
MSC 60H30, 60H10ON THE STOCHASTIC SYSTEMS OFDIFFERENTIAL-ALGEBRAIC TYPEE.Yu. Mashkov, Kursk State University, Kursk, Russian Federation,mashkovevgen�yandex.ruUnder the stohasti system of di�erential-algebrai type we understand the speiallass of stohasti di�erential equations in the Ito form, in whih in the left- and right-handsides there are time-dependent ontinuous retangular real matries of the same size, and,in the ase of a square matrix, the matrix in the left-hand side is degenerated. In addition,in the right-hand side there is a term that depends only on time. This lass of equationsis a natural generalization of the lass of ordinary di�erential-algebrai equations. It isassumed that the initial onditions for this lass of equations are solutions of some systemsof linear algebrai equations, matries in whih are onstant and have the same size as inthe stohasti system. For the study of this lass of equations, we use the mahinery thatis a generalization of the methods suggested for the study of ordinary di�erential-algebraiequations in the works by Yu. E. Boyarintsev, V. F. Chistyakov and others. Note that forinvestigation of these equations we do not use derivative of the right-hand side. We givethe neessary information from the theory of pseudo-inverse matrix, and then thransformthe system to a form more onvenient for study. The result of the artile is the statemants,in whih su�ient onditions for the existene of solutions are obtained and formulae for�nding the solutions are given.Keywords: di�erential-algebrai system, Wiener proess.Statement of the problemUnder di�erential-algebrai system [1, 2℄ we understand a system of the form
dL(t)x(t)

dt
= M(t)x(t) + f(t), 0 ≤ t ≤ T,with ontinuous matrix oe�ients of L(t),M(t) ∈ Rm×n where f(t) ∈ Rm is a ontinuousvetor-funtion and x(t) ∈ Rn is a solution. In the ase of a square matrix, we suppose

L(t) to be degenerate. In papers [1, 2℄ suh systems have been studied quite extensively.However, the question remains about the solvability of equations in the ase where in theright-hand side there is a summand of white noise type. In this artile we study this ase,i.e., we investigate the stohasti system of the form
dL(t)ξ(t) = M(t)ξ(t)dt+ f(t)dt+N(t)dw(t), 0 ≤ t ≤ T, (1)and the vetor ξ(t) satis�es the ondition

Sξ(0) = a, (2)(see [3, 4℄) where ξ(t) ∈ Rn is a stohasti proess, L(t), M(t) and N(t) are realontinuous m × n-matries, S is a onstant m × n-matrix, f(t) ∈ Rm is an integrablevetor-funtion and w(t) ∈ Rn is a Wiener proess given on full �ltered probability spae
{Ω,F, (Ft)t∈[0,T ], P} started from zero and subordinated to (Ft)t∈[0,T ]. Its derivative ẃ(t) isthe white noise and a ∈ Rm is a onstant vetor.34 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSDe�nition 1. A solution of (1), (2) is a stohasti proess ξ(t) ∈ Rn, non-antiipat-ing with respet to family (Ft)t∈[0,T ] of omplete σ-algebras, that satis�es (1) and (2) withprobability one.1. Pseudo-inverse matriesEverywhere below, by C i[0, T ] we denote the spae of C i-smooth matrix funtion oforresponding dimension on the interval [0, T ] ⊂ R. By E we denote the unit matrix,by 0 � the zero matrix, by imA and kerA � the image and the kernel of matrix A,respetively. We omit mentioning the dependene of the matrix on time t if it does notyield a misunderstanding.De�nition 2. [2, 5℄ An n × m matrix A+(t) is alled pseudo-inverse to m × n-matrix
A(t) if for any t

A(t)A+(t)A(t) = A(t), A+(t)A(t)A+(t) = A+(t),

[A(t)A+(t)]T = A(t)A+(t), [A+(t)A(t)]T = A+(t)A(t).where the symbol T denotes the transposition.Theorem 1. [2℄ Let the n × n matrix A(t) be C i[0, T ]-smooth, i = 0, 1, ... and
rankA(t) = const = ρ on T . Then there exists a pseudo-inverse matrix A+(t) ∈ C i[0, T ].Lemma 1. Let(i) m× n-matries A(t) and B(t) belong to C0[0, T ] and C be a onstant real m× n-matrix;(ii) the matries A+(t), (B(t)P0(t))

