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The mathematical model (MM) of the measuring transducer (MT) is discussed. The
MM is intended for restoration of deterministic signals distorted by mechanical inertia of the
MT, resonances in MT’s circuits and stochastic perturbations. The MM is represented by
the Leontieff type system of equations, reflecting the change in the state of MT under useful
signal, deterministic and stochastic perturbations; algebraic system of equations modelling
observations of distorted signal; and the Showalter — Sidorov initial condition. In addition
the MM of the MT includes a cost functional. The minimum point of a cost functional is
a required optimal measurement. Qualitative research of the MM of the MT is conducted
by the methods of the degenerate operator group’s theory. Namely, the existence of the
unique optimal measurement is proved. This result corresponds to input signal without
stochastic perturbation. To consider stochastic perturbations it is necessary to introduce so
called Nelson — Gliklikh derivative for random process. In conclusion of article observations
of "noises" (random perturbation, especially "white noise") are under consideration.
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Introduction

New approach to restoration of deterministic signals distorted by a mechanical inertia
of the measuring transducer (MT) was proposed in [17]. In the basis of this approach is a
mathematical model (MM) of MT one part of which is a Leontieff type system of equations

Li = Mx + Du. (1)

Here L, M and D are square matrices of order n modelling the construction of the MT.
The vector functions x = col(x1, xs, ..., x,) and u = col(uy, us, . . ., u,) are responsible for
the state of the MT and the input signal (hereinafter — measurement) accordingly. The
system of algebraic equations

y=Cz (2)

is another part of the MM, where y = col(yi,ys,...,y,) is the vector function
corresponding to output signal (hereinafter observation). Square matrix C' of order n
models the output device (for example, oscillograph or recording device). Note that we
can observe less parameters than we measure. For this purpose corresponding rows of the
matrix C' are replaced by zeros (i.e. the "corresponding recorder" is turned off). Another
part of the mathematical model of the MT is represented by the Showalter — Sidorov initial

condition
P(x(0) — 20) = 0, (3)
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here P is the projector in the space R", which is constructed using the matrices L and M.
Let us note that we consider the Leontieff type system of equations as a finite-dimensional
analogues of Sobolev type equations to be able to use the methods of the theory of
degenerate operator semigroups (for example see [23]|, ch. 4). The initial condition (3)
is more natural for the Sobolev type equations, than the Cauchy condition [25]. Moreover,
the condition (3) is more convenient for the algorithms of numerical calculations [6].

In [18] the MM (1) — (3) of the MT has been extended to the case when the
measurement, is distorted by resonances in the circuits of the MT in addition to its
mechanical inertia. Initially it was supposed that detL # 0, however the careful analysis
[9] reveals the necessity of detL = 0 to take into account the resonances in the model. The
condition detL = 0 finally pulls together the system (1) and the Leontieff’s balance model
(for example, see [8]).

Finally, the cost functional

J(u) =« i/ Hy(k) (t) -y (t)H2 dt + i/T (N (2), uM (1)) dt, (4)

presents the last (and most important) part of the mathematical model of the MT. Where
Yo = Yo(t) is the observation, obtained in natural experiment on the real MT, modelled
by (1) — (4). The coefficients a € (0,1], 8 € R,, a + 8 = 1; N; are symmetric positively
defined matrices of order n, ||-|| and (:,-) are the Euclidean norm and scalar product in
R™ respectively. The restored signal is a minimum point v of functional (4),

J(v) = min J(u), (5)
on a closed convex set .9, which is understood as a set of admissible measurements. This
set, contains a priori information about the target value of the optimal measurement v.
Metrologists consider that such information should always be because "the unknown is
impossible to be measured" |15].

As a result of profound theoretical research of MM for MT (1) — (5) the numerical
algorithms for finding the optimal measurement have been developed. The y based on the
thesis |7] which represents a wide range of numerical algorithms for solving of the optimal
control problems for the Leontieff type systems. The algorithm adapted to the situation
(1) — (5) is presented in |5]. The results of computational experiments are given in [16].

