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h are not resolved with respe
t to time derivative are 
onsidered in the framework ofabstra
t Sobolev type equations that make up the vast �eld of non-
lassi
al equations ofmathemati
al physi
s. We are interested in the optimal 
ontrol problem to solutions of theShowalter � Sidorov problem for the semilinear Sobolev type equation. In this resear
h wedemonstrate the applian
e of the abstra
t s
heme to the solution of optimal 
ontrol problemfor the Ho� equations on a graph. The physi
al sense of the optimal 
ontrol problem liesin the fa
t that the 
onstru
tion of I-beams should assume the desired shape with minimal
osts. This s
heme is based on the Galerkin method, allowing 
arrying out 
omputationalexperiments. The su�
ient 
onditions for the existen
e of optimal 
ontrol to solutions ofthe Showalter � Sidorov problem for the Ho� equation on the geometri
al graph are found.Keywords: Sobolev type equation, optimal 
ontrol, the Showalter � Sidorov problem, theHo� equation.Introdu
tionThe Sobolev type equations, also known as degenerate or non-solvable with respe
tto the higher derivative equations, 
onstitute an extensive �eld among the non-
lassi
alequations of mathemati
al physi
s [1 � 5℄. For example, the Ho� equation
(λ+∆)xt − αx− βx3 = u, (0.1)modelling the bu
kling of the I-beam [6℄, is the prototype of semilinear Sobolev typeequation of the form:

Lẋ+M(x) = u, kerL 6= {0}. (0.2)Consider the Showalter � Sidorov problem
L(x(0)− x0) = 0 (0.3)for the semilinear Sobolev type equation (0.2). R.E. Showalter was the �rst who 
onsideredthe problem (0.2), (0.3) in an expli
it form, N.A. Sidorov 
ame to the problem (0.2), (0.3)independently in another way. Condition (0.3) generalizes the 
lassi
al Cau
hy 
ondition[7℄. The solutions of both problems 
oin
ide in 
ase of inversability of the operator L. Theinitial-boundary value problems for the equation (0.1) 
an be redu
ed to the Showalter �Sidorov problem (0.3) for the equation (0.2) in suitable fun
tional spa
es.We are interested in the optimal 
ontrol problem
J(x, u) → min (0.4)for solutions of (0.2), (0.3). Here J(x, u) is some spe
ial penalty fun
tional and u ∈ Uad is a
ontrol, where Uad is some 
losed 
onvex set in the 
ontrol spa
e U. The optimal 
ontrol of26 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICSsolutions for linear equation (0.2) satisfying the Cau
hy 
ondition was studied in [3℄. Theoptimal 
ontrol of solutions of the Showalter � Sidorov problem for the linear higher-orderSobolev type equation was studied in [8℄.The paper is organized as follows. In the �rst part we �nd weak solutions of theproblem (0.2), (0.3). This s
heme is based on the Galerkin method, allowing 
arrying out
omputational experiments [9℄. In the se
ond part the optimal 
ontrol problem (0.2) �(0.4) is studied and the su�
ient 
onditions for the existen
e of its solutions are obtained.Many initial-boundary value problems for non-
lassi
al equations of mathemati
al physi
s
an be solved by suggested abstra
t s
heme. In addition to su�
ient 
onditions ofthe optimal 
ontrol existen
e we found some ne
essary (generalizing the Pontryaginmaximum prin
iple) 
onditions [10℄. In [10℄ there is a representation of the abstra
t s
hemeappli
ation to the solution of the Cau
hy � Diri
hlet problem for the Ho� equation (0.1)in domain. In the third part we demonstrate the applian
e of the abstra
t s
heme tothe solution of optimal 
ontrol problem for the Ho� equations on a graph. The physi
alsense of the optimal 
ontrol problem lies in the fa
t that the 
onstru
tion of I-beamsshould assume the desired shape with minimal 
osts. Numeri
al solution of the optimalmeasurement problem for Leontief type equations was investigated in [11℄.1. The Showalter � Sidorov ProblemLetH = (H; 〈·, ·〉) be a real separable Hilbert spa
e identi�ed with its dual. Let (A,A∗)and (B,B∗) be dual (with respe
t to the duality 〈·, ·〉) pairs of re�exive Bana
h spa
es,moreover, let the embeddings
A →֒ B →֒ H →֒ B

