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A NUMERICAL EXPERIMENT
FOR THE BARENBLATT - ZHELTOV - KOCHINA
EQUATION IN A BOUNDED DOMAIN

P. O. Moskvicheva, South Ural State University, Chelyabinsk, Russian Federation,
pelageia@bk.ru

An investigation of the stability of Sobolev type equations undoubtedly is an actual
problem, since these equations, with various conditions, model a multitude of processes.
For example, the Barenblatt — Zheltov — Kochina model describes such processes as, for
example, filtration and thermal conductivity. In this paper we consider the Cauchy-Dirichlet
problem for equation in a bounded domain.

We shall understand stability in the sense of Lyapunov A. M. The aim of this paper is
to obtain conditions under which the stationary solution of our problem will be stable and
asymptotically stable. The obtained conditions are formulated in the theorem. In addition,
an algorithm of the computational experiment will be described to illustrate the instability
in the case when the conditions of the theorem are not satisfied. We note that here we apply
the method of the Lyapunov functional modified for the case of complete normed spaces.
The computational experiment is based on the Galerkin method.
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Introduction

The Barenblatt — Zheltov — Kochina equation
(A — Ay, = aAu (1)

simulates the pressure dynamics of the fuid filtered in fractured porous medium [1],
processes of moisture transfer in a ground [2] and processes of the solid-to-fluid thermal
conductivity in the environment with two temperatures [3|. Here the parameters A € R,
a e Ry.

Let Q2 C R", n € N - be a bounded domain with a boundary 9€) of class C*°. Our
goal is to find the function v = u(z,t), x € Q,t € R, that satisfies conditions

u(z,t) = up(x), = €9, (2)

u(z,t) =0, (z,t) € 0Q xR. (3)

Our goal is to study the stability of a unique (zero) stationary solution of this problem
(1)-3).

The foundations of the theory of stability of Sobolev type equations are formulated
in [4], [5]. In these papers, dichotomies of linear Sobolev type equations were studied. In
article [6] the exponential dichotomies of solutions of the Barenblatt — Zheltov — Kochina
equation defined on a geometric graph are described. In |7] the method of the Lyapunov
functional modified for complete normed spaces was described in detail.

The goal of this paper is an analytical study of the stability of the problem (1)—(3),
as well as a computational experiment to illustrate the instability of this problem under
certain conditions. we will reduce the problem (1)-(3) to the Cauchy problem
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u(0) = ug (4)
for an abstract linear homogeneous equation of Sobolev type
Li = Mu. (5)

Then we apply the theory of p-bounded operators.

This article consists of an introduction, three parts and a list of literature. In the first
part, the phase space of the Barenblatt — Zheltov — Kochina equation is described, in the
second, the stability and asymptotic stability theorem for this equation is formulated. The
third part is devoted to the description of a computational experiment. A specific example
is also considered here.

1. Phase space

Reducing the problem (1)—(3) to (4)—(5). We will use the results from [8|. Consider
the spaces

U={ue W) u(x) =0, z € o}, F=Wr(), 1<p<oo, k=0,1..
and operators L=A—-A:U—F, M=aA:U—3F.
A
The L-spectrum of the operator M is (M) = {uk = )\a l;\ ckeN\{l: )\ = )\}}
- Ak

It is limited, because klim e = Q.
—00

We prove the (L, 0)-boundedness of the operator M. Consider two different cases.

First let A & {\}. Then ker L = {0} = 4, ' =4, §* = Mlker L] = {0}, §* =3,
and obviously §' @ §° = 3.

Then let A € {\;}, then ker L = span{ipy : \x = A\}. Lets construct F' and 2. We will
find the projector

Q=T-> (- oren
Ae=A

Using this projector we will find space § = {f € § : {f,¢x) = 0, \x = A\}. The space
§* = M[ker L] = span{¢py : Ay = A}. It’s obvious that §* & F* = 3.

It means that for all @« € R\ {0}, A\ € R operator M is (L, 0)-bounded. Hence there
exists a unique resolving group of equation (1).

Definition 1. The solution of equation (5) is a vector-function u € C*°(R;;4), that
satisfies this equation. The solution of equation (5) is called the solution of the Cauchy
problem

u(0) = uyg, (6)
if it satisfies (6).

Definition 2. The set B C i is called the phase space of equation (5), if

(1) any solution u = u(t) of equation (5) contained in the set B, i.e. u(t) € PVt € R;

(ii) for any uy € B there is a unique solution u € C®°(R;4) of the Cauchy problem
u(0) = ug for equation (5).

In order to find the phase space of equation (1), we use the following theorem.
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Theorem 1. Let operator M is (L, p)-bounded. Then the space {4! is the phase space of
equation (5).

Construct a projector P in order to find the space 4.

I if M & {\};
P=90T- 3 (,o0)em if A€ {\} (7)

Ae=—A
Thus, we have proved the theorem.

