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SOLVABILITY OF THE SHOWALTER-SIDOROV PROBLEM
FOR SOBOLEV TYPE EQUATIONS WITH OPERATORS

IN THE FORM OF FIRST-ORDER POLYNOMIALS

FROM THE LAPLACE-BELTRAMI OPERATOR

ON DIFFERENTIAL FORMS
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We consider solvability of the Showalter—Sidorov problem for the Barenblatt—Zheltov—
Kochina equations and the Hoff linear equation. The equations are linear representatives
of the class of linear Sobolev type equations with an irreversible operator under derivative.
We search for a solution to the problem in the space of differential k-forms defined on a
Riemannian manifold without boundary. Both equations are the special cases of an equation
with operators in the form of polynomials of the first degree from the Laplace—Beltrami
operator, generalizing the Laplace operator in spaces of differential k-forms up to a sign.
Applying the Sviridyuk theory and the Hodge-Kodaira theorem, we prove an existence of
the subspace in which there exists a unique solution to the problem.
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differential forms, Laplace—Beltrami operator

Introduction

The Barenblatt—Zheltov—Kochina equation
(A= A)uy = A, (1)

which simulates dynamics of the pressure of a viscoelastic fluid filtering in fractured porous
media [1], and linearization of the Hoff equation

(A — Ay = u (2)

which simulates the process of I-beam buckling under load, for low pressure and high
temperature [2|, can be understood as concrete interpretations of the abstract linear
equation of the Sobolev type (with ker L # {0})

Lu = Mu. (3)

These equations and various initial-boundary value problems for them in Banach
spaces are widely studied in the scientific school of G.A. Sviridyuk. The general theory of
solvability for various cases is presented in [3]. Let operators L, M € L(4;F) be linear and
continuous, and the space 4 be presented as a direct sum 4 = U° @ LU,

In this paper we study the Showalter—Sidorov problem [4]

P(u(0) —uo) = 0, (4)
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for an equation with operators L, M in the form of polynomials from the Laplace - Beltrami
operator
(ko + kK1A)u; = (ap + aA)u, (5)

where L is a polynomial of the first order (k1 # 1), M is a polynomial of the first or
zero order, and the roots of the polynomials are different, that is {2 # 2¢. Positive signs
under Laplacians are related to the fact that we take pseudodifferential Laplace—Beltrami
operator acting in spaces of differential k -forms $* = $*(Q,,) defined on Riemannian
manifold without boundary 2,, which generalizes the Laplace operator only up to the
sign [5]. The Cauchy problem for Sobolev type equations in spaces of k-forms defined on
a Riemannian manifold without boundary was investigated, for example, in [6]. Here we
consider the Showalter—Sidorov problem described in detail in [4]. Similar problems were
investigated in other spaces in the papers [7] and [8], where polynomials of arbitrary order
with real and complex coefficients from the Laplace operator are used as operators L, M,
respectively.

The article includes Introduction, three paragraphs and References. The first two
paragraphs contain the preliminary information. Required information from the abstract
theory [3] of linear Sobolev type equations (3) is presented in paragraph 1. The Hodge—
Kodaira theory for the Laplace—Beltrami operator on k-forms and its applications
extracted from [5], [10], [11] are written in our notations in paragraph 2. In paragraph 3 we
show reduction of the Showalter—Sidorov problem (4) for the equation (5) to an abstract
linear Sobolev type equation and return to the Barenblatt—Zheltov—Kochina equations
(1) and linearization of the Hoff equations (2), as particular cases of the equation (5).
References do not pretend for completeness, but only follow the preferences of the authors.

1. The Showalter—Sidorov Problem for Abstract Sobolev Type
Equations

Let ¢ and § be Banach spaces, the operators L, M € L(4; F). Consider [3| L-resolvent
set
pr(M)={peC:(uL - M) € L(FW}

and L-spectrum ol(M) = C \ p“(M) of the operator M. If L-spectrum ol (M) of the
operator M is bounded, then the operator M is called (L, o)-bounded. If the operator M
is (L, 0)-bounded, then there exist projectors

1 1
oo [ REODdn e L. Q= [ Lindne £
ol Y

Here R} (M) = (uL — M)™'L and L};(M) = L(pL — M)~" is right and left L-resolvent of
the operator M, respectively, and the closed contour v C C bounds a domain containing
ol (M).

We set U(U') = ker P(imP), §°(F') = ker Q(im@) and denote restriction of the
operator L(M) on U* k= 0,1 by Ly(My).