∗ →֒ A
∗ (1.1)be dense and 
ontinuous. Let L ∈ L(A;A∗) be a linear self-adjoint positive semide�niteFredholm operator. Orthonormal (in the sense of H) set {ϕk} of eigenfun
tions of Lis a basis in the spa
e A. Further, let M ∈ Cr(B;B∗) be an s-monotone operator(i.e. 〈M ′

yx, x
〉

> 0, ∀x, y ∈ B\{0}) and a p-
oer
ive operator (i.e. 〈M(x), x〉 ≥ CM‖x‖pand ‖M(x)‖∗ ≤ CM‖x‖p−1 for some 
onstants CM , CM ∈ R+ and p ∈ [2,+∞) and forany x ∈ B, where ‖·‖, ‖·‖∗ are the norms in the spa
esB andB∗ respe
tively). For smoothoperator M : B → B∗, strong monotoni
ity implies s-monotoni
ity, and s-monotoni
ityimplies stri
t monotoni
ity [12℄.Consider the Showalter � Sidorov problem
L(x(0)− x0) = 0 (1.2)for the semilinear Sobolev type equation
Lẋ+M(x) = u. (1.3)Sin
e L is a self-adjoint Fredholm operator, we have A ⊃ kerL ≡ cokerL ⊂ A

∗.Obviously, A∗ = cokerL⊕imL, thenB
∗ = cokerL⊕imL

⋂

B
∗. By Q denote the proje
toralong cokerL onto imL

⋂

B
∗. Introdu
e the set coimL = {x ∈ A : 〈x, ϕ〉 = 0, ∀ϕ ∈ kerL}.Obviously, coimL ⊕ kerL = A . Let coimL be 
losure of coimL in topology B. Then

B = kerL⊕ coimL.If x=x(t), t∈(0, T ) is a solution of (1.3), then it ne
essarily belong to the set2014, vol. 1, no. 1 27
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P =

{

{x ∈ B : (I −Q)M(x) = (I −Q)u}, if kerL 6= {0};
B, if kerL = {0}.The set {ϕk} of eigenfun
tions of operator L is total in B, therefore, we seek Galerkinapproximation of the solution for (1.2), (1.3) in the form

xm(t) =
m
∑

k=1

ak(t)ϕk, m > dimkerL.Where the 
oe�
ients ak = ak(t), k = 1, ..., m are de�ned by the next problem
〈Lẋm, ϕk〉+ 〈M(xm), ϕk〉 = 〈u, ϕk〉 , (1.4)

〈L(xm(0)− x0), ϕk〉 = 0, k = 1, ..., m. (1.5)Equations (1.4) form a degenerate system of ordinary di�erential equations. Let
Bm = span{ϕ1, ϕ2, ..., ϕm}, Tm ∈ R+, Tm = Tm(x0).Lemma 1. [11℄ For arbitrary x0 ∈ B and m > dimkerL there is a unique solution
xm ∈ Cr(0, Tm;B

m) of (1.4), (1.5).We s
alar multiply (1.3) by ϕ ∈ Lp(0, τ ;B) and integrate the resulting equation over
(0, T ). Then

T
∫

0

< Lẋ(t) +M(x(t)), ϕ(t) > dt =

T
∫

0

< u(t), ϕ(t) > dt. (1.6)De�nition 1. The ve
tor fun
tion x ∈ L∞(0, τ ; coimL)
⋂

Lp(0, τ ;B) is 
alled a solutionof equation (1.3) if it satis�es (1.6) for some T ∈ R+ (t ∈ (0, T )) and u ∈ Lq(0, T ;B
∗),

p−1 + q−1 = 1.Theorem 1. For arbitrary x0 ∈ B, T ∈ R+, u ∈ Lq(0, T ;B
∗) there exists a uniquesolution x ∈ L∞(0, T ; coimL)

⋂

Lp(0, T ;B) of (1.2), (1.3).Proof.Uniqueness. Let x1 = x1(t) and x2 = x2(t) be two solutions of (1.2), (1.3). Then forthe di�eren
e w = x1 − x2, we have
∂t 〈Lw,w〉+ 2 〈M(x1)−M(x2), w〉 = 0.By integrating this relation over the interval (0, t), we obtain

