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The question considered in the travelling salesman problem is the following. For a given
list of cities and the distances between each pair of cities, to construct the shortest possible
path that visits each city exactly once and returns to the origin city. The problem is an NP-
hard problem in combinatorial optimization and is important in operations research. The
traveling salesman problem is one of the most famous and heavily researched problems in
theoretical computer science. We consider the version, which is the Symmetric Maximum
Traveling Salesman Problem. The article describes an approximation algorithm for the
maximum traveling salesman problem, based on two known polynomial time approximation
algorithms. The accuracy of this algorithm is 25/33.
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Introduction

Let G = (V, E) be a complete undirected graph with vertex set V' and edge set E. For

e € Elet w(e) > 0 be its weight. For £/ C FE we denote w(E') = > w(e). The maximum
ecE’
traveling salesman problem (Max TSP) is the following: to search for a Hamiltonian cycle

(a tour) with maximum total edge weight. The problem is max-SNP-hard [1] and therefore
there exists a constant 8 < 1 such that a probability to obtain a solution which is better
than [ is NP-hard.

Let p be a weight of the optimal tour. A polynomial algorithm guaranteeing
an accuracy of the solution 5/7 is described in [2]. Anatoly Serdyukov describes an
approximation algorithm with better probability to obtain a solution and an accuracy
3/4 in [3]| (a metric case of the maximum traveling salesman problem is considered in [4]).

Serdyukov’s algorithm is given in the section 2. Then, we combine ideas from [3] and
[2] to form a polynomial algorithm that solving the maximum traveling salesman problem
with an estimate of accuracy of the solution 25/33. The improvement of the estimate is
small, but we at least demonstrate that the estimate 3/4 can be improved and, therefore,
further research in this direction is encouraged. This algorithm is described in section 3.

1. Serdyukov’s Algorithm

A cycle cover, or binary 2-matching, is a subgraph in which each vertex in V' has
degree 2 exactly. A subset of edges of an undirected graph is called matching (perfect
matching) if each vertex of the graph is incident at most (exactly, respectively) than to
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one edge in the given subset [5]. A subtour is a subset of edges of the graph that can be
completed to a Hamiltonian cycle (i.e., the subset contains no Hamiltonian cycles and no
vertex of degree more than 2). A maximum cycle cover is a cycle cover with maximum
total edge weight. A maximum matching is a set of vertex-disjoint edges having maximum
total weight. Serdyukov’s algorithm is given in Fig. 1.

Serdyukov’s Algorithm

input: a complete undirected graph ¢ = (V, E) with weights w,,e € E.
output: a Hamiltonian cycle.

1. Compute a maximum cycle cover C = {Cy, ..., C,. }.

2. Compute a maximum matching W.

3. fori=l1... r: Transfer from C; to W an edge so that W remains a subtour.
4. Complete C into a tour T;.

5. Complete W into a tour T.

Return the tour with maximum weight between T and T5.

End Serdyukov’s Algorithm.

Fig. 1. Serdyukov’s algorithm

A weight of the cycle cover is an upper bound for u, and a weight of the matching is
at least 1u. Therefore, w(T1) 4+ w(T2) > 3y and max{w(T1), w(T3)} > 3p. The article [3]
also shows how to modify the algorithm such that the estimate is fulfilled regardless the
parity of the graph vertices.

2. A New Algorithm

Algorithm Max TSP is given in Fig. 2. The algorithm constructs three tours and
selects a tour with greater weight.

Max_TSP

input: a complete undirected graph G = (V,E) with weights w,, e €E, a
constant € > 0.

output: a Hamiltonian cycle.

1. Compute a maximum cycle cover C = {Cq, ..., C.}.

2 Ty = Al[G, G5

3.1, 1) = A2(6.C).

Return the tour with the maximum weight among Ty, T, and T;.

End Max_TSP.

Fig. 2. Algorithm Max TSP

The first tour is constructed, as in [2], by Algorithm A1l (see Fig. 3). The algorithm
uses a parameter ¢ > 0 and considers short cycles, such that |C;] < 7!, and long cycles
in different ways. For each short cycle the algorithm computes a maximum Hamiltonian
path on vertices of the short cycle. For each long cycle the algorithm deletes an edge of
minimum length. A tour 7} is formed from the resulting Hamiltonian paths.