Theorem 2. For any o € R\ {0} and
(i) N € R\ {\i} the phase space of the equation (1) is the entire space U;
(i) X € {\x} the phase space of the equation (1) is the entire space

U ={ued: (u,pr) =0, \p = A}

Remark 1. Many papers are devoted to the study of phase spaces for various models,
see for example [9, 10, 11].

2. Stability

We define the norm in L, in the space L. If we fill the space 4 of this norm, then we
get the space Ly. But the phase space of our problem is space 4. Thus, in what follows we
shall consider a normed space 4.

Let i be a normed space. The family of mappings S is called a nonlinear semigroup
in a normed space U if for every u € 4 and some 7 = 7(u) € R, the following conditions
are satisfied

(i) S = S(t,u) € W, for all t € (—7;7); S(0,u) = u;

(1) S(t + s,u) = S(t,S(s,u)) for all t + s € (—7, 7).

A point u € 4, such that

(13i) S(t,u) = u,t € R,
is called a stationary point.

On the space 4 there exists a nonlinear semigroup

1
S(t,u) = %/Rﬁ(M)ue“td,u, teR.
Y

A contour 7 is closed curve and the domain bounded by this contour contains the L—
spectrum ol (M) of operator M.
Obviously, zero point is a stationary point.

Definition 3. A stationary point u is called

(i) stable (in sense of A.M. Lyapunov), if for any neighborhood O, of u there exists a
neighborhood O/, (i.e. not necessarily the same neighborhood) of the same point, such
that S(t,v) € O! for all v € O, and t € Ry;

(ii) asymptotically stable (in sense of A.M. Lyapunov), if it is stable and for any point v
in some neighborhood v in some neighborhood O,, of u S(t,v) — u for t — oc.

Definition 4. A functional V' € C(4,R) is called a Lyapunov functional if

V(u) = Hl(V(S(t,u» — V() <0  VYueO,.

t—0+ ¢
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Theorem 3. Let u be a stationary point. If there exists a Lyapunov functional such that
(1)V (u) = 0;
(1))V(v) > @(||lv — ul|); here ¢ is strictly increasing continuous function such that
©(0) =0 and p(r) > 0 for r € Ry, then the point u is stable.

Theorem 4. Let the conditions of Theorem (3) be satisfied, and a strictly increasing
continuous function v such that ¥ (0) = 0 and (r) > 0 forr € Ry. If V(v) < —¢(|lv—ul]),
then the point u is asymptotically stable.

Lets consider two cases. Let A > 0, then the Lyapunov functional has the form:

V= /(ui + \u?)dz. (8)

Obviously V(0) = 0. Given that A € R, then V(u) > ¢ || u |3 . Here ¢ = min {1, \}.
Hence, by the theorem (3) the point zero is stable. Further, considering that

V(u) = 20| u (9)

the point zero is asymptotically stable by the theorem (4).
Let A = 0. The phase space of problem (1)-(3) is {*. We define a norm in this space

||u||2 = /uidm

Q
We define the Lyapunov functional as V(u) =|| u ||. By the theorem (2) we obtain the
stability of the zero point. Similarly to the previous arguments, we obtain that (8) is also
satisfied. Hence a zero point is asymptotically stable. Thus, we have proved the theorem

as

Theorem 5. For all A € Ry U {0},a € Ry zero solution of problem (1)-(3) is
asymptotically stable.

3. Numerical experiment

Based on the theoretical results confirms the hypothesis about the instability of the
zero solution of equation (1) in the system of computer mathematics Maple develop a
program that allows you to: 1) find an approximate solution for the equation (1) based

on specified coefficients; 2) get a graphical representation that illustrates the instability of

the zero solution of (1).

To implement the program of computational algorithms, we used the built-in functions
and standard Maple programming language statements. For obtaining a graphic image was
connected plots package. At the first stage of the algorithm we define the coefficients of
equation (1) and the number of elements the Galerkin approximation m.

Lets consider the equation (1) in domain (0, 7) x R. Let the condition

uw(0,t) = u(m,t) =0, teR. (10)
We shall seek the solution of the problem (1), (9) in the form of a Galerkin sum

u™(t,x) = Zuk(t)gok, m>1, (11)
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here {py} is the set of solutions of the boundary-value eigenvalue problem

A=A)u(z) =0, z€]0,nr],

It is solvable for a countable set of eigenvalues \x. A {¢} is orthonormal (in the sense Ly)
set of eigenfunctions corresponding to eigenvalues Ay of the homogeneous Dirichlet problem

2
for the Laplace operator in [0, 7]. It is easy to calculate that ¢r = p(z) = \/isin(lm),
7r

A\ = —k2.

