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The article considers the start control and the �nal observation of solutions to the

Showalter � Sidorov problem for the mathematical model of an I-beam deformation. We

construct the su�cient conditions for the existence of the start control and the �nal

observation by weak generalized solutions of the considered model with the initial Showalter

� Sidorov condition. Based on the theoretical results, we construct the algorithm of the

numerical method to solve the problem of start control and �nal observation for the model

of an I-beam deformation. The results of computational experiments are presented.
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Introduction

Let Ω ⊂ Rn be a bounded domain with a boundary ∂Ω of class C∞. In the cylinder
Ω× R+ consider the generalized Ho� equation

(−λ−∆)xt + α0x+ α1x
3 + α2x

5 + ...+ αk−1x
2k−1 + αkx

2k+1 = y (1)

with the Dirichlet condition

x(s, t) = 0, (s, t) ∈ ∂Ω× R+ (2)

and the Showalter � Sidorov condition

(λ+∆)(x(s, 0)− u(s)) = 0, s ∈ Ω. (3)

The equation (1) simulates an I-beam buckling dynamics. The function x = x(s, t)
shows the deviation of the beam from the equilibrium position. The parameter λ ∈ R
characterizes a load, and the parameters αi ∈ R+ (i = 0, ..., k) describe properties of the
beam material, y = y(s, t) is an external (side, in the case n = 1) in�uence. The equation
(1) was obtained by N. J. Ho� [1] for n = 1. Many researches consider the Ho� equation
(1) in various aspects. For example, the morphology of phase space for the equation (1) is
investigated in [2], the Ho� equation on graphs is considered in [3, 4], the optimal control
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problem for this equation is investigated in [5], and also the Cauchy problem for the Ho�
equation is considered on manifold in [6].

The equation (1) and the condition (2) are model of deformation of an I-beam under
constant load. The initial-boundary problem (2), (3) for the equation (1) in the specially
constructed functional Banach spaces is reduced to the Showalter � Sidorov problem

L(x(0)− u) = 0 (4)

for the abstract semilinear equation

Lẋ+M(x) = y, kerL ̸= {0}. (5)

Our purpose is to investigate the start control and �nal observation

J(x(T ), u) → inf, u ∈ Uad (6)

by weak generalized solutions of the problem (4), (5). Here J(x(T ), u) is a specially
constructed target functional; u ∈ Uad, and Uad is a closed and convex set in the space
of controls U. The problem of start control and �nal observation simulates the situation
when the moment of result observation is separated in time from the start in�uence, i.e.
control. The problem (1)− (3), (6) describes process to �nd the initial curvature u(s) of
I-beam such that the I-beam takes the required form x(s, T ) under the constant load λ
during the time T . If the equation of state is nonlinear, then the �nding the start control is
di�cult. One of the approaches to solve this problem is the decomposition method [7, 11].
This method allows to linearize the initial equation and to transfer the phenomenon of
nonlinearity to the functional. Therefore, the numerical scheme to �nd the approximate
solution to the problem of start control and �nal observation is simpli�ed.

Most of known physical processes are controllable. Di�erent factors can in�uence
on the control. The external in�uence on the process is very important. Therefore, the
investigation of the control problems has the practical nature. In order to obtain the
optimal control law, the mathematical, algorithmic and software tools are developed. For
the �rst time, the linear problem of optimal control for the linear Sobolev type equation
with the Cauchy condition was investigated by G. A. Sviridyuk and A. A. Efremov [8].
Further, these results are developed in [5, 9, 10]. The article [12] presents the su�cient
conditions for the solvability of the problem of start control and �nal observation for an
abstract quasilinear Sobolev-type equation in the weak generalized sense.