Now turn to the restoration of the stochastic signals. The MM of MT is represented
by (1) — (5), where u is a random process (for example, white noise) and z, is a random
variable. Firstly make a digression about stochastic differential equations.

In the simplest case the system of linear stochastic equations is given by

dn = (Sn+v)dt + Adw. (6)

Here S and A are some matrices, ¢ = () is a deterministic external influence, w = w(t)
is a stochastic external influence, n = n(t) is a target random process. Originally under
dw we understood the generalized differential of the Wiener process, which is traditionally
treated as a white noise. The first equations of the type (6) were studyied by K. Ito,
then R.L. Stratonovich and A.V. Skorohod joined this investigation. The Ito-Stratonovich-
Skorokhod approach is still popular [3]. Moreover, it was successfully extended to the
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infinite-dimensional situation |1, 10] and even to the Sobolev type equations |10, 27]. Note
also the Melnikova — Filinkov — Alshansky approach [12, 13] in which the equation (6) is
considered in Schwartz spaces and where the generalized derivative of the Wiener process
makes sense.

Meanwhile there arose [19] and is actively developing [4, 20] a new approach in the
study of equations of the form (6) where the "white noise" is understood as the Nelson —
Gliklikh derivative of the Wiener process. (Note that this "white noise" is more appropriate
to the Einstein — Smoluchowski theory of the Brownian motion than a traditional white
noise [19, 20]). There was constructed the space of "noises" [4], which was developed to
the infinite-dimensional space of "white noise" [21].

This article is specified as survey of last results of the optimal measurements theory.
It’s organized as follows. Section 1 contains well-known results of the theory of relatively
p-regular matrices in the standpoint of the Weierstrass theorem about regular matrix
pencils. Section 2 is devoted to establishment of existence and uniqueness theorem for
optimal measurement. In section 3 we give very briefly an algorithm of numerical solution
of optimal measurement problem. The main result here is the theorem of convergence of
approximative solutions sequence to the strict solution which is obtained in section 2. All
results of this section belong to Yury V. Khudyakov [|9]. In section 4 we give some facts
about the Nelson — Gliklih derivative and the Wiener process, and in final section 5 we
consider observations of "noises", especially "white noise".

1. Relatively p-Regular Matrices and Degenerate Holomorphic
Resolving Groups

Let L and M be square matrices of order n. Consider the L-resolvent set
pH(M) ={p € C:det(nL — M) # 0} and the L-spectrum ol(M) = C\p*(M) of the
matrix M. Obviously, the L-resolvent set p“(M) = p(L™*M) = p(ML™') if detL # 0.
Further, the L-resolvent set p“(M) = @ if ker LN ker M # {0}. Define the matrix M to be
regular with respect to the matriz L (briefly, L-regular), if the L-spectrum of matrix M is
bounded (in particular, the set o*(M) = & for M = 1I,,, and L being a nilpotent matrix).
Note that the term " L-regular matrix M" is equivalent to the term "regular matrix pencil
uL—M" in the sense of K. Weierstrass (cited by [2], Ch. 12). This term appeared similarly
to the term "(L, o)-bounded operator M"(see. for example, [23], Ch. 5).

Lemma 1. Let the matriz M be L-reqular. Then matrices

P=— [REM)dp  and  Q=- / LE(M)dp (7)

271 271
¥ ¥

are tdempotent.

Here v C C is the (closed) contour bounding a domain containing the L-spectrum
o (M) of matrix M; R} (M) = (uL — M)~"'L is the right, and L, (M) = L(uL — M)™" is
the left L-resolvent of matrix M. The proof of lemma can be found in 23], Ch. 5.

Corollary 1. Let the matriz M be L-regular, then dimker P = dimker@ and LP = QL,
MP =QM.
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Theorem 1. (K. Weierstrass, [2[, Ch.12). Let the matriz M be L-reqular. Then there
exist non-degenerate matrices A and B such that for any p € C there is the representation

B(pL — M)A = diag{Np,, Npny, ..., Np,, ul; — Si }, (8)

here on the right is a quasidiagonal matriz, Ny, = uH,, —1L,,, H,, is a matriz of order m,
wherein elements above the diagonal are equal to one, while the remaining elements are
equal to zero.

