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The question considered in the travelling salesman problem is the following. For a given
list of cities and the distances between each pair of cities, to construct the shortest possible
path that visits each city exactly once and returns to the origin city. The problem is an NP-
hard problem in combinatorial optimization and is important in operations research. The
traveling salesman problem is one of the most famous and heavily researched problems in
theoretical computer science. We consider the version, which is the Symmetric Maximum
Traveling Salesman Problem. The article describes an approximation algorithm for the
maximum traveling salesman problem, based on two known polynomial time approximation
algorithms. The accuracy of this algorithm is 25/33.
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Introduction
Let G = (V,E) be a complete undirected graph with vertex set V and edge set E. For

e ∈ E let w(e) ≥ 0 be its weight. For E ′ ⊆ E we denote w(E ′) =
∑
e∈E′

w(e). The maximum

traveling salesman problem (Max TSP) is the following: to search for a Hamiltonian cycle
(a tour) with maximum total edge weight. The problem is max-SNP-hard [1] and therefore
there exists a constant β < 1 such that a probability to obtain a solution which is better
than β is NP-hard.

Let µ be a weight of the optimal tour. A polynomial algorithm guaranteeing
an accuracy of the solution 5/7 is described in [2]. Anatoly Serdyukov describes an
approximation algorithm with better probability to obtain a solution and an accuracy
3/4 in [3] (a metric case of the maximum traveling salesman problem is considered in [4]).

Serdyukov’s algorithm is given in the section 2. Then, we combine ideas from [3] and
[2] to form a polynomial algorithm that solving the maximum traveling salesman problem
with an estimate of accuracy of the solution 25/33. The improvement of the estimate is
small, but we at least demonstrate that the estimate 3/4 can be improved and, therefore,
further research in this direction is encouraged. This algorithm is described in section 3.

1. Serdyukov’s Algorithm
A cycle cover, or binary 2-matching, is a subgraph in which each vertex in V has

degree 2 exactly. A subset of edges of an undirected graph is called matching (perfect
matching) if each vertex of the graph is incident at most (exactly, respectively) than to
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one edge in the given subset [5]. A subtour is a subset of edges of the graph that can be
completed to a Hamiltonian cycle (i.e., the subset contains no Hamiltonian cycles and no
vertex of degree more than 2). A maximum cycle cover is a cycle cover with maximum
total edge weight. A maximum matching is a set of vertex-disjoint edges having maximum
total weight. Serdyukov’s algorithm is given in Fig. 1.

Fig. 1. Serdyukov’s algorithm

A weight of the cycle cover is an upper bound for µ, and a weight of the matching is
at least 1

2
µ. Therefore, w(T1) + w(T2) ≥ 3

2
µ and max{w(T1), w(T2)} ≥ 3

4
µ. The article [3]

also shows how to modify the algorithm such that the estimate is fulfilled regardless the
parity of the graph vertices.

2. A New Algorithm
Algorithm Max_TSP is given in Fig. 2. The algorithm constructs three tours and

selects a tour with greater weight.

Fig. 2. Algorithm Max_TSP

The first tour is constructed, as in [2], by Algorithm A1 (see Fig. 3). The algorithm
uses a parameter ε > 0 and considers short cycles, such that |Ci| ≤ ε−1, and long cycles
in different ways. For each short cycle the algorithm computes a maximum Hamiltonian
path on vertices of the short cycle. For each long cycle the algorithm deletes an edge of
minimum length. A tour T1 is formed from the resulting Hamiltonian paths.

The second algorithm (see Fig. 4) is a modified version of Serdyukov’s algorithm. The
algorithm transfers edges from C to W using a randomized selection step, and generates
two subtours. A set formed from W with the transferred edges is expanded arbitrarily
to a tour T2. Another set, consisting of the remaining edges of C, is first expanded by
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Fig. 3. Algorithm A1

new edges whose two ends belong to different cycles of C, an then the set is arbitrarily
expanded to a tour T3.