+, (CP0)
+, (CP2(t))

+ and (B(t)Q2(t))
+ belong to

C0[0, T ] , where P0 = E − A+A, P2 = P0 − P1, Q2 = P0 − Q1, P1 = P0(BP0)
+BP0 and

Q1 = P0(CP0)
+CP0.Then the matries A+A, P0 and P1, P2 = P0−P1, P3 = P2(CP2)

+CP2 and P4 = P2−P3are ontinuous projetors onto the sets imA, kerA, kerA∩kerB and kerA∩kerB∩kerC,respetively. The matries Q1, Q2 = P0 − Q1, Q3 = Q2(BQ2)
+BQ2 and Q4 = Q2 − Q3are ontinuous projetors onto the sets kerA, kerA ∩ kerC and kerA ∩ kerB ∩ kerC,respetively.Proof.All the matries in the hypothesis of Lemma are ontinuous sine the produt andthe sum of ontinuous matries is ontinuous. From the de�nitions of projetor and ofpseude-inverse matrix we obtain

A+(t)A(t)A+(t)A(t) = A+(t)[A(t)A+(t)A(t)] = A+(t)A(t)and A(t)A+(t)A(t) = A(t). Hene, A+(t)A(t) is a projetor onto imA. Then
P0(t) = E −A+(t)A(t) is a projetor onto kerA. On the other hand,

P 2
1 = P0[(BP0)

+BP0P0(BP0)
+]BP0 = P0(BP0)

+BP0 = P1and AQ1 = AP0[(BP0)
+BP0] = 0. So, P1 is a projetor onto kerA. Further on,

P 2
2 = (P0 − P1)

2 = P 2
0 + P 2

1 − 2P0P1 = P0 + P1 − 2P1 = P0 − P1 = P22014, vol. 1, no. 1 35



E.Yu. Mashkovand
A(P0 − P1) = A(E − A+A− P0(BP0)

+BP0) = A−AA+A−

−AP0[(BP0)
+BP0] = A− A+ 0 = 0,

B(P0 − P1) = B −BA+A−BP0(BP0)
+BP0 = B − BA+A− BP0 =

= B − BA+A− B +BA+A = 0.Thus, P2 = P0 − P1 is a projetor onto kerA ∩ kerB.
P 2
3 = P2(CP2)

+CP2P2(CP2)
+CP2 = P2[(CP2)

+CP2(CP2)
+]CP2 =

P2(CP2)
+CP2 = P3and AP3 = BP3 = 0 (sine P2 is a projetor onto kerA ∩ kerB). Then P3 is a projetoronto kerA ∩ kerB.One an easily see that P 2

4 = (P2 − P3)
2 = P 2

2 + P 2
3 − 2P 2

3 = P2 − P3,
C(P2 − P3) = CP2 − CP2(CP2)

+CP2 = 0. Then P4 is a projetor onto kerC. Sine P2and P3 are projetors onto kerA ∩ kerB, P4 is a projetor onto kerA ∩ kerB ∩ kerC.The other assertions of the Lemma are proved by omplete analogy of the abovearguments.
2Consider the system

AX = B, (3)where X is a vetor we are looking for, A and B are a matrix and a vetor of appropriatesize (i.e., suh that system (3) is well-posed). Then the lassial Kroneker-Capelli theoremon solvability of system (3) takes plae:Theorem 2. [1℄ System (3) is solvable if and only if the equality
(E − AA+)B = 0holds.We should present the theroem on the presentation of solutions of system (3).Theorem 3. [1℄ If system (3) is solvable, its general solution is desribed by the formula

X = A+B + (E −A+A)U,where U is an arbitrary vetor.2. The study of the system with the use of pseudo-inverse matriesFor investigatilon of system (1), (2) we introdue the matries
P0 = E − L+L,

P1 = P0(MP0)
+MP0, Q1 = P0(SP0)

+SP0,

P2 = P0 − P1, Q2 = Q0 −Q1,36 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICS
P3 = P2(SP2)