From (8) we get the following
FLU = diag{Hy,, Hy,, ..., Hy. I}, FMU = diag{I,_;, S;}. 9)

Let p = max{ny,ng,...,ni}. Obviously, p € N is an order of the pole at the point oo
of L-resolvent (uL — M)™" of matrix M. Add here the case when p = 0 (i.e. det L # 0
or det L = 0 and dimkerL = dimkerP) and call the L-regular matrix M (L, p)-regular,
p € {0} UN. Moreover, (8), (9) derive

1
AT'PA = 57 /A_l(,U,L — M) 'B'duBLA = diag{0,,_;,T;}, (10)
m
Y
1
BQB™! = BLAT AN uL — M) ' B~ du = diag{OQ,_;,1;}. (11)
™
v
Substituting
1
A=— L—M)™! 12
57 | (m )" dp, (12)
Y
we get
BLAB™ = A'ALA = diag{0,_;,1;}. (13)

Corollary 2. Let the matriz M be (L, p)-regular, p € {0} UN, and det M # 0. Then the
matriz H = (I, — PYM (I, — Q)L(T,, — P) is nilpotent of degree p.

Proof. Indeed, in view of (9) we get
AT'HA = AN, — P)AAT'M'B™'B(I, — Q) B 'BLAA™'(I, — P)A =

= diag{H,,, H,,, ..., H,, O}

Lemma 2. Let the matriz M be (L, p)-regular, p € {0} UN. Then matrices

P"= lim [uRﬁ(M)]pH and Q' = lim [,uLﬁ(M)}pH

U—>00 U—>00
are tdempotent.

Using the theorem 1 we can obtain

Al [uRﬁ(M)]pﬂA — LA (L — M)_lBB_lLA}pH _
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— 1 [diag(O,_y, (ul; — S) P = diag (0, (I, — p~'S) 7771
It means that

AT'P'A = diag(0, 4, ), (14)

and also
BQ'B™" = diag(0n1,1). (15)

Corollary 3. Under assumptions of lemma 1 (or lemma 2)

P =Pand Q = Q.

Substituting
N = lim g2 [RE(M))" (uL — M) (16)

U—>00

we can obtain from (13) by analogy with (10) — (14) and (11) — (15) the following result.
Corollary 4. Under assumptions of corollary 3 A' = A.

Consider now the Leontieff type system of equations
Lz = Mz. (17)

The vector function z € C*°(R; R") satisfying (17) is called a classical solution of this
system. The classical solution = = x(t) is called a classical solution of the Cauchy problem

z(0) = xg (18)

for (17) (in short, a classical solution of the problem (17), (18)) if it satisfies in addition
(18) for some zy € R™. The matrix function U* € C*°(R;R?") is called the group (and is
indicated by its graph {U" : t € R}) if

USUt — Us+t (19)

for all s,t € R. The group {U" : t € R} is called holomorphic, if it is analytically continued
to the whole complex plane with conservation of the property (19); it is called a resolving
group if z(t) = Ulzy is a classical solution of (17) for any zy € R™; and it is called a
degenerate group if its identify is a projector P (i.e. P = U°).

Theorem 2. Let the matrizx M be (L,p)-reqular, p € {0} UN. There exists a unique
degenerate holomorphic resolving group of (17).

It is easy to show (see for example, [23|, Ch.5), that the searched group is represented
by the integral
1
U'=—— [ RE(M)etdu, t € R
S

here the contour v C C is the same as in Lemma 1. Moreover, U'A = Adiag{Q,_;, "},

where et = Y Sk—l]:tk. Clearly, the solution z(t) = U’z of (17) is a solution of (17), (18) if
k=0
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Pxy = xy. Show that the sufficient condition xq € imP is a necessary condition. Introduce
the phase space of (17), which is understood as the set 8 C R™ such that, firstly, any
solution of system (17) lies in B, i.e. the z(t) € P for all ¢ € R. Secondly, there exists a
unique solution of the problem (17), (18) for any x, € .

