−1f 0(k)(t) + U tx0 +

t
∫

0

U t−sΛf 1(s)ds.Here U t is a degenerate holomorphi
 resolving group (see se
tion 1), and the matrix
Λ is given by 12 or 16 (
orollary 4).8 Journal of Computational and Engineering Mathemati
s



SURVEY ARTICLESLet us turn to the system (1). Denote by X = {x ∈ L2((0, τ);R
n) : ẋ ∈ L2((0, τ);R

n)}a state spa
e of the MT, and by U = {u ∈ L2((0, τ);R
n) : u(p+1) ∈ L2((0, τ);R

n)} denotea measurement spa
e, τ ∈ R+ is some �xed number. The ve
tor fun
tion x ∈ X is 
alled astrong solution of (1) if it satis�es (1) for some u ∈ U and almost all t ∈ (0, τ). The strongsolution x = x(t) of (1) is 
alled a strong solution of the problem (1), (3), if it satis�es inaddition (3) for some x0 ∈ R
n. Note that in this 
ase the 
ondition (3) is 
orre
t due tothe embedding X →֒ C([0, τ ] : Rn).Corollary 5. Let all assumptions of Theorem 4 be ful�lled. Then for every

τ ∈ R+, x0 ∈ R
n and u ∈ U there exists a unique strong solution to the problem (1),(3)given by the formula

x(t) = −

p
∑

k=0

HkM−1(In −Q)Du(k)(t) + U tx0 +

t
∫

0

U t−sΛQu(s)ds. (23)Introdu
e the spa
e of observations Y = C (X) and new 
ost fun
tional
J(u) = α

1
∑

k=0

τ
∫

0

∣

∣

∣

∣

∣

∣
y(k)(t) + ỹ

(k)
0 (t)− y

(k)
0 (t)

∣

∣

∣

∣

∣

∣

2

dt+ β

K
∑

k=0

τ
∫

0

〈

Nku
(k)(t), u(k)(t)

〉

dt, (24)whi
h di�ers from (4) by summand ỹ(k)0 (t). This ve
tor fun
tion responds to the observationobtained on real MT without useful input signal. In other words, ỹ(k)0 is responsible fornoise 
aused by resonan
es in 
hains of the MT. The ne
essity of su
h modernization of thefun
tional (4) was substantiated in [9℄. Note also that originally [18℄ it was supposed that
K = p+1, however 
areful analysis [11℄ reveals that K ∈ {0, 1, ..., p+1}. Finally isolate aset of admissible measurements Ua∂ , i.e.
losed and 
onvex subset of U. A minimum point
v ∈ Ua∂ of the fun
tional (24) is 
alled an optimal measurement.Theorem 5. Let the matrix M be (L, p)-regular, p ∈ {0} ∪ N, detM 6= 0. Then for all
τ ∈ R+, x0 ∈ Rn, K ∈ {0, 1, ..., p+ 1} there exists a unique optimal measurement.Remark 2. Theorem 5 will be valid if we repla
e the fun
tional (24) by (4). The proof ofthis theorem you 
an �nd in [23℄, Ch.7.3. The Optimal Measurement Problem: Approximate SolutionsIn this se
tion we present a numeri
al algorithm for solution of the optimalmeasurement problem (1)-(3),(5) where the fun
tional J has the form (24). In the �rststep of this algorithm we note that the spa
e U is separable by 
onstru
tion. It meansthat there exists a sequen
e of the �nite-dimensional (dimUℓ = ℓ) subspa
es Uℓ ⊂ Umonotonously exhausting the spa
e U (i.e. Uℓ ⊂ Uℓ+1 and ∞

⋃

ℓ=1

Uℓ is densely embedded in
U). An approximation uℓ ∈ Uℓ of the measurement u is represented in the form

uℓ = col

(

ℓ
∑

j=1

a1jϕj ,

ℓ
∑

j=1

a2jϕj, . . . ,

ℓ
∑

j=1

anjϕt

)

, (25)2014, vol. 1, no. 1 9



A.L. Shestakov, A.V. Keller, G.A. Sviridyukwhere {ϕj}
ℓ
j=1 is an orthonormal basis of the subspa
e U ℓ, and the 
oe�
ients

a11, ..., a1ℓ, a21, ..., a2ℓ, ..., anℓ are unknown. It is natural to assume that the resonan
esarising in 
hains of the MT are the perturbations of the measurements uℓ, i.e. insteadof uℓ 
onsider
ũℓ = col

(

uℓ1 + A1 sinω1t, u
ℓ
2 + A2 sinω2t, ..., u

ℓ
n + An sinωnt

)

