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DIRECT AND INVERSE PROBLEMS OF THE DYNAMIC
MEASUREMENTS THEORY
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The direct and inverse problems of measurement theory based on linear differential
operator with the boundary conditions of various types were considered. The boundary
conditions are linear and linear independent functionals (including Cauchy problem, two-
point boundary value problem, the Vallee-Poussin problem, the multipoint boundary value
problems, the distributed data problems, and so on). An approach is proposed to investigate
such problems on the basis of mathematical models realized in the form of linear boundary
value problems and accompanying integral equations using the Green’s function. The
Green’s functions, in the absence of information on the fundamental system of solutions
of the corresponding differential equation, is constructed as a solution of the Fredholm
integral equation of the second kind. The characteristics of the Fredholm equation were
determined by the Green’s function of the auxiliary problem. The proposed method allows
to solve both the direct (the problem of finding solutions) and the inverse (the problem
of finding the right-hand side of the equation from the experimentally obtained solution).
The examples the work of programs realized in the system Mathematica 8.0 based on the
described method were given.

Keywords: Green’s function, mnonlocal boundary conditions, measurements theory,

dynamic measurements.

Introduction

This paper is devoted to study mathematical models of linear dynamic systems applied
to the dynamic theory of measurements based on linear boundary value problems for
ordinary differential equations.

Dynamic measurements is a branch of Metrology dealing with measurements using
hardware with dynamic conditions [1]. These measurements concern, primarily, to the
study of regularities of physical processes in the studied objects.

Dynamic measurements, in particular measurements of rapidly changing physical
quantities, are one of the most important research tools in various fields of engineering
and scientific research. Pressure surges, shock accelerations, a sharp change in speed of
motion and spatial location are often encountered in practice. The main contribution to the
dynamic error is made by the inertia of the measuring instruments, therefore it is justified
to consider the problems of dynamic measurements in the class of linear problems [2].

Measurements in dynamic mode are widely used to improve the efficiency of
technological processes in the time of testing new equipment, and also in scientific research.
Only in Russia more than a million such measurements are carried out daily, using special
measuring instruments, devices and systems |3].

1. Statement of the Problem

A wide class of problems of the dynamical measurements theory can be formulated in
the form of linear boundary-value problems (including nonclassical conditions) for ordinary
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differential equations. Among them are multipoint boundary value problems, distributed
data problems, and so on.
Consider a linear dynamical system:

{L[x]:ft,. 1)

Uiz) =«aj, j=1,2,...,n,

where Lz] = 20 +p,_12Y ... 4 p12’ +pox, coefficients p;(t) are continuous functions
on [a,b], U;(x) are linear, linearly independent functionals, a; are constants.

The problem of finding the solution z(¢) of equation (1) for a given right-hand side
f(t) and given boundary conditions is called a direct problem.

The problem of finding the solution f(¢) of equation (1) with the experimentally known
solution z(t) and given boundary conditions is called an inverse problem.

2. Method of Solution

The linear boundary value problem (1) can be equivalently replaced [4] by some
problem with homogeneous boundary conditions (a; = 0 for j = 1,2, ,n), which we will
call semihomogeneous: R

{ L[JZ] = f(t)a (2)
Uj(x) =0, j=1,2,...,n.

As for the boundary conditions, the theorem (the proof, for example, in [5]) of a general
form of a linear functional is given below.
If U(z) is a linear functional in C'[Z;)]l, then the numbers ¢; and the function of bounded

variation o(t) exist, and U(z) can be represented in the following form:

Ula) = Y- e Do) + / 2V () do(t). (3)

a

The representation (3) is associated with the classical initial Cauchy problem. It is
easy to show that for functionals U(z) another representation associated with the simple
Vallee-Poussin problem can be obtained:

Ux) = Z cix(t;) + / "D () do(t), (4)

where ¢; are points from the interval [a, b], such that a <t} <ty < --- <, <b.

The proposed methods for solving the investigated problems use the Green’s function
and are based on the well-known (for example, [6]) relationship, which gives the solution
of the semihomogeneous boundary value problem (2) in the integral form:

b
x(t):/ G(t,7)f(r)dr, (5)

where G(t, 7) is the Green’s function of the considered problem.
As the relation (5) shows, if the Green’s function of problem (2) is known, the solution
of the direct problem reduces to calculation of the quadrature (5). At the same time, the
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accuracy of the obtained solution is determined by the accuracy of the measurements of
the right-hand side and can easily be estimated.