+SP2, Q3 = Q2(MQ2)
+MQ2,

P4 = P2 − P3, Q4 = Q2 −Q3.We assume that the matries L+ and (MP0)
+ are ontinuous. Then by Lemma 1 matrix

P0 is a projetor of n-dimensional Eulidean spae of vetors to zero spae of the matrix
L, while P2 and P3 are projetors to the intersetion of the kernels of matries L and M .The matrix P4 is a projetor onto the intersetion kerL∩ kerM ∩ kerS. The matries Q1,
Q2 = Q0 − Q1 and Q3 = Q2(MQ2)

+MQ2, Q4 = Q2 − Q3 are projetors onto the stes
kerL, kerL ∩ kerS and kerL ∩ kerM ∩ kerS, respetively.Using projetors and properties of pseudo-inverse matrix, it is established that theproess ξ(t) is represented in the following two ways:

ξ = L+η + u1 + v1 + h1, (4)
ξ = L+η + u2 + v2 + h2, (5)where

η = Lξ, (6)
u1 = P1ξ, v1 = P3ξ, h1 = P4ξ, (7)
u2 = Q1ξ, v2 = Q3ξ, h2 = Q4ξ (8)and

u1 ∈ kerL, v1 ∈ kerL ∩ kerM, u2 ∈ kerL, v2 ∈ kerL ∩ kerS, (9)Sine the substitution of vetors (4) and (5) to problem (1) and (2) should give thesame result, we require that equalities
Mv2 = M(u1 − u2), (10)
Sv1 = S(u2 − u1) (11)hold simultaneously.Substitute vetor (4) to the expression for u1 and v1 of (7), then taking into aount(9), we �rst obtain

[E − P0(MP0)
+M ]u1 = 0. (12)Then taking into aount (11) and (12), we have

v1 = P2(SP2)
+S(u2 − u1). (13)Substitution of vetor (5) to (8) yields the equalities

[E − P0(SP0)
+S]u2 = 0, (14)

v2 = Q2(MQ2)
+M(u1 − u2). (15)Sine equalities (10) and (11) should hold, from (13) and (15) it follows that

[E − SP2(SP2)
+]S(u1 − u2) = 0, (16)

[E −MQ2(MQ2)
+]M(u1 − u2) = 0. (17)2014, vol. 1, no. 1 37



E.Yu. MashkovSubstitution of any of equations (4) and (5) to formula (6) yields
(E − LL+)η = 0. (18)On substituting vetor (4) to equation (1) and vetor (5) to ondition (2), we obtain

dη(t) = M(t)L+(t)η(t)dt+M(t)u1(t)dt+ f(t)dt+N(t)dw(t), (19)
L+(0)η(0) = a− Su2(0). (20)Thus, problem (1), (2) is redued to problem (19) and (20) with onditions (12), (14),(16), (17) and (18). Note that if u1 ∈ kerM , from equation (12) it follows that equality

u1 = 0 holds. Analogously, from equality (14) it follows that if u2 ∈ kerS we obtain u2 = 0.The system of equations (12), (14), (16) and (17) with respet to vetors u1 and u2an be solved expliitly. To do this, by introduing the notation u =

(

u1

u2

), we rewrite itin the form of two equivalent systems
(

E − P0(MP0)
+M 0

0 E − P0(SP0)
+S

)

u = 0, (21)
(

E − SP2(SP2)
+ 0

0 E −MQ2(MQ2)
+

)

·

(

S −S

M −M

)

u = 0. (22)The general solution of system (21) takes the form
u =

(

P0(MP0)
+M 0

0 P0(SP0)
+S

)

p, (23)where p =

(

p1
p2

) is an arbitrary vetor. This formula is derived with the appliation ofthe fat that the matries P0(MP0)
+M and P0(SP0)

+S are projetors. Sine systems (21)and (22) are equivalent, by substituting solution (23) of the �rst one to (22), we obtain aondition, to whih p must satisfy:
Ξp = 0, (24)where

Ξ =

(

E − SP2(SP2)
+ 0

0 E −MQ2(MQ2)
+

)

·

(

S −S

M −M

)

·

·

(

P0(MP0)
+M 0

0 P0(SP0)
+S

)