, (26)where the resonan
e frequen
ies ω1, ω2, ..., ωn are assumed to be known, and the amplitudes
A1, A2, ..., An are not. Constru
t an approximate solution xℓk = xℓk(t) based on (23). Thissolution has the form

xℓk(t) = −

p
∑

j=0

H
j
kM

−1(In −Qk)Dũ
ℓ(j)(t) + U t

kx0+ (27)
J
∑

j=0





(

(

L−
t− sj

k
M

)

−1

L

)k(p+1)−1
(

L−
t− sj

k
M

)

−1

QkDũ
ℓ(sj)



∆cj ,where sj and cj are nodes and weights of the Gauss quadrature formula. Note that the
hoi
e of k should be bounded below [6℄. By substituting xℓk in (2) instead of x we �nd anapproximate observation yℓk = yℓk(t).Remark 3. Note that the fun
tion ϕj = ϕj(t) (25) has the form ϕj(t) = sin jt [9℄.In the se
ond step of the algorithm substitute the data y(j)0 and ỹ(j)0 , j = 0, 1, theapproximation yℓk instead of y and uℓ instead of u in the 
ost fun
tional (24). Note thatthe se
ond summand in (24) a
ts as a �lter that de
reases the high amplitudes of theresonan
es. After the 
al
ulations in (24) we obtain a fun
tional J ℓ = J ℓ(a), where theve
tor ā = col(a11, ..., a1ℓ, a21, ..., a2ℓ, ..., anℓ, A1, A2, ..., An) belongs to the spa
e Rℓ × Rn.Where the subspa
e Rn is 
alled a spa
e of resonan
es amplitudes.Refer to the set of admissible measurements Ua∂ . Typi
ally, in appli
ations it is not onlya 
losed and 
onvex, but in addition it is bounded. Let the set Ua∂ be 
losed, 
onvex andbounded then there exists a sequen
e of 
onvex 
ompa
ts {Uℓ
a∂}, Uℓ

a∂ ⊂ Uℓ monotoni
allyexhausting the set Uℓ. In our 
onsiderations we 
an 
onstru
t a 
onvex 
ompa
t set inthe spa
e Rℓn isomorphi
 to Uℓ
a∂ . Further this 
ompa
t set will be denoted by the samesymbol Uℓ

a∂ . In the spa
e of resonan
es amplitudes Rn 
hoose a 
onvex 
ompa
t set
Un
a∂ a

umulating a priori information about the MT resonan
e's amplitudes. Find theminimum of the fun
tional J ℓ on the set Uℓ

∂ × Un
∂ that exists (and is unique) due to theMazur Theorem.Substituting the values ã11, ..., ã1ℓ, ã21, ..., ãnℓ of the minimum pointã = col(ã11, ..., ã1ℓ, ã21, ..., ã2ℓ, ..., ãnℓ, Ã1, Ã2, ..., Ãn)of the fun
tional J ℓ on the set Uℓ

a∂ × Un
a∂ into (25) we get the ve
tor fun
tion

uℓk = col

(

ℓ
∑

j=1

ã1jϕj,

ℓ
∑

j=1

ã2jϕj, . . . ,

ℓ
∑

j=1

ãnjϕj

)

, (28)whi
h is 
alled an approximate optimal measurement. The supers
ript of uℓk de�nes thedependen
e on "approximate spa
e" Uℓ, and the subs
ript de�nes the dependen
e on10 Journal of Computational and Engineering Mathemati
s



SURVEY ARTICLESapproximation (27). Note that we have simultaneously found the resonan
e amplitudes
Ã1, Ã2, ..., Ãn that we are not interested in as an approximate state of MT. The state ofMT 
an be found from (27) by substitution of the ve
tor fun
tion

ũℓk = col
(

uℓk1 + Ã1sinω1t, u
ℓ
k2 + Ã2sinω2t, ..., u

ℓ
kn + Ãnsinωnt

)instead of ũℓ. Note also that, for simpli
ity, the time t in the algorithm ranges within (0, π)(i.e. in (24) we assume τ = π). To 
onsider the other intervals it is ne
essary to use the
orre
tion 
oe�
ients for t in (25), (28). The following theorem 
ompletes the algorithmTheorem 6. Let the 
onditions of the theorem 5 be ful�lled. Then lim
ℓ→∞