Fig. 4. Algorithm A2

Lemma 1. Let Algorithm A2 considers Ci. Then it is possible to construct the desired
matchings Mi and M ′

i such that both matchings are nonempty, Mi ∪W and M ′
i ∪W are

subtours, and each vertex of Ci is incident to at least one edge from Mi ∪M ′
i .

Proof. Denote the edges of Ci by e1, , ek in cyclic order, starting from an arbitrary edge.
Go through Ci starting from e1. Alternately add edges of Ci to Mi and M ′

i . If such
addition (for example, ej to Mi) creates a cycle in Mi ∪W (in particular, if this edge is
already in W ) then omit the edge ej and assign instead the next edge, ej+1 to Mi. Note
that one of the additions is always possible, therefore we never omit two successive edges.
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A conflict can take place for the last edge of Ci in the following two cases.
First, a conflict can take place, if we assigned both edges e1 and ek to Mi. We solve

this conflict as follows: if e2 was added to M ′
i then we just omit e1. Else, if we omitted e2

because it was not possible to add e2 to M ′
i , then it is possible to add e1 to M ′

i . Therefore,
in this case we add e1 to M ′

i rather than to Mi.
Second, a conflict can take place, if both edges e1 and ek were omitted. Therefore, we

couldn’t add e1 to Mi and we couldn’t add ek to M ′
i . In this case we add e1 to M ′

i .
Note that the property that each vertex of Ci is incident to at least one edge in Mi∪M ′

i

holds. Also, it is easy to see that Mi and M ′
i contain at least one edge.

2

Note that both sets, Mi and M ′
i , are nonempty. Therefore, after the transfer of any of

these matchings to W at least one edge from each cycle is transferred and the remaining
edges form a subtour.

Lemma 2. For each vertex of Ci, the probability that one of the edges, which is incident
to the vertex in Ci, will be added to W by Algorithm A2 is at least 1/2.

Lemma 3. For every edge e ∈ M ′, the probability that the edge is in M (i.e., both of its
end vertices have degree 1 in P ) is at least 1/4.

Note that each cycle in C∗
1 , . . . , C

∗
t contains at least two edges from M , therefore we

obtain

Lemma 4. For every edge e ∈ M , the probability that the edge is deleted by the deletion
step of Algorithm A2 is at most 1/2.

Theorem 1. max{w(T1), w(T2), w(T3)} ≥ 25(1− ε)

33− 32ε
µ.

Proof. Let T be an optimal tour, and Tint(Text) be the edges of T whose end vertices
are in the same (respectively, in different) connectivity components of C. Suppose
w(Tint) = αw(T ) = αµ. Consider the tour T1. For each short cycle in C of Algorithm
A1, a Hamiltonian path having maximum weight is computed. Therefore its contribution
to the weight of T1 is equal to at least the weight of Tint in the subgraph induced by its
vertices. Since C is a maximum cycle cover, then w(Ci) is at least the weight of Tint in
the subgraph induced by the vertices of Ci. An edge having minimum weight is deleted
in each long cycle, therefore at most a factor ε is subtracted from its weight. Therefore,
w(T1) ≥ (1− ε)w(Tint) ≥ (1− ε)αµ.

Consider T2 and T3. Let δµ be a total weight of the edges transferred from C to W .
Since the original weight of W is at least 1

2
µ, then w(T2) ≥ (1

2
+ δ)µ.

The weight of P , that is the set of paths formed from C after the transfer of edges, is at
least (1− δ)µ. Then the edges are added as follows. First, compute a maximum matching
M ′ over G′. w(M ′) ≥ 1

2
w(Text), because Text can be covered by two disjoint matchings in

G′. Then obtain M by deleting all edges of M ′ except such edges whose both ends have
degree 1 in P . By Lemma 3, with probability 1

4
, each edge in G′ has two ends that have

degree 1 in P . Therefore, w(M) ≥ 1
4
w(M ′) ≥ 1

8
w(Text) =

1
8
(1− α)µ.

