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The article considers the start control and the final observation of solutions to the
Showalter — Sidorov problem for the mathematical model of an I-beam deformation. We
construct the sufficient conditions for the existence of the start control and the final
observation by weak generalized solutions of the considered model with the initial Showalter
— Sidorov condition. Based on the theoretical results, we construct the algorithm of the
numerical method to solve the problem of start control and final observation for the model
of an I-beam deformation. The results of computational experiments are presented.
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Introduction

Let 2 C R™ be a bounded domain with a boundary 02 of class C**°. In the cylinder
2 x R, consider the generalized Hoff equation

(=X = A)zy + oz + ay2® + aox® + .+ ap_ 127 4 g =y (1)
with the Dirichlet condition
z(s,t) =0, (s,t) € 0 xR, (2)
and the Showalter — Sidorov condition
A+ A)(x(s,0) —u(s)) =0, seQ. (3)

The equation (1) simulates an I-beam buckling dynamics. The function z = x(s,t)
shows the deviation of the beam from the equilibrium position. The parameter A € R
characterizes a load, and the parameters o; € Ry (i = 0, ..., k) describe properties of the
beam material, y = y(s,t) is an external (side, in the case n = 1) influence. The equation
(1) was obtained by N. J. Hoff [1] for n = 1. Many researches consider the Hoff equation
(1) in various aspects. For example, the morphology of phase space for the equation (1) is
investigated in [2], the Hoff equation on graphs is considered in [3, 4], the optimal control
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problem for this equation is investigated in [5], and also the Cauchy problem for the Hoff
equation is considered on manifold in |[6].

The equation (1) and the condition (2) are model of deformation of an I-beam under
constant load. The initial-boundary problem (2), (3) for the equation (1) in the specially
constructed functional Banach spaces is reduced to the Showalter — Sidorov problem

L(z(0) —u) =0 (4)
for the abstract semilinear equation
Li+ M(z) =y, kerL # {0}. (5)
Our purpose is to investigate the start control and final observation
J(x(T),u) = inf, u € Uy (6)

by weak generalized solutions of the problem (4), (5). Here J(z(T'),u) is a specially
constructed target functional; v € .4, and .4 is a closed and convex set in the space
of controls 4. The problem of start control and final observation simulates the situation
when the moment of result observation is separated in time from the start influence, i.e.
control. The problem (1) — (3), (6) describes process to find the initial curvature u(s) of
I-beam such that the I-beam takes the required form z(s,T’) under the constant load A
during the time 7'. If the equation of state is nonlinear, then the finding the start control is
difficult. One of the approaches to solve this problem is the decomposition method [7, 11].
This method allows to linearize the initial equation and to transfer the phenomenon of
nonlinearity to the functional. Therefore, the numerical scheme to find the approximate
solution to the problem of start control and final observation is simplified.

Most of known physical processes are controllable. Different factors can influence
on the control. The external influence on the process is very important. Therefore, the
investigation of the control problems has the practical nature. In order to obtain the
optimal control law, the mathematical, algorithmic and software tools are developed. For
the first time, the linear problem of optimal control for the linear Sobolev type equation
with the Cauchy condition was investigated by G. A. Sviridyuk and A. A. Efremov [8].
Further, these results are developed in [5, 9, 10]. The article [12] presents the sufficient
conditions for the solvability of the problem of start control and final observation for an
abstract quasilinear Sobolev-type equation in the weak generalized sense.

