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A lot of initial-boundary value problems for the equations and the systems of equations
which are not resolved with respect to time derivative are considered in the framework of
abstract Sobolev type equations that make up the vast field of non-classical equations of
mathematical physics. We are interested in the optimal control problem to solutions of the
Showalter — Sidorov problem for the semilinear Sobolev type equation. In this research we
demonstrate the appliance of the abstract scheme to the solution of optimal control problem
for the Hoff equations on a graph. The physical sense of the optimal control problem lies
in the fact that the construction of I-beams should assume the desired shape with minimal
costs. This scheme is based on the Galerkin method, allowing carrying out computational
experiments. The sufficient conditions for the existence of optimal control to solutions of
the Showalter — Sidorov problem for the Hoff equation on the geometrical graph are found.
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Introduction

The Sobolev type equations, also known as degenerate or non-solvable with respect
to the higher derivative equations, constitute an extensive field among the non-classical
equations of mathematical physics [1 — 5|. For example, the Hoff equation

A+ Az — ax — B2’ = u, (0.1)

modelling the buckling of the I-beam [6], is the prototype of semilinear Sobolev type
equation of the form:
Li+ M(z) = u, ker L # {0}. (0.2)

Consider the Showalter — Sidorov problem
L(z(0) —x9) =0 (0.3)

for the semilinear Sobolev type equation (0.2). R.E. Showalter was the first who considered
the problem (0.2), (0.3) in an explicit form, N.A. Sidorov came to the problem (0.2), (0.3)
independently in another way. Condition (0.3) generalizes the classical Cauchy condition
[7]. The solutions of both problems coincide in case of inversability of the operator L. The
initial-boundary value problems for the equation (0.1) can be reduced to the Showalter —
Sidorov problem (0.3) for the equation (0.2) in suitable functional spaces.

We are interested in the optimal control problem

J(x,u) — min (0.4)

for solutions of (0.2), (0.3). Here J(x, u) is some special penalty functional and u € §(,4 is a
control, where §{,4 is some closed convex set in the control space §{. The optimal control of
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solutions for linear equation (0.2) satisfying the Cauchy condition was studied in |3]. The
optimal control of solutions of the Showalter — Sidorov problem for the linear higher-order
Sobolev type equation was studied in [§].

The paper is organized as follows. In the first part we find weak solutions of the
problem (0.2), (0.3). This scheme is based on the Galerkin method, allowing carrying out
computational experiments |9]. In the second part the optimal control problem (0.2) —
(0.4) is studied and the sufficient conditions for the existence of its solutions are obtained.
Many initial-boundary value problems for non-classical equations of mathematical physics
can be solved by suggested abstract scheme. In addition to sufficient conditions of
the optimal control existence we found some necessary (generalizing the Pontryagin
maximum principle) conditions [10]. In [10] there is a representation of the abstract scheme
application to the solution of the Cauchy — Dirichlet problem for the Hoff equation (0.1)
in domain. In the third part we demonstrate the appliance of the abstract scheme to
the solution of optimal control problem for the Hoff equations on a graph. The physical
sense of the optimal control problem lies in the fact that the construction of I-beams
should assume the desired shape with minimal costs. Numerical solution of the optimal
measurement problem for Leontief type equations was investigated in [11].

1. The Showalter — Sidorov Problem

Let H = (#; (-, -)) be a real separable Hilbert space identified with its dual. Let (2, 2*)
and (B, B*) be dual (with respect to the duality (-,-)) pairs of reflexive Banach spaces,
moreover, let the embeddings

A—=B —H =B —A (1.1)

be dense and continuous. Let L € L(2;2*) be a linear self-adjoint positive semidefinite
Fredholm operator. Orthonormal (in the sense of H) set {y;} of eigenfunctions of L
is a basis in the space Q. Further, let M € C"(B;%*) be an s-monotone operator
(i.e. <Ml;x,:1:> > 0, Vz,y € B\{0}) and a p-coercive operator (i.e. (M(x),z) > Cyllz|?
and || M(x)|l. < CM||z||P~" for some constants Cp;, CY € Ry and p € [2,+00) and for
any x € B, where ||-||, |||/« are the norms in the spaces B and B* respectively). For smooth
operator M : ‘B — ‘B*, strong monotonicity implies s-monotonicity, and s-monotonicity
implies strict monotonicity [12].
Consider the Showalter — Sidorov problem