The second algorithm (see Fig. 4) is a modified version of Serdyukov’s algorithm. The
algorithm transfers edges from C' to W using a randomized selection step, and generates
two subtours. A set formed from W with the transferred edges is expanded arbitrarily
to a tour T;. Another set, consisting of the remaining edges of C, is first expanded by
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Al

input: a complete undirected graph G = (V,E) with weights w,,e €E. a
cycle cover C, a constant £ > 0.
output: a Hamiltonian cycle Tj.
l.fori=1...m
if |C;] = e Lthen
Compute a maximum Hamiltonian path H; in the
subgraph induced by the vertices of ;.

else
Let ¢; be a minimum weight edge of C;.
Hi:= C;\{e;}
2. Connect Hy, ..., H. in some arbitrary order to form a tour Ty.
Return T;.
End Al.

Fig. 3. Algorithm Al

new edges whose two ends belong to different cycles of C'; an then the set is arbitrarily
expanded to a tour T5.

A2

input: a complete undirected graph G = (V,E) with weights w,, e € E.
output: a Hamiltonian cycle T .

1. Compute a maximum cycle cover C = {Cy, ..., C.}.

2. Let E' be the edges of G with two ends in different cycles of C.

3. Compute a maximum weight matching M’ < E.

4. Compute a maximum matching W in G.

5. fori=1... r: construct disjoint nonempty matchings, M; and M’; from
edges of C; so that M; U W and M'; U W are subtours and each vertex of C; is
an end of at least one edge from M; U M';. Transfer either M;or M'; from C;
to W, each with probability %

6. Complete W into a tour T,.

7. Let P be the set of paths that were formed from Cq, ..., C, after the transfer
of edges.

8. M:= {(i,j) € M":i and j have degree 1 in P}. M U P consists of paths
P/, ..., PJ and cycles Cy, ..., C; such that each cycle contains at least two
edges from M.

9.P* == {P},..,PL.

10. fori=1... t: Randomly select an edge e € C; N M. P* := P* U (C{\e).
11. Complete P* to a tour Ty by arbitrary addition of edges.

Return Ty, T;.

End A2.

Fig. 4. Algorithm A2

Lemma 1. Let Algorithm A2 considers C;. Then it is possible to construct the desired
matchings M; and M! such that both matchings are nonempty, M; UW and M UW are
subtours, and each vertex of C; is incident to at least one edge from M; U M.

Proof. Denote the edges of C; by ey, , ex in cyclic order, starting from an arbitrary edge.

Go through C; starting from e;. Alternately add edges of C; to M; and M]. If such
addition (for example, e; to M;) creates a cycle in M; U W (in particular, if this edge is
already in W) then omit the edge e; and assign instead the next edge, e;1 to M;. Note
that one of the additions is always possible, therefore we never omit two successive edges.

2017, vol. 4, no. 3 51



A. Yu. Evnin, N. I. Yusova

A conflict can take place for the last edge of C; in the following two cases.

First, a conflict can take place, if we assigned both edges e; and e, to M;. We solve
this conflict as follows: if e; was added to M/ then we just omit e;. Else, if we omitted ey
because it was not possible to add e to M/, then it is possible to add e; to M/. Therefore,
in this case we add e; to M/ rather than to M.

Second, a conflict can take place, if both edges e; and e, were omitted. Therefore, we
couldn’t add e; to M; and we couldn’t add ey to M. In this case we add e; to M.

Note that the property that each vertex of C; is incident to at least one edge in M; UM/
holds. Also, it is easy to see that M, and M/ contain at least one edge.

O

Note that both sets, M; and M/, are nonempty. Therefore, after the transfer of any of
these matchings to W at least one edge from each cycle is transferred and the remaining
edges form a subtour.

Lemma 2. For each vertex of C;, the probability that one of the edges, which is incident
to the vertex in C;, will be added to W by Algorithm A2 is at least 1/2.

Lemma 3. For every edge e € M', the probability that the edge is in M (i.e., both of its
end vertices have degree 1 in P) is at least 1/4.

Note that each cycle in Cf, ..., C} contains at least two edges from M, therefore we
obtain

Lemma 4. For every edge e € M, the probability that the edge is deleted by the deletion
step of Algorithm A2 is at most 1/2.
25(1 —¢)

Th 1. T)), w(Ty), w(Ty)} > 22 %)
eorem 1. maz{w(Ty), w(Tz), w(Ts)} > 33 — 39z

(L.
Proof. Let T be an optimal tour, and Tj,;(T¢,:) be the edges of T" whose end vertices
are in the same (respectively, in different) connectivity components of C. Suppose
w(Tint) = aw(T) = ap. Consider the tour T3. For each short cycle in C' of Algorithm
A1, a Hamiltonian path having maximum weight is computed. Therefore its contribution
to the weight of T} is equal to at least the weight of T},; in the subgraph induced by its
vertices. Since C' is a maximum cycle cover, then w(C;) is at least the weight of T}, in
the subgraph induced by the vertices of C;. An edge having minimum weight is deleted
in each long cycle, therefore at most a factor ¢ is subtracted from its weight. Therefore,
w(Ty) > (1 —e)w(Tim) > (1 —e)ap.