The paper is organized as follows. The �rst paragraph presents a reduction of the
problem (1)− (3) to the abstract problem (4), (5). To this end, we construct the function
spaces and show the basic properties of the operators, establish an existence of the
weak generalized solution to the problem (1) − (3). Also, we study the problem of start
control and �nal observation (1) − (3), (6) and present the su�cient conditions for the
existence of solution to the considered problem. In order to study the question of existence
and uniqueness of the weak generalized solution to the problem (1) − (3), we use the
monotonicity method and the Galerkin method. Our results are similar to [13 − 15]. In
the second paragraph we present the algorithm of numerical method to �nd the start
control and �nal observation to the model of an I-beam deformation, based on the method
of decomposition, the Ritz method and the penalty method. The results of computation
experiments are given.
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1. Analytical Study of the Problem of Start Control
and Final Observation

Let us consider the functional spaces N =
◦

W 1
2 (Ω), B = L2k+2(Ω), H =L2(Ω), de�ned

in the domain Ω. Let B∗, N∗ be dual spaces to B and N, relative to the scalar product
< ·, · > in H, respectively. According to the Sobolev theorem, if k = 1 for n = 4 or k = 1, 2
for n = 3 or k ∈ N for n = 1, 2, there exist dense and continuous embeddings

N ↪→ B ↪→ H ↪→ B∗ ↪→ N∗, (7)

and the embedding N ↪→ H is compact. De�ne operators

< Lx, ζ >=

∫
Ω

(∇x · ∇ζ − λxζ)ds, x, ζ ∈ N;

< M(x), ζ >=

∫
Ω

(
α0xζ + α1x

3ζ + α2x
5ζ + ...+ αk−1x

2k−1ζ + αkx
2k+1ζ

)
ds, x, ζ ∈ B.

Let {φk} be a sequence of eigenfunctions of the homogeneous Dirichlet problem for the
operator (−∆) in the domain Ω and {λk} be the corresponding sequence of eigenvalues,
numbered in non-decreasing order taking into account their multiplicity.

De�nition 1. An operatorM : B → B∗ is called p-coercive, if ∃CM , CM > 0, and ∃p ≥ 2
such that ⟨M(x), x⟩ ≥ CM∥x∥p and ∥M(x)∥∗ ≤ CM∥x∥p−1, ∀x ∈ B.

De�nition 2. Let x, y be any elements from B. An operator M : B → B∗ is called
s-monotonous, if M ∈ Cr(B;B∗), r ≥ 1, and⟨

M ′
ζx, x

⟩
> 0, x, ζ ̸= 0.

Lemma 1. [4] (i) For all λ ≤ λ1 the operator L ∈ L (N,N∗) is self-adjoint, Fredholm
and non-negative de�ned, and an orthonormal family {φk} form basis in N.
(ii) For any αi ∈ R+, i = 0, .., k, the operator M ∈ C∞(B,B∗) is s-monotonous and
(2k + 2)-coercive.

Therefore, the problem (1)− (3) is reduced to the Showalter � Sidorov problem (4) for
the semilinear equation (5).

Let us search for the approximate solutions to the problem (1) � (3) in the form

xm(s, t) =
m∑
i=1

ai(t)φi(s), m > dim ker(−λ−∆), (8)

where the coe�cients ai = ai(t), i = 1, ...,m, are determined by the system of equations∫
Ω

(
(−λ−∆)

dxm

dt
+ α0xm + α1x

3
m + α2x

5
m + . . .+ αk−1x

2k−1
m + αkx

2k+1
m

)
φi ds =

=

∫
Ω

yφi ds, i = 1, . . . ,m (9)
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and the conditions∫
Ω

(
(−λ−∆)(xm(s, 0)− u(s))

)
φi(s) ds = 0, i = 1, ..,m. (10)

Construct the set

coim(−λ−∆) = {x ∈ N : < x, φ >= 0 ∀φ ∈ ker L \ {0}}

and consider the space

X = {x | x ∈ L∞(0, T ; coim(−λ−∆)) ∩ L2k+2(0, T ;L2k+2(Ω))}.

De�nition 3. A vector-function x ∈ X for T ∈ R+ is called a weak generalized solution
to the Showalter � Sidorov problem (1)− (3), if it satis�es

T∫
0

< L
dx

dt
+M(x), ζ > φ(t) dt =

T∫
0

< y, ζ > φ(t) dt, ζ ∈ N, φ ∈ L2(0, T ),

< L(x(0)− u), ζ >= 0 for almost all t ∈ (0, T ).

