
N.A. ManakovaMSC 35Q93, 49J20AN OPTIMAL CONTROL TO SOLUTIONS OF THESHOWALTER � SIDOROV PROBLEM FOR THE HOFFMODEL ON THE GEOMETRICAL GRAPHN.A. Manakova, South Ural State University, Chelyabinsk, Russian Federation,manakova�hotbox.ruA lot of initial-boundary value problems for the equations and the systems of equationswhih are not resolved with respet to time derivative are onsidered in the framework ofabstrat Sobolev type equations that make up the vast �eld of non-lassial equations ofmathematial physis. We are interested in the optimal ontrol problem to solutions of theShowalter � Sidorov problem for the semilinear Sobolev type equation. In this researh wedemonstrate the appliane of the abstrat sheme to the solution of optimal ontrol problemfor the Ho� equations on a graph. The physial sense of the optimal ontrol problem liesin the fat that the onstrution of I-beams should assume the desired shape with minimalosts. This sheme is based on the Galerkin method, allowing arrying out omputationalexperiments. The su�ient onditions for the existene of optimal ontrol to solutions ofthe Showalter � Sidorov problem for the Ho� equation on the geometrial graph are found.Keywords: Sobolev type equation, optimal ontrol, the Showalter � Sidorov problem, theHo� equation.IntrodutionThe Sobolev type equations, also known as degenerate or non-solvable with respetto the higher derivative equations, onstitute an extensive �eld among the non-lassialequations of mathematial physis [1 � 5℄. For example, the Ho� equation
(λ+∆)xt − αx− βx3 = u, (0.1)modelling the bukling of the I-beam [6℄, is the prototype of semilinear Sobolev typeequation of the form:

Lẋ+M(x) = u, kerL 6= {0}. (0.2)Consider the Showalter � Sidorov problem
L(x(0)− x0) = 0 (0.3)for the semilinear Sobolev type equation (0.2). R.E. Showalter was the �rst who onsideredthe problem (0.2), (0.3) in an expliit form, N.A. Sidorov ame to the problem (0.2), (0.3)independently in another way. Condition (0.3) generalizes the lassial Cauhy ondition[7℄. The solutions of both problems oinide in ase of inversability of the operator L. Theinitial-boundary value problems for the equation (0.1) an be redued to the Showalter �Sidorov problem (0.3) for the equation (0.2) in suitable funtional spaes.We are interested in the optimal ontrol problem
J(x, u) → min (0.4)for solutions of (0.2), (0.3). Here J(x, u) is some speial penalty funtional and u ∈ Uad is aontrol, where Uad is some losed onvex set in the ontrol spae U. The optimal ontrol of26 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSsolutions for linear equation (0.2) satisfying the Cauhy ondition was studied in [3℄. Theoptimal ontrol of solutions of the Showalter � Sidorov problem for the linear higher-orderSobolev type equation was studied in [8℄.The paper is organized as follows. In the �rst part we �nd weak solutions of theproblem (0.2), (0.3). This sheme is based on the Galerkin method, allowing arrying outomputational experiments [9℄. In the seond part the optimal ontrol problem (0.2) �(0.4) is studied and the su�ient onditions for the existene of its solutions are obtained.Many initial-boundary value problems for non-lassial equations of mathematial physisan be solved by suggested abstrat sheme. In addition to su�ient onditions ofthe optimal ontrol existene we found some neessary (generalizing the Pontryaginmaximum priniple) onditions [10℄. In [10℄ there is a representation of the abstrat shemeappliation to the solution of the Cauhy � Dirihlet problem for the Ho� equation (0.1)in domain. In the third part we demonstrate the appliane of the abstrat sheme tothe solution of optimal ontrol problem for the Ho� equations on a graph. The physialsense of the optimal ontrol problem lies in the fat that the onstrution of I-beamsshould assume the desired shape with minimal osts. Numerial solution of the optimalmeasurement problem for Leontief type equations was investigated in [11℄.1. The Showalter � Sidorov ProblemLetH = (H; 〈·, ·〉) be a real separable Hilbert spae identi�ed with its dual. Let (A,A∗)and (B,B∗) be dual (with respet to the duality 〈·, ·〉) pairs of re�exive Banah spaes,moreover, let the embeddings
A →֒ B →֒ H →֒ B