Consider Ty and T3. Let 6 be a total weight of the edges transferred from C' to W.
Since the original weight of W is at least L, then w(Th) > (5 + 6)pu.

The weight of P, that is the set of paths formed from C' after the transfer of edges, is at
least (1 — 0)u. Then the edges are added as follows. First, compute a maximum matching
M’ over G'. w(M') > %w(Text), because T,,; can be covered by two disjoint matchings in
G'. Then obtain M by deleting all edges of M’ except such edges whose both ends have
degree 1 in P. By Lemma 3, with probability %L, each edge in G’ has two ends that have
degree 1 in P. Therefore, w(M) > Tw(M') > tw(Tow) = (1 — a)p.

Next, consider the edges of M in set M U P and delete eage e € M with probability
at most . The expected weight of the remaining edges is at least Fw(M) > 7=(1 — a)pu.
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Finally, we obtain the tour 75 by connecting the remaining edges with P. This step may
only increase the weight of the solution. Therefore w(T3) > ((1—6) + 1=(1 — ))p.
We conclude that

1 17
maea{w(Ty), w(Ty), w(T)} 2 mar{(1 - ), 5 +6, 70— 6= <
ini i ide i : 25 ‘
The minimum value of the right hand side is obtained for o = EEpET and then it equals
— 32

20 -¢)
33 —32¢

O
Conclusion

The most time consuming parts of the algorithm are the computation of the maximum
2-matching and the computation of the maximum Hamiltonian paths on the subgraphs
induced by the short cycles. The first can be computed during time O(n?), and the second
can be computed during time O([?2!) by applying dynamic programming method for
subgraph induced by [ vertices. Since for short cycles the inequality [ < 7! holds, then
the time is O(n?2'/¢). Therefore, the overall complexity of the algorithm is O(n?(n +2/¢).
If € > 0 is fixed, then it is possible to find solution with the accuracy at least 25/33 and
during time O(n?).
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IMPUBJINXKEHHBII AJITOPUTM PEIIEHUSA 3AJJAUN
KOMMUMBOA2KEPA HA MAKCUIMYM

H. U. KOcosa, A. KO. 98Hun

3aata KOMMUBOSI?KEPa COCTOUT B CJIEIYIOIIEM: YIUTHIBAs CIIUCOK T'OPOJOB U PACCTOS-
HIe MeXKIy KarKI0# mapoii ToOpomoB, HeOOXOINMO COCTABUTH CAMBIIT KOPOTKUI MAPIIPYT, IIO
KOTOPOMY KazKJbIif TOPOJI TIOCEIaeTCsl POBHO OJTMH Pa3 U MapIIpyT 3aKaHINBAETCS B TOM I'O-
pojie, K KOTOpoM HaudnHajcsd. 910 NP-ciioxkHast mpobsieMa B KOMOMHATOPHON ONTUMU3AIINAN,
BayKHOIl B UCCJIEJIOBAHUM OII€PAIUil U TEOPETUIeCKON nH(pOPMATUKE.
3agata KOMMUBOSI?KEPA — OJIHA U3 CAMBIX M3BECTHBIX U HCCJIEIyeMbIX 1IpobsieM B nHMOpMa-
TukKe. B craThe ommchiBaeTCs MPUOIMAKEHHBIN AJITOPUTM DENIeHUs 33/1a91 KOMMUBOSI2KEDPA
Ha MAKCHMYM, OCHOBAHHBIN HA JIBYX M3BECTHBIX IMOJMHOMMAJIBHBIX AJrOpuTMax. TOIHOCTD
JIAHHOTO aJIFOPUTMa, CoCTaBisger 25/33.

Karouesnie ca06a: 2amMusbmonos yuka, 360040 KOMMUBOANCEPA, NPUOAUNCEHHBLT AN~

2opumm, 2-axmop, napocovemarue, OUEeHKE MOYHOCTU.
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