Suppose that Tm ∈ R+, Tm = Tm(x0), Nm = span{φ1, φ2, ..., φm}.

Lemma 2. [17] For every u ∈ N and m > dimkerL there exists a unique solution xm ∈
C1(0, T ;Nm) to the problem (9), (10).

Theorem 1. [17] Let k = 1 for n = 4 or k = 1, 2 for n = 3 or k ∈ N for

n = 1, 2 and λ ≤ λ1, αi ∈ R+, i = 0, .., k, T ∈ R+. Then for every u ∈
◦

W 1
2 (Ω) and

y ∈ L 2k+2
2k+1

(0, T ;L 2k+2
2k+1

(Ω)) there exists a unique weak generalized solution x ∈ X to the

problem (1)− (3).

Construct the space of controls U = N and let Uad ⊂ U be non-empty, closed, convex
set. Consider the problem of start control and �nal observation (1) − (3), (6), where the
target functional is de�ned in the form:

J(x(T ), u) = ϑ∥x(T )− xf∥2k+2
B + (1− ϑ)∥u∥2N, ϑ ∈ (0, 1). (11)

Here xf = xf (s) is the desired state of the system. It is necessary to achieve this state
with the minimal initial in�uence during the time t = T .

De�nition 4. A pair (x̂(T ), û) ∈ N ×Uad is called a solution to the problem (1)−(3), (6),
if

J(x̂(T ), û) = inf
(x(T ),u)

J(x(T ), u),

where the pairs (x̂, û) ∈ X× Uad satisfy to the problem (1)− (3). The vector-function û is
said to be the start control of the problem (1)− (3), (6).
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Remark 1. A pair (x(T ), u) ∈ N × Uad is called an admissible element of the problem
(1)−(3), (6), where (x, u) ∈ X×Uad is a weak generalized solution to the problem (1)−(3)
such that

J(x(T ), u) < +∞.

According to the Theorem 1, if the set Uad ̸= ∅, then for every u ∈ Uad their exists a
unique solution x = x(y, u) to the problem (1)− (3). Hence, the set of admissible elements
of the problem is nonempty.

Theorem 2. Let k = 1 for n = 4 or k = 1, 2 for n = 3 or k ∈ N for n = 1, 2 and λ ≤ λ1,
αi ∈ R+, i = 0, .., k, T ∈ R+. Then for every y ∈ L 2k+2

2k+1
(0, T ;L 2k+2

2k+1
(Ω)) their exists the

solution (x̂(T ), û) to the problem (1)− (3), (6).

Proof. The Theorem 1 provides that the operator

(
L
d

dt
+M

)
: X → U is

homeomorphism. Then the functional (11) can be represented in the form

J(x(T ), u) = J(u) = ϑ∥x(u)− xf∥2k+2
B + (1− ϑ)∥u∥2N, ϑ ∈ (0, 1). (12)

Let {um} ⊂ Uad be a sequence such that

lim
m→∞

J(um) = inf
u∈Uad

J(u),

then (12) provides that
∥um∥N ≤ const, ∀m ∈ N. (13)

From (13) (move to a subsequence if necessary) we choose a weakly converging sequence
um ⇀ û in N . According to the Mazur theorem, the point û ∈ Uad. Let xm = x(um) be a
weakly generalized solution to the problem

d

dt
Lxm +M(xm) = y, (14)

L(xm(0)− um) = 0. (15)

Introduce the norm |x|2 = < Lx, x > in coim L, multiply the equation (14) by xm(t) and
integrate on (0, t):

⟨Lxm(t), xm(t)⟩+ 2
t∫
0

⟨M(xm), xm⟩ dτ = 2
t∫
0

⟨y(τ), xm(τ)⟩ dτ + ⟨Lxm(0), xm(0)⟩ ≤

≤ (2k+1) ε
2k+2
2k+1

2k+2
∥y∥

2k+2
2k+1

L 2k+2
2k+1

(0,T ;B∗) +
1

(2k + 2) ε2k+2
∥xm∥2k+2

L2k+2(0,T ;B) + |um|2.