〈Lw,w〉+ 2

∫ t

0

〈M(x1)−M(x2), w〉 dτ = 0. (1.7)The �rst term in (1.7) is nonnegative, sin
e L is a positive semide�nite operator, andthe se
ond term is positive, sin
e M is an s-monotone operator. Therefore, relation (1.7)is valid only with w ≡ 0.Existen
e. In coimL we introdu
e the norm |x|2 = 〈Lx, x〉 . By the Courant prin
ipe,this norm is equivalent to the norm indu
ed from the superspa
e H. Multiply the k-thequation in (1.4) by ak, take a sum of the resulting relations over k = 1, ..., m and integratethe resulting equation over (0, t). Sin
e M is an p-
oer
ive operator, we have28 Journal of Computational and Engineering Mathemati
s
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|xm(t)|2 + C1

∫ t

0

‖xm(τ)‖pdτ ≤ C; C > 0.Hen
e it follows that all Tm as provided by Lemma 1 
an be set equal to ea
h other:
Tm = T . In addition, sin
e the Bana
h spa
es Lp(0, T ;B) and Lq(0, T ;B

∗) are re�exive,it follows from the Bana
h � Alaoglu theorem that there are weak limits
xm → x ∗ −weakly inL∞(0, T ; coimL),

xm → x − weakly in Lp(0, T ;B),

xm(T ) → ξ ∗ −weakly in L∞(0, T ; coimL),

M(xm) → µ − weakly in Lq(0, T ;B
∗),where xm : m ∈ N, is some subsequen
e of the sequen
e of Galerkin approximationsprovided by Lemma 1.Let us show that the sequen
e {xm(t)} of Galerkin approximations 
onverges to thesolution x ∈ L∞(0, T ; coimL)

⋂

Lp(0, T ;B) of (1.2), (1.3). It 
an be shown that the weaklimit provides the solution of the problem (1.2) for the equation Lẋ+µ = u and µ = M(x).These assertions 
an be justi�ed by the usual argument [13℄ with some modi�
ations.
22. Optimal Control ProblemLet T ∈ R+. Consider the spa
e U = Lq(0, T ;B

∗), p−1 + q−1 = 1, and de�ne a 
losed
onvex set Uad ⊂ U. Consider the optimal 
ontrol problem (1.2), (1.3), (0.4), where thepenalty fun
tion is given by the relation
J(x, u) =

1

p

T
∫

0

‖x(t)− zd(t)‖
p
B
dt+

N

q

T
∫

0

‖u(t)‖q
B∗dt,

J(x, u) → min, (2.1)

zd = zd(t) is the desired state.De�nition 2. A pair (x̃, ũ) ∈ [L∞(0, T ; coimL)
⋂

Lp(0, T ;B)]× Uad is 
alled a solutionof (1.2), (1.3), (2.1), if J(x̃, ũ) = inf
(x,u)

J(x, u) and every (x, u) satis�es (1.2), (1.3). Theve
tor ũ is 
alled an optimal 
ontrol in problem (1.2), (1.3), (2.1).Theorem 2. For arbitrary x0 ∈ B, T ∈ R+ there exists a solution of (1.2), (1.3), (2.1).Proof.It follows from Theorem 1 that the operator
(L

d

dt
+M) : L∞(0, T ; coimL)

⋂

Lp(0, T ;B) → Lq(0, T ;B
∗)is a homeomorphism. Sin
e M is an s-monotone operator and L is a positive semide�niteoperator, it follows from the impli
it fun
tion theorem that the operator (L d

dt
+M)−1 is2014, vol. 1, no. 1 29



N.A. Manakovaa Cr-di�eomorphism. Therefore, the penalty fun
tional (2.1) 
an be representated in theform
J(x, u) = J(u) =

1

p
‖x(u)− zd‖

p

Lp(0,T ;B) +
N

q
‖u‖q

Lq(0,T ;B∗). (2.2)Let {um} ⊂ Lq(0, T ;B
∗) be a minimizing sequen
e, relation (2.2) implies that

‖um‖Lq(0,T ;B∗) ≤ const (2.3)for all m∈N. By taking a subsequen
e if ne
essary, from (2.3) we get a weakly 
onvergentsequen
e um → ũ. By the Mazur theorem ũ ∈ Uad. Set xm = x(um). By Theorem 1M(x) ∈
Lq(0, T ;B