The paper is organized as follows. The first paragraph presents a reduction of the
problem (1) — (3) to the abstract problem (4), (5). To this end, we construct the function
spaces and show the basic properties of the operators, establish an existence of the
weak generalized solution to the problem (1) — (3). Also, we study the problem of start
control and final observation (1) — (3), (6) and present the sufficient conditions for the
existence of solution to the considered problem. In order to study the question of existence
and uniqueness of the weak generalized solution to the problem (1) — (3), we use the
monotonicity method and the Galerkin method. Our results are similar to [13 — 15]. In
the second paragraph we present the algorithm of numerical method to find the start
control and final observation to the model of an I-beam deformation, based on the method
of decomposition, the Ritz method and the penalty method. The results of computation
experiments are given.
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1. Analytical Study of the Problem of Start Control

and Final Observation

Let us consider the functional spaces 91 = W3 (), B = Lop12(Q), H =Lo(Q), defined
in the domain €2. Let 8%, 9* be dual spaces to B and I, relative to the scalar product

< -,- > in H, respectively. According to the Sobolev theorem, if k = 1forn =4ork =1,2
forn =3 or k € N for n = 1, 2, there exist dense and continuous embeddings

N — B — H B — N, (7)

and the embedding 9 — H is compact. Define operators

< Lz,( >= /(Vm V(¢ —Az()ds, x,(€MN;
Q

< M(x),( >= /(aoxC + o3¢+ apr®C + g1+ akxzkHC) ds, x,(€°B.

Let {¢k} be a sequence of eigenfunctions of the homogeneous Dirichlet problem for the
operator (—A) in the domain © and {\;} be the corresponding sequence of eigenvalues,
numbered in non-decreasing order taking into account their multiplicity.

Definition 1. An operator M : B — B* is called p-coercive, if 3CM Cy; > 0, and Ip > 2
such that (M (x),z) > Cyl|z||P and || M ()], < CM|z||P~t, Vo € B.

Definition 2. Let z,y be any elements from 8. An operator M : B — ‘B* is called
s-monotonous, if M € C"(B;B*), r > 1, and

<Méx,x> >0, x,( #0.

Lemma 1. [4] (i) For all A < A\ the operator L € L (N, N*) is self-adjoint, Fredholm
and non-negative defined, and an orthonormal family {¢x} form basis in N.

(ii) For any o; € Ry, i =0, .., k, the operator M € C*(B,B*) is s-monotonous and

(2k + 2)-coercive.

Therefore, the problem (1) — (3) is reduced to the Showalter — Sidorov problem (4) for
the semilinear equation (5).
Let us search for the approximate solutions to the problem (1) — (3) in the form

m

Tpm(s,t) = Zai(t)gpi(s), m > dim ker(—\ — A), (8)

=1

where the coefficients a; = a;(t), i = 1,...,m, are determined by the system of equations

Ay,
/((—)\ - A)% + T + 12+ anx? . a4 akngH) ©0; ds =

:/ygoids, i=1,....,m (9)

Q
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and the conditions

/((—)\ =AY (s, 0) — u(s)))wi(s) ds—0, i=1,.m. (10)

Q

Construct the set
coim(—A—A)={zeMN: <z,p>=0 Vepecker L\ {0}}
and consider the space
X={z|2€ Lo(0,T;coim(—A — A)) N Log42(0, T; Lok12(2)) }.

Definition 3. A vector-function x € X for T € R, is called a weak generalized solution
to the Showalter — Sidorov problem (1) — (3), if it satisfies

T T

/<L2—9§+M(x),c><p(t) dt:/<y, ¢>p(t)dl, CeMN, pe Ly(0,T),

0 0

< L(z(0) —u),{ >=0 for almost all t € (0,T).
Suppose that T, € Ry, T,, = Tn(x0), M™ = span{y1, Y2, ..., om }-

Lemma 2. [17] For every u € M and m > dimker L there exists a unique solution z,, €
CY0,T;M™) to the problem (9), (10).

Theorem 1. [17] Let k = 1 form = 4 or k = 1,2 for n = 3 or k € N for
n=12ad\ <)\, a € R, i=0,.k T ¢cRy. Then for every u € Wy(Q) and
Yy € L%(O,T;L%(Q)) there exists a unique weak generalized solution x € X to the
problem (1) — (3).