Theorem 3. Let the matriz M be (L,p)-regular, p € {0} UN, det M # 0. The subspace
im P is a phase space of (17).

Proof. Indeed, reduce (17) to the equivalent form
Hi® = 2% &' = PAQMz', o' = Pz, 2° =2 — 2. (20)

Differentiating the first equation in (20) with respect to ¢ and consistently multiplying
by H on the left, due to the corollary 2, we get

0= HPHLLO00+) — e 0) — o g0 — 40

The solution of the second equation in (20) has the form x'(t) = Px(t) = PU'z =
Ulxg, i.e. it belongs to im P. Existence of solutions and the uniqueness are obvious.

Remark 1. The degenerate holomorphic resolving group is also given by the formula .
U = lim [k(kL — M)~ L]
2. The Optimal Measurement Problem: Strict Solution
Consider now the nonhomogeneous Leontieff type system
Lz = Mx + f, (21)

where the vector function f : [0,7) — R",7 € Ry will be determined later. The vector
function z € C([0, 7); R")NC((0, 7); R™) is called a classical solution of (21) if its satisfies
(21) on the (0, 7). The solution x = x(t) of (21) is called a classical solution of the Showalter
— Sidorov problem (3) (briefly, a classical solution of the problem (21), (3)) if it satisfies in
addition (3). Note that the condition (3) occurs only in the case of the (L, p)-regularity of
the matrix M, p € {0} UN. In this case, the condition (3) is equivalent to the condition

[RE (M) (2(0) — 20) = 0 (22)
for any o € p*(M) [25]. And if detL # 0 then (22) is equivalent to (18).

Theorem 4. Let the matriz M be (L, p)-regular, p € {0} UN, and det M # 0. For all
reR,, 2 € RY, [0 = (I, — Q)f € CP([0,7);R"), and ' = Qf € C([0,7);R") there
exists a unique classical solution x = x(t) of the problem (22), (3) given by the formula

t

ZH’g MOk (¢ )+Utx0+/Ut_SAfl(s)ds

0

Here U' is a degenerate holomorphic resolving group (see section 1), and the matrix
A is given by 12 or 16 (corollary 4).
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Let us turn to the system (1). Denote by X = {x € Ly((0,7);R") : & € Ly((0,7); R™) }
a state space of the MT, and by 4 = {u € Ly((0,7);R") : uP*Y € Ly((0,7); R™)} denote
a measurement space, T € R, is some fixed number. The vector function x € X is called a
strong solution of (1) if it satisfies (1) for some u € Y and almost all ¢ € (0, 7). The strong
solution x = x(t) of (1) is called a strong solution of the problem (1), (3), if it satisfies in

addition (3) for some xy € R". Note that in this case the condition (3) is correct due to
the embedding X — C([0, 7] : R").

Corollary 5.  Let all assumptions of Theorem 4 be fulfilled. Then for every
TE€R,, g € R" and u € LU there exists a unique strong solution to the problem (1),(3)
given by the formula

) t

w(t) ==Y H*M (I, — Q)DuM(t) + Uz, + / U AQu(s)ds. (23)

k=0 0

Introduce the space of observations ) = C' (X) and new cost functional

—aZ/Hy )+ 350 (t) — H dt+62/<Nku () dt, (24)

_00

which differs from (4) by summand g](()k) (t). This vector function responds to the observation
obtained on real MT without useful input signal. In other words, ﬂék) is responsible for
noise caused by resonances in chains of the MT. The necessity of such modernization of the
functional (4) was substantiated in [9]. Note also that originally [18] it was supposed that
K = p+1, however careful analysis [11] reveals that K € {0,1,...,p+ 1}. Finally isolate a
set of admissible measurements U9, i.e.closed and convex subset of 4. A minimum point

v € g of the functional (24) is called an optimal measurement.