.Equality (24) is satis�ed by p suh that:
p = (E − Ξ+Ξ)r, (25)where r =

(

r1
r2

) is an arbitrary vetor.Finally, substituting (25) to (23), we get the general formula for the solution of system(21), (22), namely: u = Φr, where
Φ =

(

P0(MP0)
+M 0

0 P0(SP0)
+S

)

(E − Ξ+Ξ)38 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSand r is an arbitrary vetor. Moreover, the omponents of vetor u are alulated byformulae:
u1 = Φ1r, u2 = Φ2r, (26)where

Φ1 =
(

P0(MP0)
+M 0

)

(E − Ξ+Ξ),

Φ2 =
(

0 P0(SP0)
+S

)

(E − Ξ+Ξ),Formulae (13) and (15) for alulation of vetors v1 and v2 now take the form:
v1 = P2(SP2)

+S(Φ2 − Φ1)r, (27)
v2 = Q2(MQ2)

+M(Φ1 − Φ2)r. (28)Substitution of vetors (26) to equation (19), (20) yields
dη(t) = M(t)L+(t)η(t)dt+M(t)Φ1(t)r(t)dt+ f(t)dt+N(t)dw(t), (29)

L+(0)η(0) = a− SΦ2(0)r(0) (30)Now take into aount the fat that any solution of equation (29) satis�es the relation
η(t) = X(t)η(0) + θ(t), (31)where matrix X(t) and vetor θ(t) are solutions of Cauhy problems:

dX(t)

dt
= M(t)L+(t)X(t), X(0) = Eand

dθ(t) = M(t)L+(t)θ(t)dt+M(t)Φ1(t)r(t)dt+ f(t)dt+N(t)dw(t),

θ(0) = 0.respetively. One an easily see that θ(t) = X(t)χ(t), where
χ(t) =

∫ t

0

X−1(s)[M(s)Φ1(s)r(s) + f(s)]ds+

∫ t

0

X−1(s)N(s)dw(s),therefore, equality (31) an be rewritten in the form
η(t) = X(t)η(0) +X(t)χ(t). (32)Substituting (32) to onditions (18) and (30), we obtain

[E − L(t)L+(t)]X(t)η(0) = −[E − L(t)L+(t)]X(t)χ(t),

0 ≤ t ≤ T, (33)
Λη(0) = a− SΦ2(0)r(0), (34)where

Λ = SL+(0)X(0).2014, vol. 1, no. 1 39



E.Yu. MashkovWe have to apply the following lammas from the theory of algebrai systems.Lemma 2. [6℄ Let the matrix A(t) be ontinuous on the interval [0, T ] and
G =

∫ T

0

A∗(s)A(s)ds. (35)Then any solution c of the system
Gc = 0 (36)is a onstant solution of the system

A(t)c = 0, 0 ≤ t ≤ T. (37)And vie versa, any onstant solution of system (37) is a solution of system (36)Lemma 3. [7℄ Let in the system of equations
A(t)y = B(t), 0 ≤ t ≤ T, (38)matries A(t) and B(t) be ontinuous. Then system (38) has a onstant (independent of

t ∈ [0, T ]) solution y if and only if for all t ∈ [0, T ] the equality
A(t)G+

∫ T

0

A∗(s)B(s)ds = B(t) (39)holds, where G is matrix (35).Lemma 4. [8℄ If the hypothesis of Lemma 3 and equality (39) hold, the general solutionof system (38) has the form
y = G+

∫ T

0

A∗(s)B(s)ds+ (E −G+G)c, (40)where c is an arbitrary vetor.Corollary 1. [1℄ If there exists a onstant solution y of system (38), the equality
(E −GG+)

∫ T

0

A∗(s)B(s)ds = 0holds.Now apply the above-mentioned Lemmas to equation (33). We have
A(t) = [E − L(t)L+(t)]X(t),

B(t) = −A(t)χ(t)and sine the matrix E − L(t)L+(t) is a self-adjoint projetor, the equality
A∗(t)A(t) = X∗(t)[E − L(t)L+(t)]X(t)40 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSholds. Hene,
G =

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)ds, (41)
∫ T

0

A∗(s)B(s) =

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)χ(s)ds,then by formula (40) we obtain
η(0) = −G+

