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We propose an approach to increase the adequacy of the mathematical model
of an optimal dynamic measurement. The approach is based on obtaining additional
information about the measured process. The information is presented by a set of admissible
measurements. We are the first to consider a set of admissible measurements as an
intersection of convex sets, where each set characterizes the measured process on a given
time interval or part of the interval. The model of optimal dynamic measurements allows
numerically reconstruct a dynamically distorted signal as a solution to the problem of
optimal control. The model of optimal measurements contains the following elements: 1) the
Leontief type system modeling a measuring device (MD); 2) the initial Showalter—Sidorov
condition specifying the initial state of the measuring device; 3) the functional of quality,
which is used, first of all, to achieve the proximity of real and virtual measurements; 4) the
criterion of optimality, that is a search for the minimum value of the quality functional and
the optimal measurement at which the value is achieved; 5) the set of admissible optimal
measurements, which contains the optimal dynamic measurement. We suggest changes in
the numerical algorithm proposed by the author earlier. A new version takes into account
the importance of the available information on the set of admissible measurements. The
results of computational experiments are presented.

Keywords: Leontief type system; theory of optimal dynamic measurements; optimal
control; set of admissible measurements.

Introduction

In the papers [1, 2] A. L. Shestakov and G. A. Sviridyuk proposed the mathematical
model of optimal dynamic measurement. We present the model in the first paragraph.
The adequacy of any mathematical model is inseparably connected with the object or
process investigated with the help of the model. Therefore, we construct a mathematical
model of optimal dynamic measurement and its adequacy taking into account the physical
point of view about the measured process and technical information on the object or the
environment in which the process take place. The second paragraph considers changes
in the numerical algorithm, which was proposed by the author earlier in [3|. These
changes allow to take into account a priori information reflected by the set of admissible
measurements. The results of computational experiments for cases with different a priori
information for the same model of measuring device are presented.

Our purpose is to present the results of new studies of the mathematical model for an
optimal dynamic measurement from the point of view of development of both qualitative
and quantitative methods of the optimal measurements theory [4]. Another approach to
improve the adequacy of models of the optimal measurements theory can be found, for
example, in the works [5, 6].
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1. Mathematical Model of Optimal Dynamic Measurement

The distortions of a measured value appear during the dynamic measurements of the
real process because of the following reasons: 1) the influence of the object and (or) the
environment, where the process takes place; 2) the inertia of the measuring device; 3) the
influence of interferences appeared at the input of the measuring device; 4) the influence
of interferences appeared at the output of the measuring device; 5) equipping the object
with measuring transducers, which influence the process under study; 6) limitations of
measuring devices on dynamic characteristics.

In order to construct the mathematical model of optimal dynamic measurement, we
need to point out the main reasons of distortions, while the remaining reasons, which are
considered secondary, should not be taken into account.

Note that the complete mathematical model of optimal dynamic measurement includes
the object or the environment within which the measured process takes place; the model
of the primary measuring transducer, along with the associated devices; the architecture
of the measuring device that converts the measured value into an observable signal.
When we construct this mathematical model, it is naturally to obtain a Leontief type
model. This is because algebraic relations appeared at the interfaces between <«measured
value>, <environment » and <measuring transducers. However, inclusion of them in the
mathematical model of measuring device leads to the degeneracy of the system. That is,
the classical methods can not be use to investigate the system. Moreover, usually the
dynamic measurements are carried out to describe the processes under study.

Figure 1 shows a diagram reflecting the structural relationships between the elements of
the mathematical model of optimal measurement and the simulated processes and objects.

Assume that L and M are square matrices of order n (and, may be, det L = 0), matrix
M is (L,p)-regular, u: [0,7] — R"™, the system of equations (1) describes a measuring
device (MD)

Li = Az + B(u +1), )

y=Cz+ Dn, (1)

where z(t) and @(t) are vector-functions of the state and the velocity of MD state change,
respectively; y(t) is a vector-function of observations; L and M are square matrices that
represent the mutual influence of MD state velocities and the mutual influence of MD
states, respectively; C' and D are rectangular matrices characterizing the relationship
between the system state and observation; u + 77 is a vector-function that includes both
measurements u(t) (see Fig. 1) and interferences 7j(¢) in the circuits of the measuring device
(see Fig. 1); n(t) is a vector-function of the interferences at the output of the measuring
device (see Fig. 1).