Theorem 5. Let the matriz M be (L, p)-regular, p € {0} UN, det M # 0. Then for all
TeER,, zg € R, K €{0,1,...,p+ 1} there exists a unique optimal measurement.

Remark 2. Theorem 5 will be valid if we replace the functional (24) by (4). The proof of
this theorem you can find in [23], Ch.7.

3. The Optimal Measurement Problem: Approximate Solutions

In this section we present a numerical algorithm for solution of the optimal
measurement problem (1)-(3),(5) where the functional J has the form (24). In the first
step of this algorithm we note that the space il is separable by construction. It means
that there exists a sequence of the finite-dimensional (dimi’ = ¢) subspaces U’ C U
(e e]

monotonously exhausting the space U (i.e. U C U and |J U¢ is densely embedded in
=1

). An approzimation ut € U’ of the measurement u is represented in the form

¢ ¢ ¢
ut = col <Z a1, Z A2 Pjy -+ - s Z anj@t) ) (25)
j=1 j=1 J=1
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where {p;}{_; is an orthonormal basis of the subspace U‘, and the coefficients
11y ey A10, A2, -.ny G2p, ..., Qe are unknown. It is natural to assume that the resonances
arising in chains of the MT are the perturbations of the measurements u’, i.e. instead
of u* consider

= col (uf + Ay sinwit, ub + Agsinwst, ..., ul, + A, sin wnt) ; (26)

where the resonance frequencies wy, wo, ..., w, are assumed to be known, and the amplitudes

Ay, Ay, ..., A, are not. Construct an approzimate solution xt, = xt(t) based on (23). This

solution has the form

p
v (t) = =Y HIM (I, — Q) Da'O(t) + Ugao+ (27)
j=0
J " 1 kE(p+1)—1 " —1
3 <<L _ ksﬂ M) L) (L - ksf M) QuDii'(s;) | Ac;,
j=0

where s; and c; are nodes and weights of the Gauss quadrature formula. Note that the
choice of k should be bounded below [6]. By substituting f, in (2) instead of x we find an
approzimate observation yi, = yt(t).

Remark 3. Note that the function p; = ¢;(t) (25) has the form ¢;(t) = sin jt |9].

In the second step of the algorithm substitute the data y(()j) and gj((]j), J = 0,1, the
approximation y., instead of y and u’ instead of u in the cost functional (24). Note that
the second summand in (24) acts as a filter that decreases the high amplitudes of the
resonances. After the calculations in (24) we obtain a functional J¢ = J*(a), where the
vector @ = col(ayy, ..., Gy, o1, ..., Ao, -y Gpg, A1, Aa, ...y Ay) belongs to the space RY x R™,
Where the subspace R” is called a space of resonances amplitudes.

Refer to the set of admissible measurements il,5. Typically, in applications it is not only
a closed and convex, but in addition it is bounded. Let the set i, be closed, convex and
bounded then there exists a sequence of convex compacts {U’,}, ¢, C U monotonically
exhausting the set U’. In our considerations we can construct a convex compact set in
the space R isomorphic to ;. Further this compact set will be denoted by the same
symbol U’,. In the space of resonances amplitudes R™ choose a convex compact set

"y accumulating a priori information about the MT resonance’s amplitudes. Find the
minimum of the functional J* on the set U5 x $U2 that exists (and is unique) due to the
Mazur Theorem.

Substituting the values ayq, ..., @1, a2y, ..., Gye of the minimum point

a = COl(dll, ...,dlg,dgl, ...,EI,Q@, ...,a,ng,Al,Ag, ,An)

of the functional J* on the set £, x 87, into (25) we get the vector function

¢ ¢ ¢
uf, = col (Z a5, Zdzj%’ PN Zdnj%) 5 (28)
j=1 j=1 j=1

which is called an approzimate optimal measurement. The superscript of uf, defines the
dependence on "approximate space" ¢, and the subscript defines the dependence on
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approximation (27). Note that we have simultaneously found the resonance amplitudes
A, Ay, ..., A, that we are not interested in as an approximate state of MT. The state of
MT can be found from (27) by substitution of the vector function

iy, = col (uil + Aysinwt, uhy + Agsinwst, .. uk, + Ansinwnt>

instead of @‘. Note also that, for simplicity, the time ¢ in the algorithm ranges within (0, 7)
(i.e. in (24) we assume 7 = 7). To consider the other intervals it is necessary to use the
correction coefficients for ¢ in (25), (28). The following theorem completes the algorithm

