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SOBOLEV TYPE EQUATION IN (n,p)-SECTORIAL CASE
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We consider a mathematical model of thermoelastic plate vibrations under certain
assumptions. The model is based on the nonclassical high-order equation of the
mathematical physics. In addition, this equation is unsolvable with respect to the time
derivative of higher order. In appropriately chosen functional spaces, the considered
mathematical model can be reduced to an abstract Sobolev type equation of the third order
with relatively (n,p)-sectorial operator on the right-hand side. As is known, an equation
of Sobolev type is not solvable for arbitrary initial values. Therefore, we construct a set of
admissible initial values. The main research approach is the method to construct resolving
groups.

Keywords: Sobolev type equation; relatively spectral-bounded operator; bundle of
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1. Introduction

The mathematical model of thermoelastic plate vibrations [1] can be written as an
initial-boundary problem for the equation of the form (1)

(A — )\)uttt — ka(A — Al)utt — ’yzAQUt + ka?)U = 0. (1)

Suppose that during heating a plate is not diffused, or the diffusion does not significantly
effect on the physical properties and the vibration process. Then, parameter k can be set
equal to zero. Therefore, the equation (1) is simplified to the equation of the form

(A — )\)uttt = "}/QAzUt. (2)

Let D C R? is a bounded domain with a sufficiently smooth boundary dD. Supplement
the equation (2) with the Benard boundary conditions

and the initial conditions
™ (z,y,0) = up(z,y), m=0,1,2. (4)

Integrate the equation (2) taking into account the initial conditions (4) and obtain

(A — A)Utt = ’}/2A2U + f (5)
uw(z,y,t) = Au(z,y,t) =0, (z,y,t) € 0D X R, (6)
™ (z,y,0) = um(z,y), m=0,1. (7)

Here f = (A — XN)ug — v*A%uq. For certain values of the parameter A, the operator of the
highest time derivative is irreversible. Therefore (2) is a Sobolev type equation. Let us

66 Journal of Computational and Engineering Mathematics



SHORT NOTES

investigate the mathematical model (2)—(4) using the theory of degenerate semigroups of
operators 2] and the theory of relatively p-sectorial operators [3, 4].

Let 4l and § be Banach spaces, L(, F) be a space of linear and bounded operators,
Cl(4,§) be a space of linear operators with a dense domain of definition. A map U €
C'(; L(L)) is called a semigroup of operators, if for all s,t € Ry the following identity
holds:

UsUt _ Us+t_ (8)

Usually, the semigroup of operators is identified with its graph {U" : t € R, }. A semigroup
{U":t € R, } is said to be holomorphic, if it is analytically continued with preservation
of the property (8) to some sector of the complex plane containing the semiaxis R, .
A holomorphic semigroup is called degenerate, if its unit P = s — tlim U' is a projection

—0+
in U.

The linear evolution equation of the Sobolev type
Li = Mu, (9)

where the operator L € L(4, F), ker L # {0}, is investigated and a holomorphic degenerate
semigroup of operators is introduced in the papers |2, 3|. The complete theory of such
semigroups is given in [4, ch. 3]. We note that the Cauchy problem for Sobolev type
equations is solvable not for any initial value [4]. Therefore, in investigating the solvability
of the Cauchy problem for such equations, it is necessary to find a set of initial values for
which the solution exists and is unique. Such a set is called a phase space. Many works
are devoted to the study of such spaces for various models (see, for example, [5, 6, 7]).
Moreover, for nonlinear equations the stability of solutions [§].
The Sobolev type equation
Lu™ = Mu

is considered and (L, n, p)-sectorial operator is introduced in the paper [9]. Then, on the
basis of the abstract theory, the Benny-Luke equation is investigated and the semigroup
of solving operators is constructed.

2. Relatively (n,p)-Sectorial Operators

Let 4l and § be Banach spaces, L(4,§) be a space of linear and bounded operators,
Cl(L, F) be a space of linear operators with a dense domain of definition, and L € L(4L, F),
M € CI(,F). A set pE*(M) = {u € C: (uL — M)~} € L(U,F) is called L-resolvent set
of the operator M, o*(M) = C\ p*(M) is called L-spectrum of the operator M. Denote
oE(M) = {u" : ji € (M)}, pL(M) = C\ aL(M).