Construct the space of controls {f = 91 and let U,; C L be non-empty, closed, convex

set. Consider the problem of start control and final observation (1) — (3), (6), where the
target functional is defined in the form:

J(@(T),uw) = 9||2(T) — aglly™ + (1 = Dulf, @€ (0,1). (11)

Here zy = x4(s) is the desired state of the system. It is necessary to achieve this state
with the minimal initial influence during the time ¢t =T

Definition 4. A pair (2(T), @) € N xWUyq is called a solution to the problem (1)—(3), (6),
if
J(x(T),u) = inf J(x(T),u),
GT) ) = il Ja(T).w
where the pairs (T,1) € X X g satisfy to the problem (1) — (3). The vector-function G is
said to be the start control of the problem (1) — (3), (6).
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Remark 1. A pair (z(7T),u) € M x U4 is called an admissible element of the problem
(1)—(3),(6), where (z,u) € X x ,4 is a weak generalized solution to the problem (1) —(3)
such that

J(x(T),u) < +oo.

According to the Theorem 1, if the set {,q # 0, then for every u € ,q their exists a
unique solution x = z(y, u) to the problem (1) — (3). Hence, the set of admissible elements
of the problem is nonempty.

Theorem 2. Letk=1forn=4o0rk=1,2forn=3o0orkeN forn=1,2and X < Ay,
a € Ry, i =0,..,k, T € R.. Then for every y € L%(O,T; L%(Q)) their exists the
solution (z(T'),u) to the problem (1) — (3), (6).

d
Proof. The Theorem 1 provides that the operator (LaJrM) X — Uis

homeomorphism. Then the functional (11) can be represented in the form
J(@(T),u) = J(u) = Ollo(u) — 25 + (1= D) |Jullf, 0 € (0,1). (12)
Let {u;,} C g be a sequence such that

I Cm) = B, )
then (12) provides that
||tm]||or < const, ¥m € N. (13)

From (13) (move to a subsequence if necessary) we choose a weakly converging sequence
Uy — @ in N . According to the Mazur theorem, the point @ € U,4. Let x,, = x(u,,) be a
weakly generalized solution to the problem

d
%L:Em + M(zp) = v, (14)
L(2,(0) — up) = 0. (15)

Introduce the norm |z|? = < Lz, x > in coim L, multiply the equation (14) by ,,(¢) and
integrate on (0,1):

t t
(Lt (t), 2 (8)) + 2 [ (M (2), 2m) dT =2 [ (y )) dT + (La,(0), 2,(0)) <
0 0
1
(2k+1) g2k+1 52k+1 2k+1 2k+2 2
— 2k+2 H "Lg}zi% 0,7} %* (2k + 2) €2k+2 me“L2k+2(0,T;%) + |'U/m‘ ’

The operator M is (2k + 2)-coercivity. Then, for every arbitrary constant ¢ such that

2 CM — m > (0 we obtain

2k42

dr + |um|?*, C; = const >0, i =1,2.

T
mmﬁ+a/mm|W”TS@/mw
0
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Reflexivity of the space Loy2(0,T;B) provides the existence of weak limits
Ty — T *-weakly in L (0,7 coim L);
Ty — T weakly in Loy (0,7 B).
Since the operator M is (2k + 2)-coercive, we get

T

(M (), @m) dT < fHM Tm) || |2l dr < CMfomH%“IImeas dr,

B*

therefore, M (x,,) are limited in L% (0,7;8*). Since the space L%ﬁ (0,7;B8%) is reflexive,
M (z,,) — pis weak in L%(O,T; B*).
+

Due to the compact embedding 9t < H, the sequence M (z,,) — (& in the space Ly (0, T H).
Then by the uniqueness of the limit we get

p=M(z).
Turn to the limit in the state equation (14) and condition (15). We get

dz . A
Ldt+M()_y’ L(z(0) —a) = 0.

Therefore, & = #(u) and liminf J(u,,) > J(u). Consequently, @ is the start control for the

problem (1) — (3), (6).
O
Further, we consider the operator M as a sum of the operators M; and M, where

< Mz, >= aO/xC ds, x,(€B,
Q

< My(x), ¢ >= /(alx?’g + 2%+ o+ g 2T+ ozkx%“g) ds, x,(€B.