Theorem 6. Let the conditions of the theorem 5 be fulfilled. Then glim klim uy = u.
—00 k—00

Proof can be found in [9)].

4. The Nelson — Gliklikh Derivative

The mean derivative of the random process was introduced by E. Nelson [14]|. The
theory of such derivatives was developed by Y.E. Gliklikh |3]. In [19] the symmetric mean
derivative of the random process n = 7(t) was suggested to be called the Nelson — Gliklikh
derivative and to be denoted 1 = n(t). Such derivatives are widely used in the study of
the Leontieff type systems (1) with additive "white noise" [4, 20].

Consider (one-dimensional) Wiener process = [(t) which models the Brownian
motion on the line in Einstein — Smolukhovsky theory. It possesses the following properties:

(W1) almost surely (a.s.) 3(0) = 0, a.s. all trajectories 5(t) are continuous and for all
t e R (= {0} UR,) B(t) is a Gaussian random variable;

(W2) mathematical expectation E(S(t)) = 0 and the autocorrelation function

E((B(t) — B(s))?) = [t — s| for all 5,¢ € (R);
(W3) trajectories of §(t) are not differentiable at any point ¢ € R, and at any
arbitrarily small interval have unbounded variation.

Theorem 7. With probability equal to one there exists a unique random process 3 satisfying
the properties (W1) — (W2) and it can be given by

B(t) = i £, sin g(% + 1)t
k=0

where &, are independent Gaussian random variables, B, = 0, D&, = [5(2k 4 1)]72.

Further the random process [ satisfying the properties (W1) — (W3) will be called
a Brownian motion. This random process belongs to the space C(R,;R) of random
processes which trajectories are continuous a.s. on R... The spaces of differentiable "noises”
C™((&,7);R) as the spaces of random processes with trajectories of Nelson — Gliklikh
derivatives to order m € N being continuous a.s. on the (§,7) C R were introduced in [24].
By ™ denote the Nelson — Gliklich derivative of order m € N of the Brownian motion

B.
Theorem 8. (Yu.E. Gliklich) 3™ (t) = (—1)™(2t)"™3(t) for all t € R, and m € N.

Due to the same theorem the Brownian motion f € C>®(R,;R), where C*(R,;R)
is the space of stochastic processes with trajectories of Nelson — Gliklich derivatives
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being continuous a.s. on R to any order. Moreover the Nelson — Gliklich derivative ﬁo,
called one-dimensional "white noise”, is also an element of the space C*(R;R). Now
fix the interval (e,7), the number n € N and take n independent random processes
{m,n2,....nn} C C((¢,7);R). By formula

n(t) =" (e

where e; are orts of the space R", j = 1,n, define the n-dimensional stochastic process
(briefly, n-stochastic process). By analogy with the previous introduce the space of
continuous C((g,7);R"), continuously Nelson — Gliklih differentiable to order m € N
C™((e,7); R™) and infinitely Nelson — Gliklih differentiable C*°((e,7);R) n-dimensional
"noises". As an example, consider the n-dimensional Wiener process (n- Wiener process)

W) = 3 By(0)est € . (20

where f3;, j = 1I,n are independent Brownian motions. Due to Theorem 8, the following
statement takes place.

Corollary 6. W™ (t) = (=1)™*+1(2t)"™W,(t) for all t € R, m,n € N.

It follows from [2| that the n-Wiener process W, satisfies conditions (W1) — (W3) if
we substitute 3 for W,,. Considering that this substitution was done we get

Theorem 9. With probability equal to one there exists a unique n-Wiener process W,, for
any n € N that satisfies conditions (W1) — (W3), and it can be given by (29).