L(z(0) —x9) =0 (1.2)
for the semilinear Sobolev type equation
Li+ M(z) = u. (1.3)

Since L is a self-adjoint Fredholm operator, we have 9 D ker L = coker L C [*.
Obviously, 2* = coker L&im L, then 98* = coker Ldim L[ 9B*. By @ denote the projector
along coker L onto imL [ 9B8*. Introduce the set coim L = {z € 9 : (z,¢) =0, Vi € ker L}.
Obviously, coimL & ker L = 9[. Let coimL be closure of coimL in topology 9. Then
B = ker L & coimL.

If z=x(t),t€(0,T) is a solution of (1.3), then it necessarily belong to the set
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P:{{IG’B:(I—Q)M(m):(I—Q)u}, if  ker L # {0};
B, if kerL = {0}).

The set {¢} of eigenfunctions of operator L is total in B, therefore, we seek Galerkin
approximation of the solution for (1.2), (1.3) in the form

z™(t) = Zak(t)wk, m > dimker L.
k=1

Where the coefficients a = ax(t), k = 1,...,m are defined by the next problem

(L(z™(0) — z0), 1) = 0, k =1,...,m. (1.5)

Equations (1.4) form a degenerate system of ordinary differential equations. Let
B = span{ 1, P2, .oy m}, T € Ry, Thyy = Thn(0).

Lemma 1. [11] For arbitrary xy € B and m > dimker L there is a unique solution
™ e C7(0,1,,;B™) of (1.4), (1.5).

We scalar multiply (1.3) by ¢ € L,(0,7;8) and integrate the resulting equation over

(0,7"). Then . .

/<m@+MWmW@>ﬁ:/<mmwo>ﬁ (1.6)

0 0

Definition 1. The vector function x € L (0, 7;coimL) () L,(0,7;B) is called a solution
of equation (1.3) if it satisfies (1.6) for some T € Ry (t € (0,T)) and uw € L, (0,T;B*),
-1, -1

p+qg  =1.

Theorem 1. For arbitrary o € B, T € Ry, u € L,(0,7;B%) there erists a unique
solution € L (0,T;coim L) () L,(0,T;B) of (1.2), (1.3).

Proof.
Uniqueness. Let x; = z;(f) and x5 = x5(t) be two solutions of (1.2), (1.3). Then for
the difference w = x; — x5, we have

815 <L’UJ, U)> + 2 <M(I1) - M(.ﬁ(]g), U)> =0.
By integrating this relation over the interval (0,t), we obtain

(Lw,w) + 2/0 (M (1) — M(z5),w)dr = 0. (1.7)

The first term in (1.7) is nonnegative, since L is a positive semidefinite operator, and
the second term is positive, since M is an s-monotone operator. Therefore, relation (1.7)
is valid only with w = 0.

Existence. In coimL we introduce the norm |z|*> = (Lz, z) . By the Courant principe,
this norm is equivalent to the norm induced from the superspace H. Multiply the k-th
equation in (1.4) by ay, take a sum of the resulting relations over k = 1, ..., m and integrate
the resulting equation over (0,t). Since M is an p-coercive operator, we have
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t
lz™ (t)]? + C’l/ |l™(7)||Pdr < C; C > 0.
0

Hence it follows that all T}, as provided by Lemma 1 can be set equal to each other:
T,, = T. In addition, since the Banach spaces L,(0,7;8) and L,(0,7;B*) are reflexive,
it follows from the Banach — Alaoglu theorem that there are weak limits

™ — o x —weakly in L (0, T; coimL),

™ — x — weakly in L,(0,T;8),
™(T) — & x —weakly in L. (0,7T; coimL),

M(x™) = p — weakly in L,(0,7T;8"),

where 2 : m € N, is some subsequence of the sequence of Galerkin approximations
provided by Lemma 1.

Let us show that the sequence {2 ()} of Galerkin approximations converges to the
solution x € Lo (0,7 coim L) () L,(0,T;B) of (1.2), (1.3). It can be shown that the weak
limit provides the solution of the problem (1.2) for the equation Li+p = uw and p = M(z).
These assertions can be justified by the usual argument |13] with some modifications.