The operator M is (2k + 2)-coercivity. Then, for every arbitrary constant ε such that

2 CM − 1

(2k + 2) ε2k+2
> 0 we obtain

|xm(t)|2 + C1

t∫
0

∥xm(τ)∥2k+2
B dτ ≤ C2

T∫
0

∥y(τ)∥
2k+2
2k+1

B∗ dτ + |um|2, Ci = const > 0, i = 1, 2.
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Re�exivity of the space L2k+2(0, T ;B) provides the existence of weak limits

xm ⇀ x̂ ∗-weakly in L∞(0, T ; coim L);

xm ⇀ x̂ weakly in L2k+2(0, T ;B).

Since the operator M is (2k + 2)-coercive, we get

T∫
0

⟨M(xm), xm⟩ dτ ≤
T∫
0

∥M(xm)∥B∗∥xm∥B dτ ≤ CM
T∫
0

∥xm∥2k+1
B ∥xm∥B dτ,

therefore,M(xm) are limited in L 2k+2
2k+1

(0, T ;B∗). Since the space L 2k+2
2k+1

(0, T ;B∗) is re�exive,

M(xm) ⇀ µ is weak in L 2k+2
2k+1

(0, T ;B∗).

Due to the compact embeddingN ↪→ H, the sequenceM(xm) → µ in the space L2(0, T ;H).
Then by the uniqueness of the limit we get

µ = M(x̂).

Turn to the limit in the state equation (14) and condition (15). We get

L
dx̂

dt
+M(x̂) = y, L(x̂(0)− û) = 0.

Therefore, x̂ = x̂(û) and lim inf J(um) ≥ J(û). Consequently, û is the start control for the
problem (1)− (3), (6).

2
Further, we consider the operator M as a sum of the operators M1 and M2, where

< M1x, ζ >= α0

∫
Ω

xζ ds, x, ζ ∈ B,

< M2(x), ζ >=

∫
Ω

(
α1x

3ζ + α2x
5ζ + ...+ αk−1x

2k−1ζ + αkx
2k+1ζ

)
ds, x, ζ ∈ B.

In order to linearize the equation (11), we need to introduce and to �nd an additional
vector-function v(s, t) = x(s, t). To this end, we de�ne x = x(s, t) as the solution to the
linear problem with respect to the vector-function x

L
.
x +M1x+M2(v) = y, (16)

L(x(0)− u(s)) = 0. (17)

Theorem 3. Let k = 1 for n = 4 or k = 1, 2 for n = 3 or k ∈ N for n = 1, 2 and λ ≤ λ1,

αi ∈ R+, i = 0, .., k, T ∈ R+. Then for every u ∈
◦

W 1
2 (Ω), y ∈ L 2k+2

2k+1
(0, T ;L 2k+2

2k+1
(Ω)) and

v ∈ L2k+2(0, T, L2k+2(Ω)) there exists a weak generalized solution to the problem (16), (17).

Proof. The proof is analogous to the proof of Theorem 1, if we set
ỹ = y −M2(v) ∈ L 2k+2

2k+1
(0, T ;L 2k+2

2k+1
(Ω)). �
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The problem of start control and �nal observation (4)−(6) is equivalent to the problem

L
.
x +M1x+M2(v) = y, x(u, v) = v, (18)

L(x(0)− u(s)) = 0, u ∈ Uad, (19)

Jθ(x(T ), v(T ), u) = θ · ϑ∥x(T )− xf∥2k+2
B +

+ (1− θ) · ϑ∥v(T )− xf∥2k+2
B + (1− ϑ)∥u∥2N → inf, θ, ϑ ∈ (0, 1). (20)

De�nition 5. A triple (x̂(T ), v̂(T ), û) ∈ N×N× Uad is called a solution to the problem
of start control and �nal observation (18)− (20), if

Jθ(x̂(T ), v̂(T ), û) = inf
(x(T ),v(T ),u)

Jθ(x(T ), v(T ), u),

where the triple (x, v, u) ∈ X × X × Uad satis�es (18), (19) in the weak generalized sense.
The vector-valued function û is called the start control of the problem (18)− (20).