In order to linearize the equation (11), we need to introduce and to find an additional
vector-function v(s,t) = x(s,t). To this end, we define © = z(s,t) as the solution to the
linear problem with respect to the vector-function x

Lz +Mx+ My(v) =y, (16)
L(z(0) —u(s)) = 0. (17)
Theorem 3. Letk=1forn=4o0ork=12forn=3o0orkeN forn=1,2and X < Ay,

a; €R,, 1=0,.,k, T € R,. Then for every u € Wi(Q), y € L2£+2 (0,7, L2£+2 (Q)) and
k41 k41
U € Loj12(0, T, Loy+2(S2)) there exists a weak generalized solution to the problem (16), (17).

Proof. The proof is analogous to the proof of Theorem 1, if we set
gj:y—MQ( ) €L2k+2(0 T: L2k+2(Q)) ]

2k+1
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The problem of start control and final observation (4)—(6) is equivalent to the problem
Lz +Mxz + My(v) =y, z(u,v) = v, (18)
L(z(0) —u(s)) =0, u € Ugg, (19)

Jo((T),v(T),u) = 0 I||2(T) — a5 +
+(1=0) - Oo(T) = afll3™ + (1 =) |ully —inf, 6,9 €(0,1). (20)

Definition 5. A triple (2(T),0(T), 1) € M x N X Uyq is called a solution to the problem
of start control and final observation (18) — (20), if

Jo(@(T),0(T),0) = inf  Jp(x(T),o(T), ),

(@(T)0(T),u)

where the triple (z,v,u) € X X X X Uyq satisfies (18),(19) in the weak generalized sense.
The vector-valued function G is called the start control of the problem (18) — (20).

Theorem 4. Letk =1 forn=4o0ork=1,2forn=3orkeN forn=1,2and X\ < Ay,
a Ry, i =0,.,k, T € R.. Then for every y € L%(O,T, B*) there exists a solution
to the problem (18) — (20).

Proof. Let {u,,} € U be a minimizing sequence, then (20) provides that
|15y < const, ¥m € N.

Let us express the weakly convergent sequence u,, — 4 in 91. According to the Mazur
theorem, @ € 4. Let x,, = z(u,,) be a weakly generalized solution of the equation

Liy, + Mz + May(v) =Y, Ty = U, (21)
L(z,(0) — up) = 0. (22)
Because of the reasoning of Theorem 2
Mz, € Ly(0,T;91)
Ms(v,,) € L%(O,T; BY).

It follows from (21) that &,, € Lo(0,T;coim L) N Loki2(0,T;B). We can express the
subsequence denoted by {x,,}, {vm}, {un} :

Ty — T x-weakly in L (0, T;coim L),

U — 0 *-weakly in Lo, (0,T; coim L),
d d
ELxm — ELj weakly in Lo(0,7;im L),

Mz, = Mz weakly in Lo(0,T;0%%),
M;(vy,) — w weakly in L%(O, T;98B"),
2k+1
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By anology with the proof of Theorem 1, we obtain w = Ms(0). Turn to the limit in the
state equation (21), (22). Therefore, we get

L & +Myi + My(0)

Yy, T=10
L(z(0) —a) = 0.
Therefore, & = Z(v,u) and liminf J(uy,, v,) > J(4,0). Consequently, (z(T),0(T),u) is
the solution to the problem (18) — (20).
]

2. Algorithm of the Numerical Method to Find the Start Control

and Final Observation for the Model of an I-Beam Deformation

Based on the theoretical results obtained in the previous paragraphs, we develop an
algorithm to find the approximate solution to the problem of start control and final
observation for the mathematical model of an I-beam deformation on the basis of the
modified decomposition method, the Galerkin method and the Ritz method. Let o be a
spectrum of the operator (—A) with the homogeneous Dirichlet condition, and {A;} be
a set of the eigenvalues numbered in non-decreasing order and {p;} be a family of the
corresponding eigenfunctions, which are orthonormalized relatively to the scalar product
< - > 1in Ly(R2). Using the Galerkin method, we search for the approximate solution in
the form