O
2. Optimal Control Problem

Let T € R,. Consider the space $f = L,(0,7;%8*),p~ "+ ¢~* = 1, and define a closed
convex set U,q C 4. Consider the optimal control problem (1.2), (1.3), (0.4), where the
penalty function is given by the relation

T T
1 N
I =+ / o) = a0l dt + / (). dt,
0 0

J(z,u) — min, (2.1)
zq = z4(t) is the desired state.

Definition 2. A pair (Z,%) € [Loo(0,T;coim L) () L,(0,T;B)] X HUuq is called a solution
of (1.2), (1.3), (2.1), if J(Z,u) = (inf) J(z,u) and every (z,u) satisfies (1.2), (1.3). The

vector @ is called an optimal control in problem (1.2), (1.3), (2.1).
Theorem 2. For arbitrary xy € B,T € R, there exists a solution of (1.2), (1.3), (2.1).

Proof.
It follows from Theorem 1 that the operator
d
(L + M)+ Lo(0, T coimL) () L,(0,T;98) — Ly(0,T;B%)

is a homeomorphism. Since M is an s-monotone operator and L is a positive semidefinite
operator, it follows from the implicit function theorem that the operator (L + M)™! is
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a C"-diffeomorphism. Therefore, the penalty functional (2.1) can be representated in the
form 1 N
J(z,u) = J(u) = ];le(U) — 2dllL, 0 T ;IIUII‘]LQ(O,T;«B*)- (2.2)

Let {u,,} C L,(0,7;%*) be a minimizing sequence, relation (2.2) implies that
|u"™ || L, (0,r:+) < const (2.3)

for all meN. By taking a subsequence if necessary, from (2.3) we get a weakly convergent
sequence u,, — . By the Mazur theorem @ € 4. Set x,,, = z(u,,). By Theorem 1 M (z) €
L,0,7;%*) and u € L,(0,T;8B*); therefore, by (1.3) Li € L,(0,7;%8*). Then Li,, €
L,(0,7T;%*) remains in a bounded set in L,(0,7;B*), ., € Lo (0,T;coimL) () L,(0,T;B)
remains in a bounded set in L (0,T; coimL) () L,(0,T’; B); therefore, we can single out a
subsequence (denote again by x,,) such that

2™ — x x —weakly in Lo, (0, T; coimL),

2™ — x — weakly in L, (0, T;B),

d d
EL:B’” — %Lx — weakly in L, (0, T;B"),

M(z™) = pu — weakly in L, (0, T'; B*).
Thus, to prove the existence of an optimal control, it suffices to show that y = M (z(a)).

This fact follows from the s-monotonicity of operator M. The complete proof of this fact
is contained in [14|. Therefore, passing to the limit in the state equation

Ly, + M(2y) = tp,

we obtain

Consequently, x = x(@) and liminf J(u,,) > J(@). Thus, @ is the optimal control.
O

3. The Hoff Model on a Graph

The Hoff equation (0.1) models the buckling of the I-beam, under a constant load.
The function x = z(s,t), (s,t) € (a,b) x Ry describes the deviation from the vertical
beam, the parameters A € R, o, 5 € R, characterize the load and material properties of
the beam, respectively.

Let G = G(V; E) be a finite connected oriented graph, where V.= {V;} is the vertex
set and E = {E;} is a set of edges. Every edge of the graph has a length [; € R; and
cross-sectional area d; € R,. Consider the Hoff equations on a graph G

j: —)\jl'jt — Tjss + Q75 + 5]113'? = uj;, Qy, 6]‘ eR,, )\j eR,. (31)
They model the dynamics of buckling construction of I-beams.