Theorem 4. Let k = 1 for n = 4 or k = 1, 2 for n = 3 or k ∈ N for n = 1, 2 and λ ≤ λ1,
αi ∈ R+, i = 0, .., k, T ∈ R+. Then for every y ∈ L 2k+2

2k+1
(0, T,B∗) there exists a solution

to the problem (18)− (20).

Proof. Let {um} ∈ U be a minimizing sequence, then (20) provides that

∥um∥2N ≤ const, ∀m ∈ N.

Let us express the weakly convergent sequence um ⇀ û in N. According to the Mazur
theorem, û ∈ Uad. Let xm = x(um) be a weakly generalized solution of the equation

Lẋm +M1xm +M2(vm) = y, xm = vm, (21)

L(xm(0)− um) = 0. (22)

Because of the reasoning of Theorem 2

M1xm ∈ L2(0, T ;N
∗)

M2(vm) ∈ L 2k+2
2k+1

(0, T ;B∗).

It follows from (21) that ẋm ∈ L2(0, T ; coim L) ∩ L2k+2(0, T ;B). We can express the
subsequence denoted by {xm}, {vm}, {um} :

xm ⇀ x̂ ∗-weakly in L∞(0, T ; coim L),

vm ⇀ v̂ ∗-weakly in L∞(0, T ; coim L),

d

dt
Lxm ⇀

d

dt
Lx̂ weakly in L2(0, T ; im L),

M1xm ⇀ M1x̂ weakly in L2(0, T ;N
∗),

M2(vm) ⇀ ω weakly in L 2k+2
2k+1

(0, T ;B∗),
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By anology with the proof of Theorem 1, we obtain ω = M2(v̂). Turn to the limit in the
state equation (21), (22). Therefore, we get

L
.

x̂ +M1x̂+M2(v̂) = y, x̂ = v̂

L(x̂(0)− û) = 0.

Therefore, x̂ = x̂(v̂, û) and lim inf J(um, vm) ≥ J(û, v̂). Consequently, (x̂(T ), v̂(T ), û) is
the solution to the problem (18)− (20).

2

2. Algorithm of the Numerical Method to Find the Start Control
and Final Observation for the Model of an I-Beam Deformation

Based on the theoretical results obtained in the previous paragraphs, we develop an
algorithm to �nd the approximate solution to the problem of start control and �nal
observation for the mathematical model of an I-beam deformation on the basis of the
modi�ed decomposition method, the Galerkin method and the Ritz method. Let σ be a
spectrum of the operator (−∆) with the homogeneous Dirichlet condition, and {λk} be
a set of the eigenvalues numbered in non-decreasing order and {φk} be a family of the
corresponding eigenfunctions, which are orthonormalized relatively to the scalar product
< ·, · > in L2(Ω). Using the Galerkin method, we search for the approximate solution in
the form

x̃(s, t) = xm(s, t) =
m∑
k=1

ak(t)φk(s), (23)

where m ∈ N. In order to take into account the e�ects of the degenerate equation, it is
necessary to take m such that m > l, where l = dimker(−λ−∆). Represent the right side
of the equation (1) as

ỹ(s, t) =
m∑
k=1

yk(t)φk(s). (24)

Also, present the initial function u(s) in the form

ũ =
m∑
k=1

ukφk(s). (25)

Decompose the equation (1) (for k = 1). In the equation (1), introduce an unknown
function v(s, t) such that

(−λ−∆)xt + α0x+ α1v
3 = y, (26)

x(s, t) = v(s, t). (27)

Because of the equality (27) the quality functionality (4) is equivalent to the functional

J(x, u) = Jθ(x, u, v) = θ · β∥x(T )− xf∥4L4(Ω)+

+ (1− θ) · β∥v(T )− xf∥4L4(Ω) + (1− β) · ∥u∥2◦
W 1

2 (Ω)
, β, θ ∈ (0, 1). (28)
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Further, we search for an approximate solution to the control problem (1) − (3), (6)
using the penalty method described in [11]. Consider the equivalent control problem, where
the formula (28) for the approximate solution is achieved by introducing a new functional
in the form