In the next step of the algorithm we will do scalar multiplication of equation (1) by
the functions ¢,. We obtain a system of differential equations. We define initial conditions
from a neighborhood of the point zero. Then we find a numerical solution of the Cauchy
problem for a system of ordinary differential equations with initial conditions. Consider
the Example.

Example 1. Find the numerical solution of the problem (1)-(3) if m = 2,a = 3, A = —6.

Table

Numerical solution of a system
with initial conditions u(0) = 0.1,u2(0) = 0.1

t Uy (t) Ug(t)

0.1 0.1061836547 0.1822118630
0.2 0.1127496852 0.3320115504
0.3 0.1197217363 0.6049643748
0.4 0.1271249150 1.1023167850
0.5 0.1349858808 2.0085518330
0.6 0.1433329415 3.6598195096
0.7 0.1521961556 6.6686249462
0.8 0.1616074402 12.151025098
0.9 0.1716006862 22.140608038
1.0 0.1822118800 40.342812298
1.1 0.1934792334 73.509386136
1.2 0.2054433211 133.94281526
1.3 0.2181472265 244.05968700
1.4 0.2316366977 444.70568085
1.5 0.2459603111 810.30646675
1.6 0.2611696473 1476.4744405
1.7 0.2773194764 2690.3114669

If m = 2, then taking into account condition (11), we will get

2 2
u(z,t) = ul(t)\/;sinx + uz(t)\/;sin 2.
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Lets do the scalar multiplication of equation (1) by the functions ¢y, (k = 1,2). We obtain
a system of differential equations.

{ 2V () + SVITu (1) = 0

—V/27mls(t) + 67/ 27mus(t) = 0.

Obviously wu;(t) = 0,us(t) = 0 is a stationary solution of system. We define initial
conditions from a neighborhood of the point zero. Let wug(t) = 0.1,up(t) = 0.1. We
solve the Cauchy problem for this system. Some of the resulting values will be given in
the Table uy(t) and wua(t).

Fig. is a graphic interpretation of a fixed value of the parameter x.

u

t

Fig. The dependence function u of the parameter t.

This does not violate the generality of the results (for other values of x the situation

is similar). A computational experiment illustrates that if ¢ — oo then the value of the
function u(x,t) increases exponentially and the stationary solution is unstable when A < 0.
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BBIUYNCJINTEJIBHBIN SKCIIEPUMEHT
TJI1 YPABHEHU S BAPEHBJIATTA — >KEJITOBA —
KOUYMHO B OTPAHUYEHHON OBJIACTU

I1.0. Mocxsuuesa

UccireroBanne ycTORINBOCTH ypaBHEHU COOOIEBCKOTO TUIIA HECOMHEHHO SIBJISETCS aK-
TyaJbHON 3aJ1a4eil, TIOCKOJIbKY JIAHHBIE YPABHEHUsI BMECTE C PA3JUIHBIMU YCJIOBUSMH MO-
JIeTUPYIOT MHOXKECTBO IporieccoB. Tak, HampuMep, Moje b bapendaarta — 2Kenrosa — Ko-
YUHOM OIUCHIBAET TAKUE IIPOIECCHI, KAK, HAIPUMED, (PUJIBTPAIMS U TEILIOIPOBOIHOCTh. B
JIaHHOU pabore Mbl paccmorpuM 3agady Kormu — Jlupuxiie jjist JaHHOTO ypaBHEHUsI, 33 1aH-
HOTO B OI'DAHUYEHHONH 00JIaCTH.

YeroitanBocTh MbI OyZeM HoHUMATh B cMbicie Jlamynosa. Lesnbio qannoit paboTol sB-
JISIeTCsT TIOJIyYeHUe YCJIOBUH, IPU KOTOPBIX CTAIMOHAPHOE DeIlleHne Harreil 3ajadu Oyjer
YCTOMYMBO U ACUMIITOTHYECKN ycTOH4YnBO. IlosrydenHble yciioBust cOpMyJIMPOBAHbI B TEO-
peme. Kpome Toro, Oyzer onucaH ajJrOpuTM BBIYUC/IMTETHHOTO SKCIIEPUMEHTa, JIJIsl WJLJTEO-
CTpAIMU HEYCTONIMBOCTH B TOM CJIydae, KOr/a yCJIOBUsI TEOPEMbI HE BBIIIOJTHEHBI. 3aMETUM,
9TO 3/1€CH NIPUMEHsAeTCs MeTo, PyHKIMoHA A JIsamyHoBa, MOAMMUIINPOBAHHBIN /I CJIy9ast
[IOJTHBIX HOPMUPOBAHHBIX ITPOCTPAHCTB. BBIMUCIUTEIHLHBIN 9KCIEPUMEHT OCHOBAH HA METOJIE
lasnepkuna.

Karueswvie caosa: ypasrHeHUuA €c0001€6CK020 muna, yCTI’LOﬂ"tUSOCmb.
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