We are interested in the solution of (3.1) that satisfies the Showalter — Sidorov

condition )

it Oyt o) Ei(5,0) = 2io(s) =0, s € (0,1) (52)
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and the conditions

> dw(0.t) = Y diags(l,t) =0, (3.3)

jiE;€Ee(V;) k: By E<(V;)
2j(0,t) = 24(0,t) = Ty (i, t) = 20 (1, 1), (3.4)
where E;, E, € FEV,), E,,E, € E“(V;) (E*“(V;) is the set of edges of
the graph with the beginning (end) in the edge V;. Consider a Hilbert space
H=Ly(G) ={z = (21,29, ...,xj,...) : ¥ € Ls(0,1;)} with scalar product

Z d / ijjds,

E;cE

and Banach spaces % = {z = (z1, 22, ..., 7, ...) : &; € WJ(0,1;) and (3.4) is fullilled} with

norm
] 2 = Zd/ (42, + a2)ds,

E;eE

B = L4(G) = {SL’ = (LUl,SL’Q, vy Ty ) M L4(O,l])} with norm

lell= 3, [ eas,

E;eE

By the Sobolev theorem functions from W, (0,[;) are absolutely continuous, therefore
the space 2l is correctly defined.
Let 20* be an adjoint space to 2 on duality (-,-) and the relation

(Cz,y) Z d; / TjsY;sds, w,y €A

E;eE

defines the operator C' € Z(2;A*) [14]. Its spectrum o(C') is negative, discrete, with finite
multiplicity and concentrates only to —oo. By {\;} denote the sequence of eigenvalues of
the operator numbered in nonincreasing order with regard to multiplicities. Then the set
of eigenfunctions {py} of operator C, whose orthonormal (in the sense of ), is a basis in
the space 2 since embedding 2 in H is dense and continuous. Note that, by the Sobolev
embedding theorem, the embedding (1.1) is continuous and dense.

Define operators L and M by the relations

(Lz,y) Z d; / TjsYis — Njxiy5)ds,  xy € 2,

Z d / 5 T5Y5 + 5]113' y]) s, T,y € B.

E;eE

Lemma 2. (i) L € L(22A%) is a self-adjoin positive semidefinite Fredholm operator for
all \j < —\y; moreover, the orthonormal family {¢x} of its eigenfunctions is total in space

2L
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(ii) M € C(B;B*) is an s-monotone, 4-coercive operator for all o, B; € Ry .

Proof.
Assertion (i) is well know [15]. Let us prove assertion (ii). The Frechet derivative of
M at point x € 9B satisfies the relation

M.y, w Z d; / a;yjw; + 3ﬁjx yjw;)ds.

LE;eE

(M \<Zd/ ;x5 + Bia))ds <

E;eE

< max{|ayl, 16} (121 Zye) + I2lLue) < constllellL, ),
(M, )| < const||z]7, e lyl7. )

(M, (y, w), 2)| < const||z|| L, |yl LWl e |2l Lae)

[(M, (v, w,y), 2)| < const|v]| L, llw]lLie ¥llLie Iz i@
where symbol const indicates different constants, but they all do not depend on vectors
z,v,w,y,z € Ly(G) and by M M M"' the Frechet derivatives of the operator M at

point z are designated respectlvely. Note also that the Frechet derivative M.

it follows that M € C*°(*8;B*) and it is an s-monotone operator

= 0. Hence

xy Y) Z d; / oz]y] + 35]55 y])ds > 0, Yy € B\{0}.

E;eE

Prove that the operator M is 4-coercive.

(M(z),x )>I1f11n{|0ég|}||$||L2 +mm{lﬁg|}llif||L4 > const||z|3,

(M (@), y)] < max{la [zl a9l 2@) + max{ B ez, Iyll@) <Const!|$||«3||y||<3

Theorem 3. Let \; < -\, «a;,3;,T € Ry. Then for arbitrary xy € ‘B and
u € L%(O,T; B*) there erxists a unique solution v € Lo(0,T;coim L) () L4(0,75B) of

(3.1)-(3.4).

Proof.
From Theorem 1 and Lemma 2 we have the assertion.

Let us proceed to the analysis of the optimal control problem for the Hoff model on a
graph. Take a closed convex set Uyq C L%(O, T; L%(G)).

Theorem 4. Let \; < =\, a5, 8;,T € Ry. Then there exists an optimal control for the
problem (3.1)-(3.4), (2.1).

Proof.

By Theorm 2 and Lemma 2 we have the assertion. -

The author is grateful to G.A. Sviridyuk for useful discussion of the results.
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