Theorem 1. (Splitting theorem). Let operator M be (L, o)-bounded, then
(i) operators Ly(My) € L(U*;F), k=0,1;
(ii) there exist operators Myt € L(F%U°) and L1 € L(FH;Ub).
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Proof. Construct operators H = My 'Ly € L(U°), S = L7 M, € L(UY).
Corollary 1. Let operator M be (L, o)-bounded, then for all € p*(M)

(WL — M) == M (1= Q) + Y *S* LR
k=0 k=1

An operator M is called (L,p)-bounded, p € {0} UN, if co is a removable singular
point (that is, H = Q,p = 0) or a pole of order p € N (that is, H? # Q, H?™ = O are
L-resolvents (uL — M)~! of the operator M).

Let operator M be (L, p)-bounded, p € {0}UN. Consider for the homogeneous equation

Li = Mu (6)
the initial Showalter—Sidorov condition
[RED]™ (u(0) = o) = 0. (7)
Definition 1. A set 8 C 4l is called a phase space of the equation (6), if
(i) any trajectory of the solution u = u(¢) lies in 3 pointwise, that is u(t) € P for all
t eR;

(ii) for any initial condition ugy € P there exists the unique solution u € C*(R; ) to
the problem (6), (7).

Theorem 2. Let operator M be (L, p)-bounded, p € {0} UN. Then phase space of the
equation (6) is the subspace U'.

Definition 2. A map U® € C®(R; L()) is called a group of resolving operators, if

UsU' = Ut for all s,t € R. (8)

A group {U" : t € R} is called holomorphic, if the group is analytically continued
to the entire complex plane with preserving the property (8); and degenerate, if its unit
UY € L(4) is a projection.

Theorem 3. Let operator M be (L,o)-bounded. Then there exists the unique resolving
group of the equation (6)
1
U'=— | RE(M)etdu, teR. 9
o | REODeap, Q
v

Here v C C is the same contour as in projectors P, Q. Note that unit of the group (8)
is the projector P.

By Theorem 1, Ut = Q(I — P) + ¢S P.

And, by the same theorem, the condition (7) is equivalent to the condition:

P(u(0) — ug) = 0. (10)
Therefore, the following lemma holds.

Lemma 1. Let operator M be (L, p)-bounded, p € {0} UN. Then for any uy € 4* there is
a unique solution u € C*°(R, L) to the problem (6), (7), which has the form u(t) = Utuy,
teR.
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2. Hodge—Kodaira Theory for the Laplace—Beltrami Operator
in the Space of k-forms on a Riemannian Manifold without
Boundary

Let €2, be a smooth compact orientable n-dimensional Riemannian manifold without
boundary. Denote a space of differential k-forms on Q, by H* = H*(Q,,),0 < k < n. Note
that H°(R") is the space of functions of n variables.

There exists a linear Hodge operator * : H¥ — H" % which maps a k-form on € to
the (n — k)-form, and the equality ** = (—1)*™=%) is true.

There is an operator for taking an external differential d : H* — H**!. Define the
operator § : H* — H*! such that

5 = (_1)n(k+1)+1 * dx

b
which on O-forms is a zero linear functional.

Definition 3. The Laplace-Beltrami operator A : H* — H* (or breifly, Laplacian) is
defined by the equality
A=dd+ds (11)

and is a linear operator on the space H*,0 < k < n.

Remark 1. On smooth functions in Euclidean space R™ (that is, in H°(R™)) the Laplacian

82

coincides with (—1) > 5.
1 T

1=

Definition 4. Define a space of harmonic p-forms as
HE ={we H": Aw = 0}.

Theorem 4. (Hodge decomposition theorem). For any integer k,0 < k < n, the space HY
18 finite-dimensional and there exists the following decomposition of the space of smooth
k-forms on §,, in orthogonal direct sum

H* = A(H") @ H* = d§(H*) @ 0d(H*) @ HE.

Therefore, the equation Aw = « has a solution w € (H%X)', when k-form « is
orthogonal to the space of harmonic forms.
Define a scalar product in space H*, kK =0, 1,...,n by the formula
(5777)0:/5/\*777 fanerﬂ (12)
Qn
where * is the Hodge operator. Denote the corresponding norm by || - ||o. Continue the
scalar product (12) to the direct sum & H* such that different spaces H" are orthogonal.
k=0
Denote a completion of the space H* with respect to the norm || - ||o by $F, and an

orthogonal projection on $% by Ppa.
Introduce a scalar product on H* by the formulas

(&;mh = (A&, m)o + (€asma)o, (13)
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(€,m)2 = (A, An)o + (€, 1)1, (14)
where wa = Pyaw. Denote a completion of the lineal H* with respect to the corresponding
norms || - ||; and || - ||2 by $% and $%, respectively.

Remark 2. In fact, the superscript means how many times k-forms in the corresponding
spaces are differentiable in the generalized sense.