Remark 4. Emphasize that under "noises" we understand random noises only.

5. Observations of "noises"

By analogy with the spaces of differentiable "noises" introduce the space of integrable
"noises". Fix the interval (e, 7) and by La((g, 7); R) denote the space of stochastic processes
with any trajectory a.s. lyingin Ls((g, 7); R). The space La((g, 7); R) is a Hilbert space with

inner product [n,&] = [ En(t)§(¢)dt. Similarly construct the Hilbert space La((e,7); R™)

with inner product [n,¢], = [E < n(¢),£(t) > dt where < -,- > is a Euclidean scalar

product in R™.
Further, by analogy with (1), (6) consider the stochastic Leontieff type equations

LE = ME + D, (30)

It models the random changes of the MT states § = £(¢) under the influence of inertia
and resonances (the matrices L, M and D are the same as in (1)), £ denotes the Nelson —
Gliklikh derivative of random process £. The random process ¢ = @(t) describes the
additive stochastic disturbance (i.e. "noise").
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Assuming that the matrix M is (L, p)-regular, p € {0} UN supply the system (30)
with the Showalter — Sidorov initial condition

P(£(0) — &) = 0. (31)

Fix the interval (0,7) C Ry and construct a stochastic MT state
space = = {€ € Ly((0,7);R") : £ € Lo((0,7); R™)} and a stochastic measurements space
® = {p € Ly((0,7); R") : ¢+ € Ly ((0,7); R"}. Note that if any trajectory of a random
process Y = (1)t € (0,7), k € {0} UN lies in Ly((0,7);R"™) then the same
trajectory of the random process ¢¥**1 is absolutely continuous on [0, 7] by the Sobolev
imbedding theorems. Therefore, the condition (31) and stochastic spaces =, ® are defined
correctly. Fix ¢ € ®. The random process £ € = is called a strong solution of (30), if
for any trajectory of ¢ there exists a trajectory £ almost everywhere (a.e.) on the (0, 7)
satisfying (30). It is called a strong solution of the problem (30), (31) if it satisfies (31) for
some &y € Lo.

Theorem 10. Let the matriz M be (L, p)-regular, p € {0} UN, det M # 0. For all T € R,
p € ®, & € Ly independent from ¢ there exists a unique strong solution § = £(t) of the
problem (30), (31) and a.s. all its trajectories are given by

t

§t)=—> HM (I, — QDM(t) + U'& + / U™ AQyp(s)ds. (32)
k=0

0

Supplementing (30) by equations
n=~C¢ (33)

we obtain the observation n of the "noise" ¢ where £ = £(t) is given by (32). To get an
observation of the "white noise" we need to replace ¢ in (30) by W, and besides that to
replace condition (31) by the wakened (in the sense of S.G. Krein) Showalter — Sidorov
condition

i PE(D) ~ &) =0 34
Corollary 7. Let all assumptions of the Theorem 10 be fulfilled. Then for every § € L
independent from W, there exists a unique solution £ € = of the Leontieff type system
LE = M¢ + DW, (35)
which satisfies the initial condition (34). All trajectories of this solution a.s. are given by
the formula
» t
€)== H"M (L, — QDWM(t) + U'¢y + / U AQDW,,(s)ds. (36)
k=0 0

for everyt € R,.

Since

P>y H"M (L, — QDWH (t)] =0
k=0
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for every t € R, we are to show that the integral in the right hand side of (36) exists.
Taking ¢ € (0,t), t € R, and integrating this integral by parts we obtain

/ U= AQW, (s)ds — AQW, () — U*AQW,(e) — AM / U AQW,(s)ds.  (37)

0

Since

t t

lir(l)qJr Ut_SAQWn(s)ds:/Ut_SAQWn(s)ds,
€ 0

lim U™ AQW,(c)ds = O,

e—0+

then from (37) we get required. Finally from (33), where § = £(t) is given by (36), we
obtain the observation of "white noise” W,.
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