The solution of the inverse problem represents the considering the relation (5) as an
integral equation with unknown function f(t) for a given function z(t). It is a Fredholm
equation of the first kind and, as is well known (for example, [7]), the problem of solving
such equation is unstable for the errors of the left side of the equation (5). So, this requires
a special procedure of regularization to ensure a satisfactory for applications accuracy of
the obtained solution.

The construction of the Green’s function is an important part of the proposed method.
The method for constructing the Green’s function for a general linear boundary value
problem was proposed in [8] and developed in the papers [4, 9, 10]. The method consists
in constructing an auxiliary integral equation that allows to find the Green’s function of
the problem (2) for arbitrary (including nonclassical) boundary conditions, even when the
fundamental system of solutions of the equation (1) can not be found (or can not be used
for other reasons).

The main part of the described method is the construction of the Green’s function
G(t, ), carried out in two stages, first, the construction of the Green’s function G(t, 7) of

the auxiliary problem
o = £(0)
{%@ﬂzaszz”wm (6)

that can be found directly by definition using the fundamental system of solutions of the
corresponding homogeneous equation. The second step is to find numerically the Green
function of the basic problem G(¢,7), that is a solution of the Fredholm integral equation
of the second kind:

b
G@Q—G@Q:/bmﬂV@@m. (7)
More details can be found in [4, 9, 10].

3. Computer Realization

On the basis of this numerical method, algorithms for solving direct and inverse
problems of the dynamic measurements theory were developed [11]. The proposed
algorithms were realized as a complex of computer programs using the Mathematica 8.0.
It includes two programs:

e The Program for Finding the Numerical Solution of the Direct Problem of the
Measurements Theory?.

e The Program for Finding the Numerical Solution of the Inverse Problem of the
Measurements Theory?.

Further the examples of programs executions were given.

! Certificate of official registration of the computer program Ne 2013618951.
2Certificate of official registration of the computer program Ne 2012619481.
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4. Examples

Example 1.
Consider the following linear boundary value problem:

2" — 22" — bx’ + 6x = sin 10t + cos 5t, (8)
z(0) =0, 2/(0) =0, 2"(0) =0.

The function on the right-hand side of the differential equation f(t) = sin(10t)+cos(5t)
is given with an error, i.e. f(t) = sin(10t) + cos(5t) + £(t). The plot of the unperturbed
function f(t) and function of initial data f(t) is shown in Fig. 1.

According to the algorithm for solving the problem, first, the Green’s function of the
auxiliary problem is found. Its graph is presented in Fig. 3. Next the Green’s function
of the main problem is found. Its graph is presented in Fig. 4. Then the solution of the
original problem is found. It is represented in Fig. 2.

The absolute error of the obtained solution is 6, = 0.00196, the relative error is

0 = 1.7%. The operating time of the program is T' = 3.2 seconds.

¥
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Fig. 1. The exact function of the initial Fig. 2. The exact function of the solution
data f(t) (solid), the given perturbed xo(t) (solid), the obtained function of the

function of the initial data f(t) (points) solution x(t) (points)

Fig. 3. The Green’s function G(t,7) of Fig. 4. The Green’s function G(¢,7) of
the auxiliary problem the main problem
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Example 2.
Consider the following linear boundary value problem:

2" — 22" — ba' 4+ 6x = sin 10t + cos 5t, (9)
z(0) =0, z(0,5) =0, x(0) =0.

The function on the right-hand side of the differential equation f(t) = sin(10t)+cos(5t)
is given with an error, i.e. f(t) = sin(10t) + cos(5t) + £(t). The plot of the unperturbed
function f(t) and function of initial data f(t) is shown in Fig. 5.

According to the algorithm for solving the problem, first, the Green’s function of the
auxiliary problem is found. Its graph is presented in Fig. 7. Next the Green’s function
of the main problem is found. Its graph is presented in Fig. 8. Then the solution of the
original problem is found. It is represented in Fig. 6.

The absolute error of the obtained solution is §, = 0.000058, the relative error is

0 = 1.7%. The operating time of the program is 7' = 12.1 seconds.