lim
k→∞

uℓk = u.Proof 
an be found in [9℄.4. The Nelson � Gliklikh DerivativeThe mean derivative of the random pro
ess was introdu
ed by E. Nelson [14℄. Thetheory of su
h derivatives was developed by Y.E. Gliklikh [3℄. In [19℄ the symmetri
 meanderivative of the random pro
ess η = η(t) was suggested to be 
alled the Nelson � Gliklikhderivative and to be denoted η̊ = η̊(t). Su
h derivatives are widely used in the study ofthe Leontie� type systems (1) with additive "white noise" [4, 20℄.Consider (one-dimensional) Wiener pro
ess β = β(t) whi
h models the Brownianmotion on the line in Einstein � Smolukhovsky theory. It possesses the following properties:(W1) almost surely (a.s.) β(0) = 0, a.s. all traje
tories β(t) are 
ontinuous and for all
t ∈ R+(= {0} ∪ R+) β(t) is a Gaussian random variable;(W2) mathemati
al expe
tation E(β(t)) = 0 and the auto
orrelation fun
tion
E((β(t)− β(s))2) = |t− s| for all s, t ∈ (R)+;(W3) traje
tories of β(t) are not di�erentiable at any point t ∈ R+ and at anyarbitrarily small interval have unbounded variation.Theorem 7.With probability equal to one there exists a unique random pro
ess β satisfyingthe properties (W1) � (W2) and it 
an be given by

β(t) =
∞
∑

k=0

ξk sin
π

2
(2k + 1)t,where ξk are independent Gaussian random variables, Eξk = 0, Dξk = [π

2
(2k + 1)]−2.Further the random pro
ess β satisfying the properties (W1) � (W3) will be 
alleda Brownian motion. This random pro
ess belongs to the spa
e C(R+;R) of randompro
esses whi
h traje
tories are 
ontinuous a.s. on R+. The spa
es of di�erentiable "noises"

C
m((ξ, τ);R) as the spa
es of random pro
esses with traje
tories of Nelson � Gliklikhderivatives to order m ∈ N being 
ontinuous a.s. on the (ξ, τ) ⊂ R were introdu
ed in [24℄.By β̊(m) denote the Nelson � Glikli
h derivative of order m ∈ N of the Brownian motion

β.Theorem 8. (Yu.E. Glikli
h) β̊(m)(t) = (−1)m+1(2t)−mβ(t) for all t ∈ R+ and m ∈ N.Due to the same theorem the Brownian motion β ∈ C
∞(R+;R), where C

∞(R+;R)is the spa
e of sto
hasti
 pro
esses with traje
tories of Nelson � Glikli
h derivatives2014, vol. 1, no. 1 11



A.L. Shestakov, A.V. Keller, G.A. Sviridyukbeing 
ontinuous a.s. on R+ to any order. Moreover the Nelson � Glikli
h derivative β̊,
alled one-dimensional "white noise", is also an element of the spa
e C
∞(R+;R). Now�x the interval (ε, τ), the number n ∈ N and take n independent random pro
esses

{η1, η2, . . . , ηn} ⊂ C((ε, τ);R). By formula
η(t) =

n
∑

j=1

ηj(t)ej,where ej are orts of the spa
e Rn, j = 1, n, de�ne the n-dimensional sto
hasti
 pro
ess(brie�y, n-sto
hasti
 pro
ess). By analogy with the previous introdu
e the spa
e of
ontinuous C((ε, τ);Rn), 
ontinuously Nelson � Gliklih di�erentiable to order m ∈ N

C
m((ε, τ);Rn) and in�nitely Nelson � Gliklih di�erentiable C

∞((ε, τ);R) n-dimensional"noises". As an example, 
onsider the n-dimensional Wiener pro
ess (n-Wiener pro
ess)
Wn(t) =

n
∑

j=1

βj(t)ej , t ∈ R+, (29)where βj , j = 1, n are independent Brownian motions. Due to Theorem 8, the followingstatement takes pla
e.Corollary 6. W̊ (m)
n (t) = (−1)m+1(2t)−mWn(t) for all t ∈ R+, m,n ∈ N.It follows from [2℄ that the n-Wiener pro
ess Wn satis�es 
onditions (W1) � (W3) ifwe substitute β for Wn. Considering that this substitution was done we getTheorem 9. With probability equal to one there exists a unique n-Wiener pro
ess Wn forany n ∈ N that satis�es 
onditions (W1) � (W3), and it 
an be given by (29).Remark 4. Emphasize that under "noises" we understand random noises only.5. Observations of "noises"By analogy with the spa
es of di�erentiable "noises" introdu
e the spa
e of integrable"noises". Fix the interval (ε, τ) and by L2((ε, τ);R) denote the spa
e of sto
hasti
 pro
esseswith any traje
tory a.s. lying in L2((ε, τ);R). The spa
e L2((ε, τ);R) is a Hilbert spa
e withinner produ
t [η, ξ] =

τ
∫

ε

Eη(t)ξ(t)dt. Similarly 
onstru
t the Hilbert spa
e L2((ε, τ);R
n)with inner produ
t [η, ξ]n =