∗ →֒ A
∗ (1.1)be dense and ontinuous. Let L ∈ L(A;A∗) be a linear self-adjoint positive semide�niteFredholm operator. Orthonormal (in the sense of H) set {ϕk} of eigenfuntions of Lis a basis in the spae A. Further, let M ∈ Cr(B;B∗) be an s-monotone operator(i.e. 〈M ′

yx, x
〉

> 0, ∀x, y ∈ B\{0}) and a p-oerive operator (i.e. 〈M(x), x〉 ≥ CM‖x‖pand ‖M(x)‖∗ ≤ CM‖x‖p−1 for some onstants CM , CM ∈ R+ and p ∈ [2,+∞) and forany x ∈ B, where ‖·‖, ‖·‖∗ are the norms in the spaesB andB∗ respetively). For smoothoperator M : B → B∗, strong monotoniity implies s-monotoniity, and s-monotoniityimplies strit monotoniity [12℄.Consider the Showalter � Sidorov problem
L(x(0)− x0) = 0 (1.2)for the semilinear Sobolev type equation
Lẋ+M(x) = u. (1.3)Sine L is a self-adjoint Fredholm operator, we have A ⊃ kerL ≡ cokerL ⊂ A

∗.Obviously, A∗ = cokerL⊕imL, thenB
∗ = cokerL⊕imL

⋂

B
∗. By Q denote the projetoralong cokerL onto imL

⋂

B
∗. Introdue the set coimL = {x ∈ A : 〈x, ϕ〉 = 0, ∀ϕ ∈ kerL}.Obviously, coimL ⊕ kerL = A . Let coimL be losure of coimL in topology B. Then

B = kerL⊕ coimL.If x=x(t), t∈(0, T ) is a solution of (1.3), then it neessarily belong to the set2014, vol. 1, no. 1 27
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P =

{

{x ∈ B : (I −Q)M(x) = (I −Q)u}, if kerL 6= {0};
B, if kerL = {0}.The set {ϕk} of eigenfuntions of operator L is total in B, therefore, we seek Galerkinapproximation of the solution for (1.2), (1.3) in the form

xm(t) =
m
∑

k=1

ak(t)ϕk, m > dimkerL.Where the oe�ients ak = ak(t), k = 1, ..., m are de�ned by the next problem
〈Lẋm, ϕk〉+ 〈M(xm), ϕk〉 = 〈u, ϕk〉 , (1.4)

〈L(xm(0)− x0), ϕk〉 = 0, k = 1, ..., m. (1.5)Equations (1.4) form a degenerate system of ordinary di�erential equations. Let
Bm = span{ϕ1, ϕ2, ..., ϕm}, Tm ∈ R+, Tm = Tm(x0).Lemma 1. [11℄ For arbitrary x0 ∈ B and m > dimkerL there is a unique solution
xm ∈ Cr(0, Tm;B

m) of (1.4), (1.5).We salar multiply (1.3) by ϕ ∈ Lp(0, τ ;B) and integrate the resulting equation over
(0, T ). Then

T
∫

0

< Lẋ(t) +M(x(t)), ϕ(t) > dt =

T
∫

0

< u(t), ϕ(t) > dt. (1.6)De�nition 1. The vetor funtion x ∈ L∞(0, τ ; coimL)
⋂

Lp(0, τ ;B) is alled a solutionof equation (1.3) if it satis�es (1.6) for some T ∈ R+ (t ∈ (0, T )) and u ∈ Lq(0, T ;B
∗),

p−1 + q−1 = 1.Theorem 1. For arbitrary x0 ∈ B, T ∈ R+, u ∈ Lq(0, T ;B
∗) there exists a uniquesolution x ∈ L∞(0, T ; coimL)

⋂

Lp(0, T ;B) of (1.2), (1.3).Proof.Uniqueness. Let x1 = x1(t) and x2 = x2(t) be two solutions of (1.2), (1.3). Then forthe di�erene w = x1 − x2, we have
∂t 〈Lw,w〉+ 2 〈M(x1)−M(x2), w〉 = 0.By integrating this relation over the interval (0, t), we obtain