The second structural element of the model is the initial Showalter-Sidorov condition
7]

(L — A7 L]" (2(0) — 20) = 0, 2)

which for some zq € R", a € p¥(M) reflects the initial state of the measuring device.
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Fig. 1. Structural diagram of the mathematical model of optimal measurement

In fact, (1) and (2) represent the mathematical model of measuring device, which is
shown in Fig. 1.

The main idea of the mathematical model of optimal measurement is to use the
methods of the optimal control theory. Therefore,

— on the interval [0,7] we introduce space of states =
{r € Ly((0,7),R") : & € Ly ((0,7),R™)}, space  of  measurements il =
{ue Ly((0,7),R") : uP*) € Ly ((0,7),R")} and space of observations 9 = C[].

— we construct a measurement quality functional that is an estimate of closeness of
the values observed at the output of the measuring device y,(t) and the values of <virtual
observations y(t) obtained on the basis of the mathematical model of measuring device.

In this case, the values of «<virtual measurement > u(t) at the input of the mathematical
model of measuring device and the values of <virtual optimal measurement > v(t) are also
different a little. Also, the ratio between the values of the observed signal and the state of
MD takes place. This key idea is reflected in the measurement quality functional, which
is represented in the general form:

J(u) :5J1 (y(uaﬁvnat)_yO(t))+(1_B)J2(u7m7 (3>

as well as in the search for a vector-function v € iy, that minimizes the value of the
functional (3)

J(v) = min J(u), (4)

u€lly

where 3 € [0, 1].
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An integral part of the optimal measurement model is the set of admissible
measurements Uy, which is essentially a compact convex subset in the space of observations
$1. As admissible measurements, we consider measurements such that

T

> [ Il a<a B

q=0

where 6 can take integer values from 0 to p+ 1. Note that the time integral of the square of
measured process is an energy released during this process in the time interval [0, 7]. The
integral form of the set of admissible measurements allows to use a priori information about
the character of the measured process in time. This information can be obtained on the
basis of the laboratory experiments, the physical model and the values of its parameters,
etc. Moreover, this information allows additionally select the time intervals [0, 1], [0, 72],
.., [0, 7], reflecting some stages of the process, as well as to give estimates of the set of
admissible measurements on each of these intervals d;, ds, ..., d, respectively. Therefore,
as the set of admissible measurements we take

0 "
Wy = Nty = N Z/Hu(‘”(t)H?dtSdi | (6)
q:00

Note that the intersection of convex sets is a convex set. Therefore, (6) defines a convex
set of admissible measurements. Also, the more exactness of the estimates di, ds, ..., d,
the more significance of use the set of admissible measurements as a measure of adequacy
of the optimal measurement model at various stages of the measured process.

Let us give an example for combustion chambers. We compare the speed and volume
of fuel mixture delivery to the chamber. Then, for the expected calculated energy and the
combustion speed, time intervals can be pointed out. These time intervals determine the
stages of the combustion process, which allow to estimate the amount of energy released at
these intervals. In this case, we can use the data of laboratory experiments, data of physical
process models, etc. In the combustion process, conditionally, we distinguish two phases.
The first phase is a transition process or combustion beginning. The second phase is an
operating mode of the mixture combustion in the combustion chamber. The transition
process begins at the moment of ignition, while igniting both the operating mixture that
is contained before the start of the process, and the mixture, incoming during this phase.
The operating mode of combustion begins from the moment when both the volume of the
combustible operating mixture and the pressure in the chamber become constant in time.
Using the information on these phases, we can define more exactly or add the conditions to
the set of admissible measurements. It allows additionally increase the exactness of virtual
dynamic measurements.

