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We consider an analog of the linear Hoff equation in quasi-Sobolev spaces with
multipoint initial-final value condition. The research is based on the abstract results
obtained for the Sobolev type equation with multipoint initial-final value condition in the
quasi-Banach spaces of sequences. The unique solvability of the studied problem is obtained.
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Introduction

We consider a solvability in quasi-Sobolev spaces for an analog of the linearized
homogeneous Hoff equation [1]

A+MNu,=au, NaeR (1)

with the so-called multipoint initial-final value condition

> (ulm) —uje)er =0, j=0,n, (2)

k:/l,kEO'jL (M)

where 7; € Ry (19 = 0,7; < 7j11,7 = 0,n —1) and e, = (0,0,...,0,1,0,...), such that 1
takes the place with number "k”.
Our research is based on the results obtained by authors for the problem

Li = Mu+ f, (3)

Pj(u(r;) —u;) = 0,j =0,n, (4)

such that the equation (1) with the condition (2) is reduced to this problem, where P; are
relatively spectral projectors which will be defined further.

On the one hand, history of the problem (3), (4) for n = 1 begins in [2|, where the
problem is called Verigin problem. On the other hand, independently in [3] the problem is
called the conjugating problem. However, in both cases, spectral projectors of the operator
L are considered instead of the relatively spectral projectors P;. In addition, it is assumed
that L is self-conjugate. First results of researches of the problem (3), (4) are presented
in [4], where the special case of the problem (3), (4) is considered. Note that this case
has more rigid conditions for L-spectrum of the operator M than our case. The term
"initial-finite value problem" was proposed by S.A. Zagrebina (see, for example, [6]). In
[7] the problem (1), (2) is considered in Sobolev spaces. Article contains three parts besides
introduction and references. The first part presents necessary concepts and examples, given
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by G.A. Sviridyuk and J.K. Al-Delfi in [8] and M.A. Sagadeeva and F.L. Hasan in [9]. Also,
the results from [10], which are continuation of a series of papers by S.A. Zagrebina, are
presented. The second part contains main results of the research of an analog for the
linear Hoff equation in quasi-Sobolev spaces of sequences with the multipoint initial-final
value condition. Here the abstract results, obtained earlier in the quasi-Banach spaces of
sequences, are used. Results of researches of quasi-Sobolev spaces obtained by J.K. Al-Delfi
[11] are taken into account.

1. Multipoint Initial-Final Value Problem in Quasi-Sobolev Spaces

Definition 1. Let 4 be a real-valued lineal; an ordered couple (L; ¢ || - ||) is called a
quasinormed space, if

(i) for all u € U the inequality ¢ || v | > 0 holds, where | u || = 0 if and
only if u = 0, where 0 € 4l

(ii) for all u € 4 and for all & € R the equality ¢ || a-u || = |a|- « || w || holds;
(iii) for all u,v € Y the inequality y ||u+v | < C(y||u ] + « | v]) holds,
where the constant C' > 1 and also doesn’t depend neither on u, nor on v.

Definition 2. A complete quasinormed space is called a quasi-Banach space.

Example 1. Consider spaces

= {w = {ax} : i_oj (M llal)” < +oo} ,

where m € R, )\ is nondecreasing sequence of positive numbers such that klim A =
— 00

+00. Note that [ are quasi-Banach spaces for p € (0, +00), but they are Banach spaces
for p € [1,400). (This fact was proved in [8, 11])

Consider the Laplace quasi-operator Ax = A\yxy, x € ['. An operator A : l;”*z — 1y
is linear, bounded and continuous invert for allm € R, ¢ € R,.

Let 4 and § be quasi-Banach spaces, operator L € L(4;F) be lineal and continuous,
operator M € Cl(4l; ) is lineal, closed and densely defined in space 4, and also the operator
M is (L, p)-bounded [9]. We consider the linear homogeneous Sobolev type equation

Li = Mu (5)
Lemma 1. [9] Let operator M be (L, p)-bounded, then operators

P= = (nL — M) 'Ldu € L) and Q = L,/L(ML — M)ty € L(F)

271 . 271 .

are projectors.
Suppose that U° = kerP, §° = kerQ, 4! = imP, F' = imQ. Let L (M}) be a restrict

of the operator L (M) on U* (domM N U¥), k =0, 1. Lemma 1 provides that { = $° @ 4!
and § =3’ ©F".
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Theorem 1. (the splitting theorem by G.A. Sviridyuk) Let operator M be (L, p)-bounded.
Then

(i) operators Ly, My € L(UF;FF), k =0,1;
(i) there exist operators L' € L(F;UY) and Myt € L(F°;U°).

Theorem 2. Let operator M be (L, p)-bounded, p € {0} UN. Then there exists the unique
resolving group of the equation (5), which has the form
1
U'=— [ (uL — M) 'Letdp, t € R,
211
N

where v = {p € C: |u| =r > a} is a closed contour.

The unique resolving group of the equation (5) can be not unique holomorphic
degenerate group of this equation. Consider the condition

ol(M) = U ol (M), n €N, and (M) # 0, there exists
j=0 (6)

a closed contour 7; C C, which bounds the domain D; D oF(M),
such that D; Nof (M) =0, DN D, =0 Vj, k,l=T1,nk # .

Theorem 3. Let operator M be (L, p)-bounded and the condition (6) is satisfied. Then
there exists holomorphic degenerate groups of the equation (5).