J(x, u) = Jθ(x, u, v) = θ · β∥x(T )− xf∥2L4(Ω) + (1− θ) · β∥v(T )− xf∥4L4(Ω)+

+ (1− β) · ∥u∥2◦
W 1

2 (Ω)
+ rε∥x− v∥4L4(0,T ;L4(Ω)), (29)

where the penalty parameter rε → +∞ for ε → 0+.
Represent ṽ(s, t) in the form of the sum

ṽ(s, t) = ṽm(s, t) =
m∑
k=1

vk(t)φk(s). (30)

According to the Ritz method, we search for vk(t), k = 1, ..,m, in the form

vk(t) = vk(t, N) =
N∑
j=0

bjt
n, (31)

under the condition that vk(0, N) = xk(0) = uk, k = 1, ..,m. Substitute (23)− (25), (30)
in the equation (26) and multiply the resulting equation on the eigenfunctions φk(s), k =
1, ..,m scalarly in L2(Ω). We obtain the system of equations

< (−λ−∆)x̃t, φk > + < α0x̃, φk > + < α1ṽ
3, φk >=< ỹ, φk > (32)

with the Showalter � Sidorov conditions

< (−λ−∆)(x(s, 0)− u), φk >= 0. (33)

Solve the problem (32), (33) relatively the unknown ak(t). Note that depending on
parameter λ, equations in the system can be either di�erential or algebraic. Consider
these cases in more detailes:

• If λ /∈ σ, then all equations of the system (32) is ordinary di�erential equations of the
�rst order. In order to solve this system relatively ak(t), k = 1, ...,m, we �ndm initial
conditions ak(0) = uk, k = 1, ..,m, from the initial conditions (33). Further, we solve
the obtained system of the linear di�erential equations of the �rst order with the
initial conditions, and express unknown coe�cients ak(t) of the approximate solution
x̃(s, t) by vk(t), uk, k = 1, ..,m.

• If λ ∈ σ, then the �rst equation is algebraic, and the rest ones are di�erential.
Separately, consider the system of di�erential equations having �rst order and the
algebraic equation. Using the Showalter � Sidorov conditions, we �nd (m − 1)
initial conditions. Solve the system of the algebraic and di�erential equations, and
express the unknown coe�cients ak(t), k = 2, ..,m of the approximate solution
x̃(s, t) by vk(t), and uk, k = 1, ..,m. From the algebraic equation we �nd a1(t) and
u1 = a1(0). Turn to search for the minimum of functional. Substitute the obtained
decompositions in the functional.
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We select coe�cients bj such that the functions vk(t, N) and uk give the minimum
of the functional (29). Therefore, the problem is reduced to search for an extremum for
function of several variables.

Example 1. The problem is to �nd an approximate solution to the problem of start
control and �nal observation of the problem (2), (3), (6), (28) for

λ = −2, α0 = 5, α1 = 4,

Ω = (0, π), T =
2

5
, θ =

21

55
, β =

999

1000
, ε =

1

200
, m = 2, N = 3,

xd =

√
2

3
√
π

sin(s), y = 0.

On the basis of the developed numerical method to �nd the start control and �nal
observation, we turn to an equivalent problem of the start control and �nal observation:

J(x(T ), v(T ), u) =
21

55
· 999

1000

∫ π

0

∣∣∣∣x(s, T )− √
2

3
√
π

sin s

∣∣∣∣4ds+
+

(
1− 21

55

)
· 999

1000

∫ π

0

∣∣∣∣v(s, T )− √
2

3
√
π

sin s

∣∣∣∣4ds+ (31)

+

(
1− 999

1000

)∫ π

0

[∣∣∣∣u(s)∣∣∣∣2+∣∣∣∣u′(s)

∣∣∣∣2
]
ds+ 200

∫ π

0

∫ T

0

∣∣∣∣x(s, t)− v(s, t)

∣∣∣∣4ds dt → inf

solutions by the solutions to the Showalter � Sidorov � Dirichlet problem (2), (3) for the
equation

2x′
t − x′′′

tss + 5x+ 4v3 = 0.