2. Numerical Algorithm and Computational Experiments

In order to define the criterion for the numerical algorithm stop, the following
condition is used in [§]:

[J(0%) = J(@" )] <e,
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where 0" is an approximate solution on the x-th iteration. If the constants dy, ds, ..., d are
precisely defined in the conditions for a set of admissible measurements, we can take the
following difference as a measure for the adequacy of the mathematical model:

0 T
d—d =d— Z/ 59 1) dt,
q=0 0

and we can take the condition d — d* < ¢ as the stop criterion of the algorithm.
In order to carry out the computational experiments, we construct a mathematical
model of measuring device specified by a transfer function

1
(TEp? + 26 Thip + 1) (T3p* + 2&Top + 1) (Tap + 1) (Tup + 1)

W (p) =

for given parameters Ty = 0,0l¢,& = 0,6,75 = 0,002¢,&% = 0,2,
T5 = 0,0005¢, Ty = 0,0001c.
Taking into account possible interferences, the measuring device model has the form:

;

1 = —x1 — 0,9881xy + u + 7],

9 = 1000021 — 1195,

T3 = T9 — 3 — 0,9992041,,

4 = 25000023 — 11924, (7)
5 = 200024 — 200035,

g = 1000025 — 10000z,

\ Y =Te+ 1,

where x = col (z1(t), ..., (1)) and & = col (&1(t), ..., T¢(t)) are vector-functions of state and
velocity of MD state change, respectively, xo = col(0, ...,0), u(t), y(t) are vector-functions
of the measured and observed signals of measuring device. On time interval [0, 7], taking
into account the obtained value p = 0, we define the set of admissible measurements

0,08

/14 (@)

0

2
dt < d = 211,6097.

M-

I
=)

q

Let us consider the case when the resonance interference acts only at the output of MD.
The interference frequency w = 5000 is known, therefore, n = a,, sin 5000¢. Fig. 2. shows the
observations Yy(t), obtained during the experiment, as well as the optimal measurement
vt, obtained as a result of the computational experiment.
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Fig. 2. Results of computational experiment for the case when a resonance interference acts at
MD output with a given resonance frequency

As a result of the computational experiment, we find that the amplitude of the
resonance interference is n = 0,030151 sin 5000¢. Also, we obtain an approximate solution
to the problem of optimal dynamic measurement (ODM)

vl = 0,156386711672626 sin(2r - 6.25¢) + 0, 247407484951549 sin(2r - 12, 5¢)+

+0, 258215058876576 sin (27 - 18, 75t) + 0, 217172530953783 sin (27 - 25¢)+
+0, 159416960961203 sin(27 - 31, 25¢) + 0, 106420289628521 sin (27 - 37, 5t)+
+0, 0657668934971499 sin(27 - 43, 75t) 4 0, 0374662930570334 sin(27 - 50t)+
+0, 0189026694461611 sin(27 - 56, 25¢t) 4 0,00722447810984459 sin (27 - 62, 5t)+
+0,000141998282577822 sin(27 - 68, 75t) — 0,00397622330210702 sin (27 - 75t)—
—0,00622392263810763 sin(27 - 81, 25t) — 0,00731276449005634 sin (27 - 87, 5t)—
—0,00769624688641762 sin(27 - 93, 75t) — 0,00766147606400266 sin (27 - 100t)—
—0,0073875884086711 sin(27 - 106, 25t) — 0,00698658726010777 sin(27 - 112, 5t)—
—0,00652670863981444 sin (27 - 118, 75t) — 0,00604985771367458 sin (27 - 125¢)—
—0,00558016109398793 sin(27 - 131, 25¢) — 0,00513175948284598 sin (27 - 137, 5t)—
—0,0047114664538241 sin (27 - 143, 75t) — 0,00432264179436352 sin (27 - 150t)—
—0,00396554753897888 sin (27 - 156, 25t) — 0,00363959261079678 sin (27 - 162, 5t)—
—0,00334280694898749 sin (27 - 168.75t) — 0,00307337823849602 sin (27 - 175¢)—
—0,00282880861797621 sin (27 - 181, 25t) — 0,00260712169018823 sin (27 - 187, 5t)—

2017, vol. 4, no. 2 19



Yu. V. Khudyakov

—0,0024059271302477 sin(27 - 193, 75t) — 0,00222345803520028 sin (27 - 200¢).

Let us compare the exact solution to the optimal dynamic measurement problem v(t)
(which is known due to the model example) and the approximate solution v (t) (Fig. 3).
It is obvious that the approximate solution is quite exact, despite the number of terms in
the representation by a trigonometric polynomial is small.