B(s,t) = z(s,1) = > a(t)pe(s), (23)

where m € N. In order to take into account the effects of the degenerate equation, it is
necessary to take m such that m > [, where [ = dimker(—\ — A). Represent the right side
of the equation (1) as

G(s,0) =D u(t)pu(s)- (24)

Also, present the initial function u(s) in the form

U= Z Urpr(s). (25)
k=1
Decompose the equation (1) (for & = 1). In the equation (1), introduce an unknown
function v(s,t) such that
(=X = Az + apr + v’ =y, (26)
x(s,t) = v(s,t). (27)

Because of the equality (27) the quality functionality (4) is equivalent to the functional

J(‘T7u) = JQ(ZC,U, U) =0 BH"E(T) o foZI{AL(Q)—i_
+(1=0) - Bllo(T) — 24ll7,) + (1= 8)- ||U||i{;l(ﬂ)7 8.0 €(0,1). (28)

2
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Further, we search for an approximate solution to the control problem (1) — (3), (6)
using the penalty method described in [11]. Consider the equivalent control problem, where
the formula (28) for the approximate solution is achieved by introducing a new functional
in the form

J(x,u) = Jo(x,u,0) = 0 Blla(T) — 2|7, + (1= 0) - Bllo(T) — z4l|7, 0+
2 4
+(1=5)- ||U||V[31(Q) +rellz — ol om0 (29)

2
where the penalty parameter r. — +o0o for ¢ — 0+.
Represent (s, t) in the form of the sum

m

D(s,t) = B (5,1) = > vk(t)or(s). (30)

k=1

According to the Ritz method, we search for vi(t), k = 1,..,m, in the form
N
ve(t) = vp(t, N) = bit", (31)
=0

under the condition that v (0, N) = x,(0) = ux, k= 1,..,m. Substitute (23) — (25), (30)
in the equation (26) and multiply the resulting equation on the eigenfunctions ¢x(s), k =
1,..,m scalarly in L(€2). We obtain the system of equations

< <_)\ - A)‘%ta Pk >+ < 0405579% >4+ < 0511737 Pk >=< ga Pk > (32)
with the Showalter — Sidorov conditions
< (=A=A)(z(s,0) —u), pr >=0. (33)

Solve the problem (32),(33) relatively the unknown ax(t). Note that depending on
parameter A, equations in the system can be either differential or algebraic. Consider
these cases in more detailes:

e If \ ¢ o, then all equations of the system (32) is ordinary differential equations of the
first order. In order to solve this system relatively a,(t), k = 1, ..., m, we find m initial
conditions ax(0) = ug, k =1,..,m, from the initial conditions (33). Further, we solve
the obtained system of the linear differential equations of the first order with the
initial conditions, and express unknown coefficients ay(t) of the approximate solution
Z(s,t) by vi(t), ug, k=1,..,m.

e If A € o, then the first equation is algebraic, and the rest ones are differential.
Separately, consider the system of differential equations having first order and the
algebraic equation. Using the Showalter — Sidorov conditions, we find (m — 1)
initial conditions. Solve the system of the algebraic and differential equations, and
express the unknown coefficients ay(t), k& = 2,..,m of the approximate solution
Z(s,t) by vg(t), and ug, k= 1,..,m. From the algebraic equation we find a;(t) and
uy = a1(0). Turn to search for the minimum of functional. Substitute the obtained
decompositions in the functional.
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We select coefficients b; such that the functions vy(¢, N) and uj give the minimum
of the functional (29). Therefore, the problem is reduced to search for an extremum for
function of several variables.

Example 1. The problem is to find an approximate solution to the problem of start
control and final observation of the problem (2), (3), (6), (28) for

)\:—2, ()40:5, a1 = 4,

21 999 1
— ﬁzm, 5:%, m=2, N =3,
V2
= NG
On the basis of the developed numerical method to find the start control and final
observation, we turn to an equivalent problem of the start control and final observation:

Tq sin(s), y=0.