Next, consider the edges of M in set M ∪ P and delete eage e ∈ M with probability
at most 1

2
. The expected weight of the remaining edges is at least 1

2
w(M) ≥ 1

16
(1 − α)µ.
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Finally, we obtain the tour T3 by connecting the remaining edges with P . This step may
only increase the weight of the solution. Therefore w(T3) ≥ ((1− δ) + 1

16
(1− α))µ.

We conclude that

max{w(T1), w(T2), w(T3)} ≥ max{(1− ε)α,
1

2
+ δ,

17

16
− δ − α

16
}µ.

The minimum value of the right hand side is obtained for α =
25

33− 32ε
, and then it equals

25(1− ε)

33− 32ε
µ.

2

Conclusion
The most time consuming parts of the algorithm are the computation of the maximum

2-matching and the computation of the maximum Hamiltonian paths on the subgraphs
induced by the short cycles. The first can be computed during time O(n3), and the second
can be computed during time O(l22l) by applying dynamic programming method for
subgraph induced by l vertices. Since for short cycles the inequality l ≤ ε−1 holds, then
the time is O(n221/ε). Therefore, the overall complexity of the algorithm is O(n2(n+21/ε).
If ε > 0 is fixed, then it is possible to find solution with the accuracy at least 25/33 and
during time O(n3).
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ПРИБЛИЖЕННЫЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ
КОММИВОЯЖЕРА НА МАКСИМУМ

Н. И. Юсова, А. Ю. Эвнин

Задача коммивояжера состоит в следующем: учитывая список городов и расстоя-
ние между каждой парой городов, необходимо составить самый короткий маршрут, по
которому каждый город посещается ровно один раз и маршрут заканчивается в том го-
роде, к котором начинался. Это NP-сложная проблема в комбинаторной оптимизации,
важной в исследовании операций и теоретической информатике.
Задача коммивояжера – одна из самых известных и исследуемых проблем в информа-
тике. В статье описывается приближенный алгоритм решения задачи коммивояжера
на максимум, основанный на двух известных полиномиальных алгоритмах. Точность
данного алгоритма составляет 25/33.

Ключевые слова: гамильтонов цикл, задача коммивояжера, приближенный ал-
горитм, 2-фактор, паросочетание, оценка точности.

Литература
1. Barvinok, A.I. The maximum traveling salesman problem under polyhedral norms /

A.I. Barvinok, D.S. Johnson, G.J. Woeginger, R. Woodroofe // IPCO VI LNCS. –
1998. – V. 1412. – P. 195–201.

2. Hassin, R. An approximation algorithm for the maximum traveling salesman problem /
R. Hassin, S. Rubinstein // Information Processing Letters. – 1998. – V. 67, № 3. –
P. 125–130.

3. Сердюков, А.И. Алгоритм с оценкой для задачи коммивояжера на максимум /
А.И. Сердюков // Управляемые системы: сб. науч. тр. – 1984. –Вып. 25 С. 80–86.

4. Косточка, А.В. Полиномиальные алгоритмы с оценками 3/4 и 5/6 для задачи
коммивояжера на максимум / А.В. Косточка, А.И. Сердюков // Управляемые
системы: сб. науч. тр. – 1985. – Вып. 26, С. 55–59.

5. Gutin, G. The Traveling Salesman Problem and Its Variations / G. Gutin,
A.P. Punnen. – Boston/Dordrecht/London: Kluwer Academic Publishers, 2002.

Эвнин Александр Юрьевич, кандидат педагогических наук, доцент, кафедра при-
кладной математики и программирования, Южно-Уральский государственный уни-
верситет (г. Челябинск, Российская Федерация), graph98@yandex.ru.

Юсова Наталья Игоревна, магистрант, кафедра прикладной математики и
программирования, Южно-Уральский государственный университет (г. Челябинск,
Российская Федерация), galericulata@mail.ru.

Поступила в редакцию 16 мая 2017 г.

54 Journal of Computational and Engineering Mathematics