Corollary 1. Under the conditions of Theorem 3,
(1) U'Us = UsU' = U™ forall s, t € R, j =1, n;
(it) ULUF = UUL = O for all s, t e R, k, I =1,n, k # 1.

n

Let U, =U"— > U}, t € R be holomorphic degenerate group of the equation (5)
k=1

1 R
Remark 1. Consider group unit elements P; = UJQ =5 (uL — M) 'Ldy, j=0,n,
i

i
constructed by the condition (6) for the holomorphic degenerate groups U ]t teR,j=0,n
of the equation (5). It is obviously that
(i) PPy = PP =P, j =0,n;
(ii) PP = PP, =0,k 1 =0,n, k#IL

Assume that the subspaces 4% = imP;, FY = im@Q;, j = 0,n. Then U = @ﬂlj and
=0

gl = EBSU. Let Ly; be a restriction of the operator L to the 4% j = 0,n, and M;; be a
=0
restriction of the operator M to the domM NUY, j =0,n.
Let us take 7; € Ry(mg = 0,73 < 7j41,5 = 0,n—1), vectors u; € i, j = 0,n,
vector-function f € C°((0,7);F) and consider the linear non-homogeneous Sobolev type
equation (3).
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Definition 3. A vector-function u € C*°((0,7);4), satisfying to the equation (3), is
called a solution of the equation (3). A solution u = w(t), t € (0,7,) of the equation
(3), satisfying to the multipoint initial-final value condition (4) is called a solution to the
multipoint initial-final value problem for the equation (4).

Theorem 4. [9] (The generalized spectral theorem). Let operators L € L(;F) and M €
Cl(L;§), and operator M be (L, p)-bounded, and the condition (6) is fulfilled. Then

(1) operators Lyj, My; € E(Lllj 59, 5 =0,n;

(ii) there exist operators Ly} € E(Slj;ulj)

Theorem 5. [9] Let operator M be (L, p)-bounded, and the condition (6) is fulfilled. Then
for every f € C((0,7);%)), uj € Y, j = 0,n there exists the unique solution to the
problem (8), (4), which has form

P

ult) = = (Mg ' Lo)" My (T = Q) f (1) + > U 7wy + Z/ UL Q;f(s)ds. (7)
§=0 =0T

q=0

Therefore, the uniqueness of solution to the problem (3), (4) is proved in [9].

2. The Analogue of Hoff Equation in Quasi-Sobolev Spaces

Consider the analogue of the linear Hoff equation
A+ MNu, = au, N\ a€R, (8)

in the quasi-Sobolev spaces LU = l;+2 and § = [; where r € R and ¢ € R,. Let operators
L =X+ A and M = oll, then the operators L, M € E(lg“, l)
Let sequence {\;} C Ry, be such that lim A\, = +o0o. Degrees of the Laplace quasi-

k—>00
operator A"u = {Afui}, n € N are lineal continuous operators from the quasi-Sobolev

space l;” to the quasi-Sobolev space I; (0 < ¢ < 1,7 € R).
Lemma 2. Let [[*?, and I}, where r € R and q € Ry. Then for all X € R and o € R\{0}
the operator M is (L,0)-bounded, moreover L-spectrum of the operator M has the form

L(M) = :
) = {ne Com= 2k £ A}
Let the condition (6) be fulfilled, then Lemma (2) provides

Theorem 6. Let A € R, a € R\{0}, and the condition (6) is fulfilled. Then for every
analytic vector-function g : [0, 7] — Ly, as well as for every u; € lT+2, j = 0,n, there exist

the unique solution u € C*([0, 7]; ZT+2) to the problem (8) of the form

u(t) = Z (9. e + Z (e“kt(uo,ek>+/Ot%e“k(t_s)ds> ert

lEN; ==X prEok (M)

t
+Z Z <e“k<t ) {u,; ,ek)—/T —<i(?’;:>e“’“(t_s)ds>ek.

Jj=1 ,LLkEO'LM

Where i, is from L-spectrum of the operator M.
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MHOTI'OTOYEYHOE HAYAJIbHO-KOHEYHOE YCJIOBUE
HJId YPABHEHN A XOPPA B KBA3VMCOBOJIEBBIX
ITPOCTPAHCTBAX

H.H. Coaosvesa, C.A. 3azpebura

Jammast pabora mMOCBAIEHA UCCIETOBAHUIO aHAJIOTa JIMHEHHOro ypaBHenus Xodda B
KBa3UCODOJIEBBIX MIPOCTPAHCTBAX ¢ MHOIOTOYEYHBIM HAYa IbHO-KOHEUHBIM ycjioBueM. Vcce-
JIOBaHUE IIPOBEJIEHO HA OCHOBE aDCTPAKTHBIX PE3YyJIbTaTOB, MOJIyYEHHBIX JJis YPaBHEHUS
CODOJIEBCKOTO THIIA, C MHOTOTOYEYHBIM HAYAJIHHO-KOHEIHBIM YCJIOBHEM B KBa3MOAHAXOBBIX
MIPOCTPAHCTBAX TocieoBarenbaocreil. [IpuBejiena njest T0Ka3aTeIbCTBA CYIECTBOBAHUS U
€JIMHCTBEHHOCTH PEIeHusT OCTABJIEHHON 3a/1a491, a TaKKe IIPUBEJICH €ro BH/I.

Karouesvie ca06a: MHO20MOUEHHAA HAYAAOHO-KOHEUHAS 300040, KEA3UOAHATOBVL NPO-

CMPAHCNBE NOCAEA0BAMENLHOCTET, MEOPEMA O Pacuenterul, ypasHerue Xodga.
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