〈Lw,w〉+ 2

∫ t

0

〈M(x1)−M(x2), w〉 dτ = 0. (1.7)The �rst term in (1.7) is nonnegative, sine L is a positive semide�nite operator, andthe seond term is positive, sine M is an s-monotone operator. Therefore, relation (1.7)is valid only with w ≡ 0.Existene. In coimL we introdue the norm |x|2 = 〈Lx, x〉 . By the Courant prinipe,this norm is equivalent to the norm indued from the superspae H. Multiply the k-thequation in (1.4) by ak, take a sum of the resulting relations over k = 1, ..., m and integratethe resulting equation over (0, t). Sine M is an p-oerive operator, we have28 Journal of Computational and Engineering Mathematis
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|xm(t)|2 + C1

∫ t

0

‖xm(τ)‖pdτ ≤ C; C > 0.Hene it follows that all Tm as provided by Lemma 1 an be set equal to eah other:
Tm = T . In addition, sine the Banah spaes Lp(0, T ;B) and Lq(0, T ;B

∗) are re�exive,it follows from the Banah � Alaoglu theorem that there are weak limits
xm → x ∗ −weakly inL∞(0, T ; coimL),

xm → x − weakly in Lp(0, T ;B),

xm(T ) → ξ ∗ −weakly in L∞(0, T ; coimL),

M(xm) → µ − weakly in Lq(0, T ;B
∗),where xm : m ∈ N, is some subsequene of the sequene of Galerkin approximationsprovided by Lemma 1.Let us show that the sequene {xm(t)} of Galerkin approximations onverges to thesolution x ∈ L∞(0, T ; coimL)

⋂

Lp(0, T ;B) of (1.2), (1.3). It an be shown that the weaklimit provides the solution of the problem (1.2) for the equation Lẋ+µ = u and µ = M(x).These assertions an be justi�ed by the usual argument [13℄ with some modi�ations.
22. Optimal Control ProblemLet T ∈ R+. Consider the spae U = Lq(0, T ;B

∗), p−1 + q−1 = 1, and de�ne a losedonvex set Uad ⊂ U. Consider the optimal ontrol problem (1.2), (1.3), (0.4), where thepenalty funtion is given by the relation
J(x, u) =

1

p

T
∫

0

‖x(t)− zd(t)‖
p
B
dt+

N

q

T
∫

0

‖u(t)‖q
B∗dt,

J(x, u) → min, (2.1)

zd = zd(t) is the desired state.De�nition 2. A pair (x̃, ũ) ∈ [L∞(0, T ; coimL)
⋂

Lp(0, T ;B)]× Uad is alled a solutionof (1.2), (1.3), (2.1), if J(x̃, ũ) = inf
(x,u)

J(x, u) and every (x, u) satis�es (1.2), (1.3). Thevetor ũ is alled an optimal ontrol in problem (1.2), (1.3), (2.1).Theorem 2. For arbitrary x0 ∈ B, T ∈ R+ there exists a solution of (1.2), (1.3), (2.1).Proof.It follows from Theorem 1 that the operator
(L

d

dt
+M) : L∞(0, T ; coimL)

⋂

Lp(0, T ;B) → Lq(0, T ;B
∗)is a homeomorphism. Sine M is an s-monotone operator and L is a positive semide�niteoperator, it follows from the impliit funtion theorem that the operator (L d

dt
+M)−1 is2014, vol. 1, no. 1 29



N.A. Manakovaa Cr-di�eomorphism. Therefore, the penalty funtional (2.1) an be representated in theform
J(x, u) = J(u) =

1

p
‖x(u)− zd‖

p

Lp(0,T ;B) +
N

q
‖u‖q

Lq(0,T ;B∗). (2.2)Let {um} ⊂ Lq(0, T ;B
∗) be a minimizing sequene, relation (2.2) implies that

‖um‖Lq(0,T ;B∗) ≤ const (2.3)for all m∈N. By taking a subsequene if neessary, from (2.3) we get a weakly onvergentsequene um → ũ. By the Mazur theorem ũ ∈ Uad. Set xm = x(um). By Theorem 1M(x) ∈
Lq(0, T ;B