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)χ(s)ds+ (E −G+G)c, (42)where c is an arbitrary vetor, and G is matrix (41). By Lemma 3, here the ondition ofsolvability (33) with respet to η(0) should hold:
[E − L(t)L+(t)]X(t)G+

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)χ(s)ds =

[E − LL+]X(t)χ(t), 0 ≤ t ≤ T. (43)By substituting vetor (42) in equation (34), we obtain the equation for �nding vetor
c:

(Λ− ΛG+G)c = a− SΦ2(0)r(0)+

+ΛG+

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)χ(s)ds. (44)By Theorem 3 the solution of equation (44) is written in the form :
c = (Λ− ΛG+G){a− SΦ2(0)r(0)+

+ΛG+

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)χ(s)ds}+

[E − (Λ− ΛG+G)+(Λ− ΛG+G)]β, (45)where β is an arbitrary vetor. By Theorem 3, formula (45) takes plae if the ondition ofompatibility for system (44) is satis�ed
[E − (Λ− ΛG+G)(Λ− ΛG+G)+]{a− SΦ2(0)r(0)+

+ΛG+

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)χ(s)ds} = 0. (46)By substituting (45) to (42), we derive to the last expression for vetor η(0), namely:
η(0) = −[E − (E −G+G)(Λ− ΛG+G)+Λ]G+

∫ T

0

X∗(s)[E−

−L(s)L+(s)]X(s)χ(s)ds+ (E −G+G)(Λ− ΛG+G)+·

·{a− SΦ2(0)r(0)}+

+(E −G+G)[E − (Λ− ΛG+G)+(Λ− ΛG+G)]β, (47)2014, vol. 1, no. 1 41



E.Yu. Mashkovwhere β is an arbitrary vetor.One an see that the solvability onditions (43), (46) have the form of a system ofintegral equations with respet to vetor r(t) sine vetor χ(t), inluded in this system, isassoiated with r(t) by the integral formula
χ(t) =

∫ t

0

X−1(s)[M(s)Φ1(s)r(s) + f(s)]ds+

∫ t

0

X−1(s)N(s)dw(s). (48)So, it is established that the General solution of problem (1), (2) an be represented intwo forms: either (4) or (5), where the vetors u1, u2, v1 and v2 are alulated by formulae(26), (27) end (28). Vetor r(t) is an arbitrary solution of integral system (43), (46) and(48), vetor η(t) is a solution of equation (29) with initial ondition (47). Sine vetors
h1(t) and h2(t) belong to the intersetion kerL ∩ kerM ∩ kerS, for their alulation theformulae

h1(t) = P4γ(t), h2(t) = Q4γ(t),take plae where γ(t) is an arbitrary ontinuous vetor given on the interval [0, T ]. In [7, 8℄it is established that the matrix that is applied to vetor β in formula (47), is a projetoron the set kerG∩kerΛ. Then the third term in the right-hand side of equality (47) (whihwe denote by α) is an arbitrary solution of the system
Λα = 0, Gα = 0, (49)The main di�ulty in solving problem (1), (2) is in �nding solution of integral system(43), (46), (48), to whih the vetor r(t) satis�es. Now we an formulate the onditionsunder whih the resulting omplex system relative to the vetor r(t) admits a simplesolution.3. Theorems on the solvability of systems and formulaefor solutionsProblem (1), (2) should be onsidered for matries L(t), M(t), S that satisfy theidentities

[E − L(t)L+(t)]X(t)X−1(s)M(s)Φ1(s) = 0, (50)
[E − (Λ− ΛG+G)(Λ− ΛG+G)+]SΦ2(t) = 0, (51)

t, s ∈ [0, T ].42 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSThen for problem (1), (2) ompatibility onditions
[E − L(t)L+(t)]X(t)G+{

∫ T

0

X∗(s)[E − L(s)L+(s)]z(s)ds+

+

∫ T

0

X∗(s)[E − L(t)L+(t)]X(s)[

∫ s

0

X−1(u)N(u)dw(u)]ds} =

= [E − L(t)L+(t)]{z(t) +X(t)