—0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Fig. 3. Approximate and exact solutions to ODM problem of Example 1

Fig. 4 shows a graph of the difference between the exact and approximate solutions.
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Fig. 4. Difference between the exact and approximate solutions to ODM problem of Example 1
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Note that maz|vi(t) — v(t)| = 0.831234. If we increase the number of terms in the
trigonometric polynomial to 150, then the error will decrease to 0.0001, however, the

calculation speed will be seriously reduced.
Let us consider the same example with other information about the measured process.

Thus, on three intervals [0, 7], [71, 72| and |7, 73], where 71 = 0,004, 7» = 0,014 and
73 = 0,04, the restrictions for the set of admissible measurements are specified. Represent

them in the following way:

1
3 / et (et )H dt < dy = 123,0066,
q=0 0

1 0,014

3 / Hui(” ( o, )H dt < dy = 124, 6636,
7=0q o4

Z / et (et )H dt < dy = 38,9579,

7=00 014

For this set of admissible measurements, we obtain another solution. Fig. 5 shows the
graphs of the obtained solutions to the following two problems of the optimal dynamic
measurement: vy* with three conditions for the set of admissible measurements, vf with
one condition for the set of admissible measurements.
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Fig. 5. Results of the computational experiment, when the set of admissible measurements is
defined more exactly
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An approximate solution to the optimal dynamic measurement problem with three
conditions for the set of admissible measurements has the form:

ve* = 0, 133946822595132 sin(27 - 6.25t) + 0, 227106835731783 sin(27 - 12, 5¢)+

+0, 260308519624985 sin (27 - 18, 75t) + 0, 240676528880669 sin (27 - 25¢)+
+0, 190163561862987 sin (27 - 31, 25¢) + 0, 131037350098669 sin (27 - 37, 5t )+
+0,0779306975310919 sin (27 - 43, 75t) + 0, 0370821746285821 sin (27 - 50t)+
+0,00903851547967552 sin(27 - 56, 25¢) — 0, 0083565680358572 sin (27 - 62, 5t)—
—0,0179590971351134 sin(27 - 68, 75t) — 0,0223438228938383 sin (27 - 75t)—
—0,0234841874170562 sin (27 - 81, 25¢t) — 0, 0227560650768984 sin (27 - 87, 5t)—
—0,0210574137313625 sin(27 - 93, 75t) — 0,0189433454169347 sin (27 - 100t)—
—0,0167390007829702 sin(27 - 106, 25t) — 0,0146224962412895 sin (27 - 112, 5t)—
—0,0126816149042001 sin(27 - 118, 75t) — 0,0109507751280247 sin (27 - 125t)—
—0,00943430829036674 sin(27 - 131, 25¢) — 0,00812069903659914 sin (27 - 137, 5¢)—
—0,00699104125599831 sin (27 - 143, 75t) — 0,00602389649627148 sin (27 - 150¢)—
—0,005197951166799 sin (27 - 156, 25t) — 0,00449336725212877 sin (27 - 162, 5t)—
—0,00389236652034175 sin(27 - 168.75t) — 0,00337939039194787 sin(27 - 175t)—
—0,00294102762136243 sin(27 - 181, 25t) — 0,00256583498378781 sin (27 - 187, 5t)—
—0,00224411078915205 sin (27 - 193, 75t) — 0,00196766549856338 sin (27 - 200¢).

Note that the solutions obtained for different sets of admissible measurements
correspond to different models of optimal measurement, in spite of the fact that the
observations made on the same measuring device are identical. A well-known example
by Edward H. Adelson (Fig. 6) shows the influence of information about the lighting of
object on the result of color observation. Let us measure the color of sections A and B
under the lighting conditions shown in Fig. 6, using the measurement methods without
taking into account the difference in the lighting of the sections. Then, the device will
show the same measurement result. In our case, it is one of the variants to construct a
model of color measurement. However, if in the model we add the conditions of lighting
of the sections in the set of permissible measurements as a priori information about the
object, then we get another model for measuring the color of sections. With this additional
information, the measuring device will show the true, i.e. different, colors of sections A
and B. Note that a human eye conducts exactly this "measurement"of the sections colors.
Taking into account the lighting "automatically", the eye correctly determine the colors
of sections as different. However, if the eye, as a measuring device, has no this information
(about the nature of the object and its lighting), then the eye correctly determines the
colors of sections as the same, working under the conditions of the first model, which is
less complete than the second one.
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Edward H. Adelson