∗) and u ∈ Lq(0, T ;B
∗); therefore, by (1.3) Lẋ ∈ Lq(0, T ;B

∗). Then Lẋm ∈
Lq(0, T ;B

∗) remains in a bounded set in Lq(0, T ;B
∗), xm ∈ L∞(0, T ; coimL)

⋂

Lp(0, T ;B)remains in a bounded set in L∞(0, T ; coimL)
⋂

Lp(0, T ;B); therefore, we an single out asubsequene (denote again by xm) suh that
xm → x ∗ −weakly inL∞(0, T ; coimL),

xm → x − weakly inLp(0, T ;B),

d

dt
Lxm →

d

dt
Lx − weakly inLq(0, T ;B

∗),

M(xm) → µ − weakly inLq(0, T ;B
∗).Thus, to prove the existene of an optimal ontrol, it su�es to show that µ = M(x(ũ)).This fat follows from the s-monotoniity of operator M . The omplete proof of this fatis ontained in [14℄. Therefore, passing to the limit in the state equation

Lẋm +M(xm) = um,we obtain
Lẋ+M(x) = ũ.Consequently, x = x(ũ) and lim inf J(um) ≥ J(ũ). Thus, ũ is the optimal ontrol.

23. The Ho� Model on a GraphThe Ho� equation (0.1) models the bukling of the I-beam, under a onstant load.The funtion x = x(s, t), (s, t) ∈ (a, b) × R+ desribes the deviation from the vertialbeam, the parameters λ ∈ R+, α, β ∈ R+ haraterize the load and material properties ofthe beam, respetively.Let G = G(V; E) be a �nite onneted oriented graph, where V = {Vi} is the vertexset and E = {Ei} is a set of edges. Every edge of the graph has a length lj ∈ R+ andross-setional area dj ∈ R+. Consider the Ho� equations on a graph G

j : −λjxjt − xjtss + αjxj + βjx
3
j = uj, αj, βj ∈ R+, λj ∈ R+. (3.1)They model the dynamis of bukling onstrution of I-beams.We are interested in the solution of (3.1) that satis�es the Showalter � Sidorovondition

j : (λj +
∂2

∂s2
)(xj(s, 0)− xj0(s)) = 0, s ∈ (0, lj) (3.2)30 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSand the onditions
∑

j:Ej∈Eα(Vi)

djxjs(0, t)−
∑

k:Ek∈E
ω(Vi)

dkxks(lk, t) = 0, (3.3)

xj(0, t) = xk(0, t) = xm(lm, t) = xn(ln, t), (3.4)where Ej , Ek ∈ Eα(Vi), Em, En ∈ Eω(Vi) (Eα(ω)(Vi) is the set of edges ofthe graph with the beginning (end) in the edge Vi. Consider a Hilbert spae
H = L2(G) = {x = (x1, x2, ..., xj , ...) : xj ∈ L2(0, lj)} with salar produt

〈x, y〉 =
∑

Ej∈E

dj

∫ lj

0

xjyjds,and Banah spaes A = {x = (x1, x2, ..., xj, ...) : xj ∈ W 1
2 (0, lj) and (3.4) is fullilled} withnorm

||x||2
A
=

∑

Ej∈E

dj

∫ lj

0

(x2
js + x2

j )ds,

B = L4(G) = {x = (x1, x2, ..., xj , ...) : xj ∈ L4(0, lj)} with norm
||x||4

B
=

∑

Ej∈E

dj

∫ lj

0

|xj |
4ds.By the Sobolev theorem funtions from W 1

2 (0, lj) are absolutely ontinuous, thereforethe spae A is orretly de�ned.Let A∗ be an adjoint spae to A on duality 〈·, ·〉 and the relation
〈Cx, y〉 = −