∗) and u ∈ Lq(0, T ;B
∗); therefore, by (1.3) Lẋ ∈ Lq(0, T ;B

∗). Then Lẋm ∈
Lq(0, T ;B

∗) remains in a bounded set in Lq(0, T ;B
∗), xm ∈ L∞(0, T ; coimL)

⋂

Lp(0, T ;B)remains in a bounded set in L∞(0, T ; coimL)
⋂

Lp(0, T ;B); therefore, we 
an single out asubsequen
e (denote again by xm) su
h that
xm → x ∗ −weakly inL∞(0, T ; coimL),

xm → x − weakly inLp(0, T ;B),

d

dt
Lxm →

d

dt
Lx − weakly inLq(0, T ;B

∗),

M(xm) → µ − weakly inLq(0, T ;B
∗).Thus, to prove the existen
e of an optimal 
ontrol, it su�
es to show that µ = M(x(ũ)).This fa
t follows from the s-monotoni
ity of operator M . The 
omplete proof of this fa
tis 
ontained in [14℄. Therefore, passing to the limit in the state equation

Lẋm +M(xm) = um,we obtain
Lẋ+M(x) = ũ.Consequently, x = x(ũ) and lim inf J(um) ≥ J(ũ). Thus, ũ is the optimal 
ontrol.

23. The Ho� Model on a GraphThe Ho� equation (0.1) models the bu
kling of the I-beam, under a 
onstant load.The fun
tion x = x(s, t), (s, t) ∈ (a, b) × R+ des
ribes the deviation from the verti
albeam, the parameters λ ∈ R+, α, β ∈ R+ 
hara
terize the load and material properties ofthe beam, respe
tively.Let G = G(V; E) be a �nite 
onne
ted oriented graph, where V = {Vi} is the vertexset and E = {Ei} is a set of edges. Every edge of the graph has a length lj ∈ R+ and
ross-se
tional area dj ∈ R+. Consider the Ho� equations on a graph G

j : −λjxjt − xjtss + αjxj + βjx
3
j = uj, αj, βj ∈ R+, λj ∈ R+. (3.1)They model the dynami
s of bu
kling 
onstru
tion of I-beams.We are interested in the solution of (3.1) that satis�es the Showalter � Sidorov
ondition

j : (λj +
∂2

∂s2
)(xj(s, 0)− xj0(s)) = 0, s ∈ (0, lj) (3.2)30 Journal of Computational and Engineering Mathemati
s
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onditions
∑

j:Ej∈Eα(Vi)

djxjs(0, t)−
∑

k:Ek∈E
ω(Vi)

dkxks(lk, t) = 0, (3.3)

xj(0, t) = xk(0, t) = xm(lm, t) = xn(ln, t), (3.4)where Ej , Ek ∈ Eα(Vi), Em, En ∈ Eω(Vi) (Eα(ω)(Vi) is the set of edges ofthe graph with the beginning (end) in the edge Vi. Consider a Hilbert spa
e
H = L2(G) = {x = (x1, x2, ..., xj , ...) : xj ∈ L2(0, lj)} with s
alar produ
t

〈x, y〉 =
∑

Ej∈E

dj

∫ lj

0

xjyjds,and Bana
h spa
es A = {x = (x1, x2, ..., xj, ...) : xj ∈ W 1
2 (0, lj) and (3.4) is fullilled} withnorm

||x||2
A
=

∑

Ej∈E

dj

∫ lj

0

(x2
js + x2

j )ds,

B = L4(G) = {x = (x1, x2, ..., xj , ...) : xj ∈ L4(0, lj)} with norm
||x||4

B
=

∑

Ej∈E

dj

∫ lj

0

|xj |
4ds.By the Sobolev theorem fun
tions from W 1

2 (0, lj) are absolutely 
ontinuous, thereforethe spa
e A is 
orre
tly de�ned.Let A∗ be an adjoint spa
e to A on duality 〈·, ·〉 and the relation
〈Cx, y〉 = −