Definition 1. An operator M is called (n, p)-sectorial with respect to the operator L (or,
briefly, (L, n, p)-sectorial), if there exist constants K > 0, § € (5, m) such that the sector

Sgn(M) = {n € C:|arg(u")| <0, # 0} C pr(M)

K

p

IT kgl

k=0

and for all uy € Sén(B), kE=0,p, max{||R(LM7p)(M)||£(u), ||L(Lﬂ’p)(M)||£(g)} <
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Lemma 1. Let M be a (L,n,p)-sectorial operator. Then the lengths of all chains of
M —connected vectors are bounded by the number p.

Let o € p(M). Reduce the equation
Lu™ = Mu (10)
to the following two equivalent equations defined on different spaces:

RE(MU™ = (aL — M)"*Mu, (11)

LEOM) f™) = M(aL = M)™'f. (12)

The operators on the right-hand side can be identified with continuous operators
defined on the spaces il and §, respectively. Therefore, it is convenient to consider these
equations as specific interpretations of the equation

Avl™ = Bu, (13)

defined on some Banach space U, where the operators A and B are linear and continuous.
A vector-function v € C"(R+;U) satisfying the equation (13) is said to be a solution of
this equation.

Definition 2. An operator-function V' € C*(Ry; L(%0)) is called a propagator of the
equation (13), if for any v € U the vector-function v(t) = V'v is a solution of this equation.

Lemma 2. [4] Let M be a bundle of (L,n,p)-sectorial operators. Then integrals of the
Dunford — Schwartz type

1 1
Ut - n—m—1 nr_ M —lL utd 7 Ft -
v Rl

,u”_m_lL(p"L _ M)—leutdlu’

wheret € R, m=0,1,...,n—1, andy C pZ(M) is a contour formed by the rays emerging
from the origin at the angles 8 and —0, determine the propagators of the homogeneous
equations (11), (12), respectively.

Let us select the following subspaces in the spaces U and §:
n—1 n—1
U = ﬂ kerU!, F°= ﬂ ker F .
m=0 m=0
Let Ly (My) be restriction of the operator L (M) to 4° (U°Ndom M), respectively. Suppose

illzimUé:{ueil:tl_i)I&Uéu:u}, SlzimFOt:{fe%':tl_i}%}rFotf:f}

and denote restriction of the operator L (M) to {* (U NdomM) by Ly (M).
It is obvious that U’ @ U € F and F° & F' C F. Introduce the conditions:
Lol =F FeF =3 (14)

FL7 e £(Fhub). (15)

68 Journal of Computational and Engineering Mathematics



SHORT NOTES

The condition (14) is satisfied, for example, if the spaces 4l and § are reflexive (the Yagi —
Fedorov theorem). The condition (15) is satisfied in the case when (14) holds and imL; =
5! (the Banach theorem). Also, note that (14) provides existence of the projectors P =
s — tllr(er Ul and Q = s — tli%i F! in the spaces i and §, respectively.

Corollary 1. [4] Under the conditions of the previous lemma, the operators
Lo € L(U%3Y), Ly € LULFY, My € Cl(U%F%), My € ClUY;FY), and there exists
an operator Myt € L(F%;U°).

Consider the Cauchy problem

; (m) (4} = - _

tlirgiu (t) = Up, m=0,1,....,n—1 (16)

for the equation
Lu™ = Mu + f. (17)

The equation (17) is reduced to the system

Hu®"™ = o® + MO, (18)

for the equation
W = Sut + L0 (19)

In the paper [10], it is shown that the operator H = M 'Ly € £(4°) is nilpotent of
degree p and the following lemmas are proved.

Lemma 3. Let M be (L, n,p)-sectorial operator and the conditions (14), (15) be satisfied.
Then for any vector-function f° € C™P+H1([0,T]; §°) there exists the unique solution of the
equation (18), which has the form

ul(t) = = " HIMG 09 (2).
q=0

Lemma 4. Under the conditions of the previous lemma, for any u,, € 4*,m =0,...,n—1
and f' € C([0,T];F') there exists the unique solution of the Cauchy problem (16) for the
equation (18), which has the form

n—1 ¢
ut(t) = Z Ul i + / ULy f(s)ds.
m=0 0

Let us construct a set of admissible initial values

p
Mp ={uesl: (I-Ppu=—>Y HM"f"*(0), m=0,.,n-1}

q=0

Theorem 1. Let M be (L,n,p)-sectorial operator and the conditions (14), (15) be
satisfied. Then for any ux € Mi*,m = 0,...,n—1 and a vector-function f = f(t),te€[0,T7],
satisfying the conditions of Lemmas 3, 4, there exists the unique solution of the problem
(10), (16), which has the form u(t) = u®(t) + u*(t).
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3. Mathematical Model of Thermoelastic Plate Vibrations