∑

Ej∈E

dj

∫ lj

0

xjsyjsds, x, y ∈ Ade�nes the operator C ∈ Z(A;A∗) [14℄. Its spetrum σ(C) is negative, disrete, with �nitemultipliity and onentrates only to −∞. By {λk} denote the sequene of eigenvalues ofthe operator numbered in noninreasing order with regard to multipliities. Then the setof eigenfuntions {ϕk} of operator C, whose orthonormal (in the sense of A), is a basis inthe spae A sine embedding A in H is dense and ontinuous. Note that, by the Sobolevembedding theorem, the embedding (1.1) is ontinuous and dense.De�ne operators L and M by the relations
〈Lx, y〉 =

∑

Ej∈E

dj

∫ lj

0

(xjsyjs − λjxjyj)ds, x, y ∈ A,

〈M(x), y〉 =
∑

Ej∈E

dj

∫ lj

0

(αjxjyj + βjx
3
jyj)ds, x, y ∈ B.Lemma 2. (i) L ∈ L(A;A∗) is a self-adjoin positive semide�nite Fredholm operator forall λj ≤ −λ1; moreover, the orthonormal family {ϕk} of its eigenfuntions is total in spae
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(ii) M ∈ C∞(B;B∗) is an s-monotone, 4-oerive operator for all αj , βj ∈ R+ .Proof.Assertion (i) is well know [15℄. Let us prove assertion (ii). The Frehet derivative of

M at point x ∈ B satis�es the relation
〈M

′

xy, w〉 =
∑

Ej∈E

dj

∫ lj

0

(αjyjwj + 3βjx
2
jyjwj)ds.

| 〈M(x), x〉 | ≤
∑

Ej∈E

dj

∫ lj

0

(αjx
2
j + βjx

4
j )ds ≤

≤ max
j

{|αj|, |βj|}(‖x‖
2
L2(G) + ‖x‖4L4(G)) ≤ const‖x‖4L4(G),

|〈M
′

xy, y〉| ≤ const‖x‖2L4(G)‖y‖
2
L4(G),

|〈M
′′

x (y, w), z〉| ≤ const‖x‖L4(G)‖y‖L4(G)‖w‖L4(G)‖z‖L4(G),

|〈M
′′′

x (v, w, y), z〉| ≤ const‖v‖L4(G)‖w‖L4(G)‖y‖L4(G)‖z‖L4(G),where symbol onst indiates di�erent onstants, but they all do not depend on vetors
x, v, w, y, z ∈ L4(G) and by M

′

x,M
′′

x ,M
′′′

x the Frehet derivatives of the operator M atpoint x are designated respetively. Note also that the Frehet derivative M (4)
x ≡ 0. Heneit follows that M ∈ C∞(B;B∗) and it is an s-monotone operator

〈M
′

xy, y〉 =
∑

Ej∈E

dj

∫ lj

0

(αjy
2
j + 3βjx

2
jy

2
j )ds > 0, ∀y ∈ B\{0}.Prove that the operator M is 4-oerive.

〈M(x), x〉 ≥ min
j
{|αj|}‖x‖

2
L2(G) +min

j
{|βj|}‖x‖

4
L4(G) ≥ const‖x‖4

B
,

|〈M(x), y〉| ≤ max
j

{|αj|}‖x‖L2(G)‖y‖L2(G) +max
j

{|βj|}‖x‖
3
L4(G

‖y‖L4(G) ≤ const‖x‖3
B
‖y‖B.

2Theorem 3. Let λj ≤ −λ1, αj, βj, T ∈ R+. Then for arbitrary x0 ∈ B and
u ∈ L 4

3

(0, T ;B∗) there exists a unique solution x ∈ L∞(0, T ; coimL)
⋂

L4(0, T ;B) of(3.1)�(3.4).Proof.From Theorem 1 and Lemma 2 we have the assertion.
2Let us proeed to the analysis of the optimal ontrol problem for the Ho� model on agraph. Take a losed onvex set Uad ⊂ L 4

3

(0, T ;L 4

3

(G)).Theorem 4. Let λj ≤ −λ1, αj, βj, T ∈ R+. Then there exists an optimal ontrol for theproblem (3.1)�(3.4), (2.1).Proof.By Theorm 2 and Lemma 2 we have the assertion.
2The author is grateful to G.A. Sviridyuk for useful disussion of the results.32 Journal of Computational and Engineering Mathematis
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