Consider the Sturm � Liouville problem

−X ′′(x) = λX(x), X(0) = X(π) = 0. (32)

The eigenfunctions and eigenvalues of the problem (32) have the form:

φk(s) =

√
2

π
sin ks, λk = k2, k = 1, 2, . . .

On the basis of the Galerkin projective method, the approximate solution
x̃(s, t), ṽ(s, t), ũ(s) to the problem is represented as

x̃(s, t) =
m∑
k=1

xk(t)φk(s), ṽ(s, t) =
m∑
k=1

vk(t)φk(s), ũ(s) =
m∑
k=1

ukφk(s).

The results of the program "Numerical study of the problem of start control and �nal
observation for the model of an I-beam deformation" calculations are control coe�cients
such that the value of the functional J = 0.00000285. Graphs of approximate solution to
the problem (2), (3), (6), (28) are shown in Fig. 1.
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a) funtion x̃(s, t) b) funtion ṽ(s, t)

c) funtion ũ(s)

Fig. 1. The approximate solution x̃(s, t), ṽ(s, t), ũ(s) to the problem (2), (3), (6), (26)

In order to compare the obtained functions x̃(s, t), ṽ(s, t) and the required state

xd(s), we construct the graph of these functions at the moment t =
2

5
(see Fig. 2). The

di�erence between the required functions x̃(s, t) and ṽ(s, t) is small:

∆ =

(∫ T

0

(∫ π

0

|x̃(s, t)− ṽ(s, t)|4ds

)
dt

) 1
4

= 0.0000012365046.
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Fig. 2. Function x̃(s, 2
5
), ṽ(s, 2

5
), xd(s), s ∈ (0, π)
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×ÈÑËÅÍÍÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ ÑÒÀÐÒÎÂÎÃÎ
ÓÏÐÀÂËÅÍÈß È ÔÈÍÀËÜÍÎÃÎ ÍÀÁËÞÄÅÍÈß
Â ÌÎÄÅËÈ ÄÅÔÎÐÌÀÖÈÈ ÄÂÓÒÀÂÐÎÂÎÉ ÁÀËÊÈ

Í.A. Ìàíàêîâà, Ê.Â. Âàñþ÷êîâà

Ñòàòüÿ ïîñâÿùåíà èçó÷åíèþ ñòàðòîâîãî óïðàâëåíèÿ è ôèíàëüíîãî íàáëþäåíèÿ ðå-

øåíèìè çàäà÷è Øîóîëòåðà � Ñèäîðîâà äëÿ ìàòåìàòè÷åñêîé ìîäåëè äåôîðìàöèè äâó-

òàâðîâîé áàëêè. Ñòðîÿòñÿ äîñòàòî÷íûå óñëîâèÿ ñóùåñòâîâàíèÿ ñòàðòîâîãî óïðàâëåíèÿ

è ôèíàëüíîãî íàáëþäåíèÿ ñëàáûìè îáîáùåííûìè ðåøåíèÿìè èññëåäóåìîé ìîäåëè ñ

íà÷àëüíûì óñëîâèåì Øîóîëòåðà � Ñèäîðîâà. Íà îñíîâå òåîðåòè÷åñêèõ ðåçóëüòàòîâ

ïîñòðîåí àëãîðèòì ÷èñëåííîãî ìåòîäà íàõîæäåíèÿ ïðèáëèæåííîãî ðåøåíèÿ çàäà÷è

ñòàðòîâîãî óïðàâëåíèÿ è ôèíàëüíîãî íàáëþäåíèÿ èññëåäóåìîé çàäà÷è. Ïðèâîäÿòñÿ

âû÷èñëèòåëüíûå ýêñïåðèìåíòû.

Êëþ÷åâûå ñëîâà: óðàâíåíèÿ ñîáîëåâñêîãî òèïà; çàäà÷à ñòàðòîâîãî óïðàâëåíèÿ è

ôèíàëüíîãî íàáëþäåíèÿ; ìîäåëü äåôîðìàöèè äâóòàâðîâîé áàëêè; ïðîåêöèîííûé ìåòîä

Ãàëåðêèíà; ìåòîä äåêîìïîçèöèè.
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