¥
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Fig. 5. The exact function of the initial Fig. 6. The exact function of the solution
data f(t) (solid), the given perturbed xo(t) (solid), the obtained function of the
function of the initial data f(¢) (points) solution x(t) (points)

Fig. 7. The Green’s function G(t,7) of Fig. 8. The Green’s function G(¢,7) of
the auxiliary problem the main problem

2017, vol. 4, no. 2 53




Yu. S. Popenko

Example 3. Consider the following linear boundary value problem:

2" — 22" — bx’ + 6x = sin 10t + cos 5t,

1 1 1
[ x(t)dt = 0,004, [tx(t)dt=—0,001, [t2x(t)dt=0,003.
0 0 0

The function on the right-hand side of the differential equation f(t) = sin(10t)+cos(5t)
is given with an error, i.e. f(t) = sin(10t) + cos(5t) + £(t). The plot of the unperturbed
function f(t) and function of initial data f(t) is shown in Fig. 9.

Since the considered problem is an inhomogeneous, first it must be transformed to
homogeneous form. In this case, the function f(¢) on the right-hand side of the differential
equation will be reduced to the form f (t) corresponding to the semihomogeneous problem.
The plot of the function f(t) is represented in Fig. 10.

Further, according to the algorithm for solving the problem, first, the Green’s function
of the auxiliary problem is found. Its graph is presented in Fig. 12. Next the Green’s
function of the main problem is found. Its graph is presented in Fig. 13. Then the solution
of the original problem is found. It is represented in Fig. 11.

The absolute error of the obtained solution is d, = 0.000121899, the relative error is

0 = 0.2%. The operating time of the program is T' = 22.8 seconds.

(10)
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Fig. 9. The exact function Fig. 10. The exact Fig. 11. The exact function
of the initial data  function  f(¢t)  (solid) of the solution ()
f(t) (solid), the given  and perturbed function of  (solid), = the obtained

perturbed function of the
initial data f(¢) (points)

Fig. 12. The Green’s function G(t,7) of
the auxiliary problem

the homogeneous problem

f(t) (points)

function of the solution
x(t) (points)

Fig. 13. The Green’s function G(t,7) of
the main problem
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Example 4.
Consider the following linear boundary value problem:

" —=3x" + 2’ — 3z = f(t),
{ z(0) =0, 2/(0) =0, z"(0) = 0. (11)

The function x(t) is given with an error, i.e. Z(t) = x(t) +£(¢). The unknown function
f(t) on the right-hand side of the differential equation (11) is required to find. The plot of
the unperturbed function x(¢) and function of initial data Z(t) is shown in Fig. 14.

The Green’s function of the auxiliary and the main problems are found. Their graphs
are presented in Fig. 16 and Fig. 17, respectively. Then the solution of the original problem
f(t) is found. It is represented in Fig. 15.

The absolute error of the obtained solution is d, = 0,22107, the relative error is
§ = 20.0%. The optimal regularization parameter is & = 5-10~7. The operating time of
the program with the determination of the regularization parameter is t; = 4.2 min. The
running time of the program with the specified regularization parameter is t; = 19.1 sec.
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Fig. 14. The exact function of the initial Fig. 15. The exact function of the
data z(t) (solid), the given perturbed solution fo(¢) (solid), the obtained

function of the initial data Z(¢) (points) function of the solution f(t) (points)

Fig. 16. The Green’s function G(t,7) of Fig. 17. The Green’s function G(t,7) of
the auxiliary problem the main problem
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Example 5.
Consider the following linear boundary value problem:
{ " —ba" 4+ 22" — 10x = f(¢), (12)
xz(0) =0, z(0,5) =0, z(1) =0.

The function z() is given with an error, i.e. Z(t) = x(t) +(¢). The unknown function
f(t) on the right-hand side of the differential equation (12) is required to find. The plot of
the unperturbed function z(¢) and function of initial data Z(¢) is shown in Fig. 18.

The Green’s function of the auxiliary and the main problems are found. Their graphs
are presented in Fig. 20 and Fig. 21, respectively. Then the solution of the original problem
f(t) is found. It is represented in Fig. 19.

The absolute error of the obtained solution is d, = 0.113366, the relative error is
§ = 11,0%. The optimal regularization parameter is o = 1078, The operating time of
the program with the determination of the regularization parameter is t; = 5.3 min. The
running time of the program with the specified regularization parameter is ¢t = 59.8 sec.
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Fig. 18. The exact function of the initial Fig. 19. The exact function of the
data z(t) (solid), the given perturbed solution fy(t) (solid), the obtained

function of the initial data Z(t) (points) function of the solution f(t) (points)

Fig. 20. The Green’s function G(t,7) of Fig. 21. The Green’s function G(t,7) of
the auxiliary problem the main problem
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Example 6. Consider the following linear boundary value problem:

" — 22" 4 32" — 6z = f(t),

1

0

Jx(t)dt =0, fltx(t)dt =0, fltzx(t)dt =0.