The spaces HF ,l = 1,2, are Banach spaces (their Hilbert structure is not of interest
in the future), and there are continuous and dense imbeddings $5 C $% C H%. There is
the following corollary.

Corollary 2. For any k =0,1,...,n there exist splittings of the spaces
f)f = 57);“- S ‘627

where HF = (1 — Ppa)[HF], 1 =0,1,2.

3. The Showalter—Sidorov Problem for an Equation with
Operators in the Form of Polynomials from the Laplace—
Beltrami Operator

Divide the equation (5) by the coefficient x; and get the equation

(A + A)uy = (10 + 11 A)u, (15)
where
A= =,
/{1, 0 /{17 1 /{1‘

Consider the Showalter—Sidorov problem
P(u(0) —ugp) = 0. (16)

Denote the spaces U = é oETF = é 9k Next, define the operators L, M by the
k=0 k=0

formulas
L:)\H+A,M:To]I+T1A. (17)

The spectrum of the Laplace—Beltrami operator o(A) is a countable set of non-negative
eigenvalues of finite multiplicity condensing only at the point +oc. Denote the set by
a sequence {\;} numbered according to multiplicity. Denote eigenfunctions by {¢y}.

By the Atiyah-Singer theorem [12]| the operator L is Fredholm. There is the following
lemma.

Lemma 2. For any A € R\ {0}, 70,71 € R and fized k = 0,1,...,n the operator M is
(L, 0)-bounded.

Proof.
Calculate limit of the sequence {u} = {%} Since A\ — 400, then
. . To + Tl)\k (0. 9] .
1 — ljm T [—] =7, if T #£0,
)\ki)H—i}oo Hi )\kbin—goo A+ /\k: 0 Hit 7&
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lim pp = lim

To + T1 \k . |: c

—] —0,if 71 = 0.
o0

Note that the limit is finite. Therefore, there is a removable singular point, which
corresponds to a pole of order p = 0. The sequence is bounded, because it converges.

O
For A € o(A) the phase space is
Ut =4,

and for A ¢ o(A)
U ={ueth: (u,pp)o =0,A =\ }.

By Lemma 1, the reduction carried out leads us to the following

Theorem 5. For any A € R\ {0},70,71 € R and ug € U' there is a unique solution
u € C®(R,4) to the problem (15), (16).
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PABPEININMOCTDb 3AJAYN IHHIOYOJITEPA-C1IOPOBA
JJ1d YPABHEHUII COBOJIEBCKOI'O TUIIA

C OIIEPATOPAMM B BUJE ITOJIMHOMOB 1-I'O ITOPAJTIKA
OT OIIEPATOPA JIAIIJIACA-BEJIBTPAMU

HA JTNOOEPEHIITMAJIBHBIX ®OPMAX

. E. Illagpparos, H.B. Adyxosa

B pabore uccienyercst pazperumoctsd 3agadu [Hoyonrepa—CuopoBa jjist ypaBHeHAN
Bapenbmarra—2KenroBareix—Kouunnoit u jmHeiiHOrO ypaBHeHust Xodda SBIISIONUXCS JIH-
HEHHBIMU MPEJICTABATENISAMH KJIACCA JIMHEHHBIX yPAaBHEHUN CODOJIEBCKOrO THIIA, ¢ HeoOpa-
TUMBIM OITIEPATOPOM TP IIPOU3BO/IHOMN. Perrenme wimercss B mpocTpancTBe auddepeHiim-
aJIbHBIX K-(pOpM, OIpese/IeHHBIX HAa PUMAHOBOM MHOrooopasuu 6e3 kpas. Oba ypaBHeHUs
OyIyT 9aCTHBIM CJIydaeM ypPaBHEHUs C OIlepaTOpPaMy B BHJE MHOTOYJIEHOB 1-0if cTemeHu or
orreparopa Jlannaca—Benbrpamu, obobmaomnuii oneparop Jlammaca ¢ TOYHOCTBIO 70 3HAKA
B mpocTpancTBax gauddepennnaabubix k-opm.

[Mpumensist reoputo CBupuioka u Teopemy Xoka—Komanpa mosydaercs JgoKa3aTh CyIie-
CTBOBaHUS MOIIIPOCTPAHCTBA B KOTOPOM CYIIECTBYET €IMHCTBEHHOE PEIleHre 3a/atu.
Karouesnie caosa: ypasHernus cob0Ae6CK020 MUnNa, PUMaGHOBb, MHO2000Da3UA, MHO2000-

pasue 6e3 kpas, dupdeperyuarvrvie Gopmoi, onepamop Jlanaaca—Beavmpamu,
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