τ
∫

ε

E < η(t), ξ(t) > dt where < ·, · > is a Eu
lidean s
alarprodu
t in Rn.Further, by analogy with (1), (6) 
onsider the sto
hasti
 Leontie� type equations
Lξ̊ =Mξ +Dϕ. (30)It models the random 
hanges of the MT states ξ = ξ(t) under the in�uen
e of inertiaand resonan
es (the matri
es L, M and D are the same as in (1)), ξ̊ denotes the Nelson �Gliklikh derivative of random pro
ess ξ. The random pro
ess ϕ = ϕ(t) des
ribes theadditive sto
hasti
 disturban
e (i.e. "noise").12 Journal of Computational and Engineering Mathemati
s



SURVEY ARTICLESAssuming that the matrix M is (L, p)-regular, p ∈ {0} ∪ N supply the system (30)with the Showalter � Sidorov initial 
ondition
P (ξ(0)− ξ0) = 0. (31)Fix the interval (0, τ) ⊂ R+ and 
onstru
t a sto
hasti
 MT statespa
e Ξ = {ξ ∈ L2((0, τ);R

n) : ξ̊ ∈ L2((0, τ);R
n)} and a sto
hasti
 measurements spa
e

Φ = {ϕ ∈ L2((0, τ);R
n) : ϕ̊(p+1) ∈ L2((0, τ);R

n}. Note that if any traje
tory of a randompro
ess ψ̊k+1 = ψ̊k+1(t), t ∈ (0, τ), k ∈ {0} ∪ N lies in L2((0, τ);R
n) then the sametraje
tory of the random pro
ess ψ̊k+1 is absolutely 
ontinuous on [0, τ ] by the Sobolevimbedding theorems. Therefore, the 
ondition (31) and sto
hasti
 spa
es Ξ, Φ are de�ned
orre
tly. Fix ϕ ∈ Φ. The random pro
ess ξ ∈ Ξ is 
alled a strong solution of (30), iffor any traje
tory of ϕ there exists a traje
tory ξ almost everywhere (a.e.) on the (0, τ)satisfying (30). It is 
alled a strong solution of the problem (30), (31) if it satis�es (31) forsome ξ0 ∈ L2.Theorem 10. Let the matrixM be (L, p)-regular, p ∈ {0}∪N, detM 6= 0. For all τ ∈ R+,

ϕ ∈ Φ, ξ0 ∈ L2 independent from ϕ there exists a unique strong solution ξ = ξ(t) of theproblem (30), (31) and a.s. all its traje
tories are given by
ξ(t) = −

p
∑

k=0

HkM−1(In −Q)Dϕ̊(k)(t) + U tξ0 +

t
∫

0

U t−sΛQϕ(s)ds. (32)Supplementing (30) by equations
η = Cξ (33)we obtain the observation η of the "noise" ϕ where ξ = ξ(t) is given by (32). To get anobservation of the "white noise" we need to repla
e ϕ in (30) by W̊n and besides that torepla
e 
ondition (31) by the wakened (in the sense of S.G. Krein) Showalter � Sidorov
ondition

lim
t→0+

P (ξ(t)− ξ0) = 0. (34)Corollary 7. Let all assumptions of the Theorem 10 be ful�lled. Then for every ξ0 ∈ L
n
2independent from W̊n there exists a unique solution ξ ∈ Ξ of the Leontie� type system

Lξ̊ =Mξ +DW̊n (35)whi
h satis�es the initial 
ondition (34). All traje
tories of this solution a.s. are given bythe formula
ξ(t) = −

p
∑

k=0

HkM−1(In −Q)DW̊ (k)
n (t) + U tξ0 +

t
∫

0

U t−sΛQDW̊n(s)ds. (36)for every t ∈ R+.Sin
e
P

[

p
∑

k=0

HkM−1(In −Q)DW̊ (k)
n (t)

]

= 02014, vol. 1, no. 1 13



A.L. Shestakov, A.V. Keller, G.A. Sviridyukfor every t ∈ R+ we are to show that the integral in the right hand side of (36) exists.Taking ε ∈ (0, t), t ∈ R+, and integrating this integral by parts we obtain
t
∫

0

U t−sΛQW̊n(s)ds = ΛQWn(t)− U t−εΛQWn(ε)− ΛM

t
∫

ε

U t−sΛQWn(s)ds. (37)Sin
e
lim
ε→0+

t
∫

ε

U t−sΛQWn(s)ds =

t
∫

0

U t−sΛQWn(s)ds,

lim
ε→0+

U t−εΛQWn(ε)ds = On,then from (37) we get required. Finally from (33), where ξ = ξ(t) is given by (36), weobtain the observation of "white noise" W̊n.Referen
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