(13)

The function z(t) is given with an error, i.e. Z(t) = x(t) + £(¢). The unknown function
f(t) on the right-hand side of the differential equation (13) is required to find. The plot of
the unperturbed function z(¢) and function of initial data Z(t) is shown in Fig. 22.

The Green’s function of the auxiliary and the main problems are found. Their graphs
are presented in Fig. 24 and Fig. 25, respectively. Then the solution of the original problem

f(t) is found. It is represented in Fig. 23.

The absolute error of the obtained solution is §, = 0.207377, the relative error is
§ = 13.2%. The optimal regularization parameter is o = 10~7. The operating time of
the program with the determination of the regularization parameter is t; = 4 min. The
running time of the program with the specified regularization parameter is o = 34 sec.
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Fig. 22. The exact function of the initial
data x(t) (solid), the given perturbed
function of the initial data Z(¢) (points)

Fig. 24. The Green’s function G(t,7) of
the auxiliary problem

e/ 0.2 04 0.6 0.8 [

Fig. 23. The exact function of the
solution  fo(¢) (solid), the obtained
function of the solution f(t) (points)

Fig. 25. The Green’s function G(t,7) of
the main problem
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OB O/THOM YNCJIEHHOM METO/IE PEIIIEHUY IIPAMBIX
1 OBPATHBIX 3AJIAY TEOPUU JTNHAMUNYECKIX
N3MEPEHUI

IO. C. Ilonenxo

B pabore paccmaTpuBaroTCst MpsiMble U OOpaTHbBIE 3a7a9l TEOPUU JTUHAMUICCKUX W3-
MEepeHU Ha OCHOBE JIMHEHHBIX KPAaeBBbIX 3aJad [JIs OOBIKHOBEHHBIX nudepeHInaaIbHbIX
VPaBHEHHUII C T'DAHUYHBIMU YCJIOBUSIMU Pa3JIMIHOrO THIa. PaccMOTpeH JMHEHHBIH JTud-
depeHIaIbHBII OIEPATOD W CUCTEMA I'PAHUYHBIX YCJIOBUM, SIBJSIONIMXCS JIMHEHHBIMU U
JITHEHHO-He3aBUCUMbIMU (DYHKIMOHAJAaME (BKJIIOUas 3aady Komm, JByXTO4edHy0 Kpae-
ByIO 3aJia9y, 3amady Basse-Ilyccena, MHOrOTOYEUHbIE KpaeBble 3aJa49H, 3aJa9l C paclipe-
JIQJIEHHBIMUA JIAHHBIX U T.11.). [IpejiozkeH mofxom K UCCIIe0BAaHUIO TAKUX 3aJ[a9 Ha OCHOBE
MaTeMaTHIeCKUX MOJIeJIel, peasin30BaHHbIX B (bOpMe JIMHEHHBIX KPAEBBIX 3329 U COIYT-
CTBYIOIIUX MHTEIPAJIbHBIX ypaBHeHUil, ncnosb3yomuil dyukiyio ['puna. Oyukmun ['puna,
B CJIydae OTCYTCTBUs MHGOpMAIMK O (DyHIAMEHTAJIBHON CHCTEME PEIleHHil COOTBETCTBY-
1omiero uddepeHuaibHOr0 ypaBHeHNs!, CTPOUTC KaK PeIleHue MHTErPAJILHOIO ypaBHe-
aust @pearoabma BTOporo poja. XapakKTepUCTUKY ypaBHeHUs Pperosibyma Onpeiessiich
dyukimeit I'puna BeoMorareabHoit 3agaqn. [Ipegmaraemplit METOT TO3BOJISIET PEIIATh KaK
npsaMyIo (3aJa9y HAXOXKIEHWsI PEIeHnit ), Tak U 00paTHyo (3a1ady O HAXOXKJIEHUH IIPABOi
YaCcTH ypPABHEHMsI U3 SKCIEPUMEHTAJLHO MOJIyUeHHOrO pelieHusi). B pabore npuBojsiTCs
puMepbl pabOTHI TPOTpaMM peajn30BaHHBIX B cucreMme Mathematica 8.0 Ha ocHOBe omu-
CAHHOT'O METOJIA.

Kaouesvie crosa: pynkuyus I'puna, HEAOKAAOHBIE 2PAHUYHBLE YCAOBUA, MEOPUA U3ME-

penut, JdunamuiecKue U3MepPeHUsa.
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