In appropriately chosen spaces, the mathematical model of thermoelastic plate
vibrations (5)—(7) can be represented as an initial problem for an operator-differential
equation. Let D C R? be a bounded domain with smooth boundary dD. Introduce the
spaces 4 = {u € Wit*(D) : u(z,y,t) = 0 V(z,y) € 0D}, § = WF(D) and define the
operators

L=A—-), M=-A2

Then L € L(;F), M € CL(; F), and dom M = {u € WF(D) : u(z,y,t) = Au(z,y,t) =
0V (z,y) € 0D}. Therefore, the mathematical model (5)—(7) takes the form

w(0) = uy, u(0) = uo, (20)
Lii = Mu + f. (21)
Lemma 5. For any values A,y € R (v # 0), the operator M is (L, 2,0)-sectorial.

Let us determine L-spectrum of the operator M. Denote by A, eigenvalues of the
homogeneous Dirichlet problem for the Laplace operator A enumerated by nonincreasing,
taking into account their multiplicity. It is known that A, have finite multiplicity and

212
condense to the point —oco. So o“(M) = { uy, = /\7 q)\;qu\{q:)\q:)\}}.
.

Obviously, jt; ~ —q. Therefore, there exists an angle ¢ such that
Sga(M) = {p € C: [larg(p?)|| < 0,1 # 0} C p"(M),
and we have the estimate
max{|| Rz (M)]| e, [|1 L (M)} < constlul ™2, u € Sga(M).

Since the condition of Theorem 1 is satisfied, we have

Theorem 2. Letuy € kerL, A,y € R (y # 0) and ux € M}*. Then there exists the unique
solution of the problem (5) — (7).
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YPABHEHUE COBOJIEBCKOI'O TUITA
B (n,p)-CEKTOPUAJIBHOM CJIVUHAE

E.B. Bwuuxos, K.IO. Komaosa+ros

B nmammoit crarbe paccMaTpuBaeTcs MaTEMATHIECKAS MOJIEb KOJIEOAHUI TePMOYIPYTOit
IJIACTUHBI IIPU HEKOTOPBIX JIONYINeHnsAX. B oCHOBE MO/I€/n JIE?KUT HEKJIACCHIECKOE YDPaBHE-
HIe MaTEeMaTUIeCKOi (pU3MKU BHICOKOTO TOpsi/ika. KpoMe Toro qaHnHoe ypaBHEHUE SBJISIETCS
HEpa3pENMMbIM OTHOCUTEIBHO CTapIeil Tpon3BOHOM 110 Bpemenu. Vcciemyemast MaTema-
THYECKasi MOJE/Ib B HMOIXOALANIAM 00pa30M BBIOPAHHBIX (DYHKIIMOHAJIBHBIX TPOCTPAHCTBAX
MO2KET OBITH PEeIyIUpOBaHa K aOCTPAKTHOMY YPABHEHUIO CODOJIEBCKOIO THUIIA TPETHETO I10-
PsJIKA C OTHOCUTEJIBHO (7, P)-CEKTOPHAJIBLHBIM OlIEPATOPOM B IpaBoii yactu. Kak mssecrHo
ypaBHEHHS COOOJIEBCKOTO THUIIA HE SBJISETCS PA3PENIUMbIM IIPU TMTPOU3BOJBHBIX HAYATHHBIX
3nadeHusx. [loaToMy B cTaTbe CTPOUTCS MHOXKECTBO JIONMYCTUMBIX HAYAJIbHBIX 3HAYCHUIL.
OCHOBHBIM ITOJIXOJIOM K HUCCJIEOBAHUIO SBJISIETCS METO/I IIOCTPOECHUS PA3PEIIAIOIINX IPYIIIL.

Karouesvie crosa: ypasrerue cobosesckozo muna; 0MHOCUMEALYHO CREKMPLALHO 02Da-
HUYEHHDBLT ONEPAMOP; NYHOK ONEPAMOPO8; MOJEAL KOAEOAHUA MEPMOYNPY20T NAGCTNUHDL.
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