∫ t

0

X−1(s)N(s)dw(s)}, (52)
[E − (Λ− ΛG+G)(Λ− ΛG+G)+]{a+ ΛG+[

∫ T

0

X∗(s)[E − L(s)L+(s)]z(s)ds+

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)[

∫ s

0

X−1(u)N(u)dw(u)]ds]} = 0, (53)should hold where z(s) is a solution of the following Cauhy problem:
dz(t) = M(t)L+(t)z(t)dt + f(t)dt,

z(0) = 0.Thus, from the results of previous setion we derive the following theorems.Theorem 4. Let in problem (1), (2) for matries L(t), M(t), S identities (50), (51)hold. Then for sovability of the problem it is neessary and su�ient that onditions (52),(53) are satis�ed.Theorem 5. If the matries L(t), M(t) and S in problem (1), (2) satisfy equations (50)and (51) and the problem has a solution, then its general solution an be written in twoways:
ξ(t) = L+(t)η(t) +H1(t)r(t) + P4(t)r0(t), (54)
ξ(t) = L+(t)η(t) +H2(t)r(t) +Q4(t)r0(t), (55)where the matries H1(t) and H2(t) are alulated as follows:
H1 = [E − P2(SP2)

+S]Φ1 + P2(SP2)
+SΦ2,

H2 = [E −Q2(MQ2)
+M ]Φ2 +Q2(MQ2)

+MΦ1,

r(t), r0(t) are arbitrary ontinuous vetors and η(t) is a solution of Ito equation
dη(t) = M(t)L+(t)η(t)dt+M(t)Φ1(t)r(t)dt+ f(t)dt+N(t)dw(t) (56)with initial ondition

η(0) = −[E − (E −G+G)(Λ− ΛG+G)+Λ]G+{

∫ T

0

X∗(s)[E − L(s)L+(s)]θ(s)ds+

+

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)[

∫ s

0

X−1(u)N(u)dw(u)]ds}+

+(E −G+G)(Λ− ΛG+G)+ · {a− SΦ2(0)r(0)}+ α, (57)2014, vol. 1, no. 1 43



E.Yu. Mashkovwhere α is a solution of the system
Λα = 0, Gα = 0, (58)and vetor θ(t) satis�es the equation

dθ(t) = M(t)L+(t)θ(t)dt +M(t)Φ1(t)r(t)dt+ f(t)dt,

θ(0) = 0, (59)(note that vetor r(t) in (56), (57), (59) is the same as in (54), (55)).Theorem 6. The solution of problem (1), (2) (if it exists) is unique if and only if system(58) has only zero solution α = 0 and the equality
P4(t) = Q4(t) = 0, 0 ≤ t ≤ T, (60)
Φ1(t) = Φ2(t) = 0, 0 ≤ t ≤ T (61)holds.Theorem 7. Let in problem (1), (2) the ompatibility onditions (52) and (53) hold andequality (61) take plae. Then solutions of problem (1) and (2) exist, and the generalsolution has the form

ξ(t) = L+(t)η(t) + h(t), 0 ≤ t ≤ T,

L(t)h(t) = 0, M(t)h(t) = 0, Sh(t) = 0, (62)where the vetor η(t) is obtained from the following system
dz(t) = M(t)L+(t)z(t)dt + f(t)dt, z(0) = 0,

dη(t) = M(t)L+(t)η(t)dt+ f(t)dt+N(t)dw(t)with initial ondition
η(0) = −[E − (E −G+G)(Λ− ΛG+G)+Λ]G+{

∫ T

0

X∗(s)
[

E − L(s)L+(s)
]

z(s)ds+

+

∫ T

0

X∗(s)[E − L(s)L+(s)]X(s)[

∫ s

0

X−1(u)N(u)dw(u)]ds}+

+(E −G+G)(Λ− ΛG+G)+a+ α,where α is an arbitrary solution of the system
Λα = 0, Gα = 0, . (63)Remark 1. If systems (62) and (63) have only zero solutions, then under the onditionsof Theorem 7 the solution of problem (1), (2) is unique and it is represented by the formula
ξ(t) = L+(t)η(t).In this ase in equality (7) it is neessary to set α = 0.44 Journal of Computational and Engineering Mathematis
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