Fig. 6. Checkershadow Illusion [http://persci.mit.edu/gallery/checkershadow]

Therefore, the existence of an adequate mathematical model of measuring device does

not guarantee the adequacy of the mathematical model of optimal measurement without
sufficient a priori information about the measured process, reflected in the set of admissible
measurements.
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OB AJEKBATHOCTU MATEMATNYECKON MOJAEJIN
OIITUMAJIBHOI'O /INTHAMWYECKOI'O USMEPEHW {1

0. B. Xydaxos

B crarbe npeyIozKeH IOIX0 1 IIOBBIIEHNS aJeKBATHOCTH MATEMATHIECKON MOJE/IH OIl-
TUMAJILHOIO JMHAMUYECKOTO M3MEPEeHHsI Ha OCHOBE IIOJIyY9eHUsl JONOJHUTENbLHONH HHQOP-
Manuu 06 M3MEpPSieMOM IPOIEeCCe, MPEACTABIAEMOI MHOYKECTBOM JOIYCTUMBIX N3MEPEHNUIA.
BriepBble MHOYKECTBO JIOIYCTHMBIX U3MEPEHHI PACCMATPUBACTCA KAK IIE€PECeYeHIe BBITYK-
JIBIX MHOXKECTB, KarKJO€ M3 KOTOPBIX XapaKTEPH3yeT M3MEpSAEMBIil IPOIEece Ha 3aJJaHHOM
BPEMEHHOM IIPOMEXKYTKE HJIU €ro 4acTh. Mojeab ONTUMAJBbHBIX JUHAMAYECKAX HU3MEpe-
HUI1 O3BOJISIET YUCAEHHO BOCCTAHAB/IMBATEL JUMHAMUYECKHM UCKAYKeHHBIN CUTHAJ KaK pere-
HUE 331291 ONTUMAJIBHOTO yIpasenus. MoJesb OonTUMAaIbHBIX JIMHAMUIECKIX U3MEPEeHUit
COIIEPKUT CJIEJYIOIIUE JIEMEHTHI: 1) CUCTEMY JICOHTHEBCKOI'O THUIIA, MOAEIUPYIOILYIO U3~
MmepuresbHoe yerpoiicrBo (Y); 2) naganbuoe yciosue IIloyonrepa—Cunoposa, 3ajaoriee
HAYAJIbHOE COCTOSIHUE U3MEPUTEJILHOIO yCTPOHCTBa; 3) (DYHKIMOHAJ KAYeCTBa, CMBICI KO-
TOpOFO, IIpG)KLLe BCero, 3akKJ/irodaeTcd B JOCTU2KEHUU 6JII/I3OCTI/I peaﬂbeIX n BI/IpTyaﬂbeIX
u3MepeHnii; 4) Kpurepuil ONTUMAIBHOCTH — IIOMCK MUHAMAJIBHOIO 3HaYeHUs (DyHKIMOHA-
JIa KA9eCTBA M ONTHUMAJILHOIO U3MEDPEHHUs, [IPU KOTOPOM OH JOCTHIAeTCs; 5) MHOMKECTBO
JIOITyCTUMBIX ONTHMAJBHBIX U3MEPEHU, CPei KOTOPBIX W HAXOJUTCS ONTHMAJIBHOE JMHA-
MUYECKOE U3MEpEeHne. B cTaThbe IMpeiaraloTcs N3MEHEHUS B YUCACHHOM aJTOPUTME, PEI-
JIO?KEHHOM aBTOPOM DPaHee ¢ y4eTOM 3HAYMMOCTH MMeomeiica nHMOPMAIME 0 MHOXKECTBE
JIOIyCTUMBIX m3MepeHuii. [IpejicrapiieHbl pe3yibTaThl BHIYUCIUTEILHBIX SKCIEPUMEHTOB.

Kamouesvie ca06a: cucmema ACORMbEGCK020 MUNGA; MEOPUA ONMUMANLHBIL OUHAMUYE-

CRUIT usmepeHmZ; onmumanvroe YnpasAeHUE;, MHONHCECTNEO aonycmwvzmai U()‘,/\/Lepe?-{,uﬁ.
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