∑

Ej∈E

dj

∫ lj

0

xjsyjsds, x, y ∈ Ade�nes the operator C ∈ Z(A;A∗) [14℄. Its spe
trum σ(C) is negative, dis
rete, with �nitemultipli
ity and 
on
entrates only to −∞. By {λk} denote the sequen
e of eigenvalues ofthe operator numbered in nonin
reasing order with regard to multipli
ities. Then the setof eigenfun
tions {ϕk} of operator C, whose orthonormal (in the sense of A), is a basis inthe spa
e A sin
e embedding A in H is dense and 
ontinuous. Note that, by the Sobolevembedding theorem, the embedding (1.1) is 
ontinuous and dense.De�ne operators L and M by the relations
〈Lx, y〉 =

∑

Ej∈E

dj

∫ lj

0

(xjsyjs − λjxjyj)ds, x, y ∈ A,

〈M(x), y〉 =
∑

Ej∈E

dj

∫ lj

0

(αjxjyj + βjx
3
jyj)ds, x, y ∈ B.Lemma 2. (i) L ∈ L(A;A∗) is a self-adjoin positive semide�nite Fredholm operator forall λj ≤ −λ1; moreover, the orthonormal family {ϕk} of its eigenfun
tions is total in spa
e

A.2014, vol. 1, no. 1 31



N.A. Manakova
(ii) M ∈ C∞(B;B∗) is an s-monotone, 4-
oer
ive operator for all αj , βj ∈ R+ .Proof.Assertion (i) is well know [15℄. Let us prove assertion (ii). The Fre
het derivative of

M at point x ∈ B satis�es the relation
〈M

′

xy, w〉 =
∑

Ej∈E

dj

∫ lj

0

(αjyjwj + 3βjx
2
jyjwj)ds.

| 〈M(x), x〉 | ≤
∑

Ej∈E

dj

∫ lj

0

(αjx
2
j + βjx

4
j )ds ≤

≤ max
j

{|αj|, |βj|}(‖x‖
2
L2(G) + ‖x‖4L4(G)) ≤ const‖x‖4L4(G),

|〈M
′

xy, y〉| ≤ const‖x‖2L4(G)‖y‖
2
L4(G),

|〈M
′′

x (y, w), z〉| ≤ const‖x‖L4(G)‖y‖L4(G)‖w‖L4(G)‖z‖L4(G),

|〈M
′′′

x (v, w, y), z〉| ≤ const‖v‖L4(G)‖w‖L4(G)‖y‖L4(G)‖z‖L4(G),where symbol 
onst indi
ates di�erent 
onstants, but they all do not depend on ve
tors
x, v, w, y, z ∈ L4(G) and by M

′

x,M
′′

x ,M
′′′

x the Fre
het derivatives of the operator M atpoint x are designated respe
tively. Note also that the Fre
het derivative M (4)
x ≡ 0. Hen
eit follows that M ∈ C∞(B;B∗) and it is an s-monotone operator

〈M
′

xy, y〉 =
∑

Ej∈E

dj

∫ lj

0

(αjy
2
j + 3βjx

2
jy

2
j )ds > 0, ∀y ∈ B\{0}.Prove that the operator M is 4-
oer
ive.

〈M(x), x〉 ≥ min
j
{|αj|}‖x‖

2
L2(G) +min

j
{|βj|}‖x‖

4
L4(G) ≥ const‖x‖4

B
,

|〈M(x), y〉| ≤ max
j

{|αj|}‖x‖L2(G)‖y‖L2(G) +max
j

{|βj|}‖x‖
3
L4(G

‖y‖L4(G) ≤ const‖x‖3
B
‖y‖B.

2Theorem 3. Let λj ≤ −λ1, αj, βj, T ∈ R+. Then for arbitrary x0 ∈ B and
u ∈ L 4

3

(0, T ;B∗) there exists a unique solution x ∈ L∞(0, T ; coimL)
⋂

L4(0, T ;B) of(3.1)�(3.4).Proof.From Theorem 1 and Lemma 2 we have the assertion.
2Let us pro
eed to the analysis of the optimal 
ontrol problem for the Ho� model on agraph. Take a 
losed 
onvex set Uad ⊂ L 4

3

(0, T ;L 4

3

(G)).Theorem 4. Let λj ≤ −λ1, αj, βj, T ∈ R+. Then there exists an optimal 
ontrol for theproblem (3.1)�(3.4), (2.1).Proof.By Theorm 2 and Lemma 2 we have the assertion.
2The author is grateful to G.A. Sviridyuk for useful dis
ussion of the results.32 Journal of Computational and Engineering Mathemati
s
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