4

21 ™ 2
J(x(T),v(T),u)—g-% [ate.) - 3&? sins| ds+
21\ 999 [" V2 *
1- =) = T) — i 1
+( 55) 1000/0 v(s,T) NG sin s| ds+ (31)

2
+

2 4
ds dt — inf

u(s)| +|u'(s)

+(1—%) /D[ ds+200/07r/0T (5, ) — (s, )

solutions by the solutions to the Showalter — Sidorov — Dirichlet problem (2), (3) for the
equation

2x) — ), + bz + 4v* = 0.

Consider the Sturm — Liouville problem
—X"(z) = M\X(x), X(0)=X(m)=0. (32)

The eigenfunctions and eigenvalues of the problem (32) have the form:

2
or(s) = \/;sinks, e =K% k=1,2,...

On the basis of the Galerkin projective method, the approximate solution
Z(s,t), 0(s,t), u(s) to the problem is represented as

m

(s, t) = Zxk(t)%(s)a (s, t) = ka(t)%(s)a u(s) = ZukSOk(S)'

k=1 k=1

The results of the program "Numerical study of the problem of start control and final
observation for the model of an I-beam deformation” calculations are control coefficients
such that the value of the functional J = 0.00000285. Graphs of approximate solution to
the problem (2), (3), (6), (28) are shown in Fig. 1.
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a) funtion z(s,t)
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ta u|;=| —

¢) funtion u(s)

Fig. 1. The approximate solution Z(s,t), 9(s,t),u(s) to the problem (2), (3), (6), (26)

In order to compare the obtained functions Z(s,t), ©(s,t) and the required state

x4(s), we construct the graph of these functions at the moment ¢ = — (see Fig. 2). The

difference between the required functions Z(s,t) and (s, t) is small:

T ™ 4
A:</ (/ |7 (s, 1) —f)(s,t)|4ds> dt) = 0.0000012365046.
0 0
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0.15 1

0.10+

0.05 1

Fig. 2. Function (s, 2), (s, 2), z4(s), s € (0, )
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YNCJIEHHOE MOAEJINMPOBAHUE CTAPTOBOI'O
YIIPABJIEHUA N1 ®PVTHAJIBHOI'O HABJIFOAEHN A
B MOJEJIN JE®OPMAIINN IBYTABPOBOII BAJIKI

H.A. Manaxosa, K.B. Bactoukxosa

CraThst TIOCBSIIEHA U3YYCHUIO CTAPTOBOrO YIIPABICHUs 1 (PUHATBHOTO HABJIIOISHUS Pe-
menunmvu 3anaau [loyonarepa — CumopoBa i MaTeMaTuIecKoi Moaenn 1edOpMallui 1By-
TaBpoBO# basku. CTPOsATCS HOCTATOYHBIE YCIOBUA CYNIECTBOBAHUS CTAPTOBOTO YIIPABJICHUS
u dpuHATBHOrO HaOMIOMEHNA CIabBIMU ODOOIIEHHBIME PEIIEHUSIMH HNCCIEIYEeMON MOAETN C
HavanbubeiM yesoeueM [Tloyomrepa — Cumopora. Ha ocHOBe TEOpPeTHUECKUX PE3YJIBTATOR
MOCTPOEH AJTOPUTM YHCJEHHOIO METO/a HAXOXKIEHUs] MTPUOIUKEHHOrO DEIIeHUs 33 adu
CTapTOBOrO YIpPaBJeHUsT U (DUHAILHOrO HAGIIOAEHUs uccaeayeMoit 3amaqu. [IpuBomsarces
BBIYUCTUTEIBHBIE IKCIIEPUMEHTHI.

Karoueene caosa: ypasHenua coboAe8CK020 MUNG; 340044 CAPMOBO20 YNPABAEHUA U
Punasvroz0 nabarodenus; modeav dedopmauuu d6YMasposots baAKY; NPOEKUUOHHBLT MEMOd

Tanepruna; memod dexoMno3uyuU.
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