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Under the stochastic system of differential-algebraic type we understand the special
class of stochastic differential equations in the Ito form, in which in the left- and right-hand
sides there are time-dependent continuous rectangular real matrices of the same size, and,
in the case of a square matrix, the matrix in the left-hand side is degenerated. In addition,
in the right-hand side there is a term that depends only on time. This class of equations
is a natural generalization of the class of ordinary differential-algebraic equations. It is
assumed that the initial conditions for this class of equations are solutions of some systems
of linear algebraic equations, matrices in which are constant and have the same size as in
the stochastic system. For the study of this class of equations, we use the machinery that
is a generalization of the methods suggested for the study of ordinary differential-algebraic
equations in the works by Yu. E. Boyarintsev, V. F. Chistyakov and others. Note that for
investigation of these equations we do not use derivative of the right-hand side. We give
the necessary information from the theory of pseudo-inverse matrix, and then thransform
the system to a form more convenient for study. The result of the article is the statemants,
in which sufficient conditions for the existence of solutions are obtained and formulae for
finding the solutions are given.

Keywords: differential-algebraic system, Wiener process.

Statement of the problem

Under differential-algebraic system |1, 2| we understand a system of the form

dL(t)z(t)
dt

with continuous matrix coefficients of L(t), M (t) € R™*" where f(t) € R™ is a continuous
vector-function and z(t) € R" is a solution. In the case of a square matrix, we suppose
L(t) to be degenerate. In papers [1, 2| such systems have been studied quite extensively.
However, the question remains about the solvability of equations in the case where in the
right-hand side there is a summand of white noise type. In this article we study this case,
i.e., we investigate the stochastic system of the form

= M()a(t) + f(t), 0<t<T,

dL(t)E(t) = M(t)E(t)dt + f(t)dt + N(t)dw(t),0 <t <T, (1)
and the vector £(t) satisfies the condition

5¢(0) = a, (2)

(see [3, 4]) where £(t) € R™ is a stochastic process, L(t), M(t) and N(t) are real
continuous m X n-matrices, S is a constant m X n-matrix, f(t) € R™ is an integrable
vector-function and w(t) € R" is a Wiener process given on full filtered probability space
{9, 3, (8¢)tepo,m, P} started from zero and subordinated to (§¢)icpo17- Its derivative w(t) is
the white noise and a € R™ is a constant vector.

34 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

Definition 1. A solution of (1), (2) is a stochastic process &(t) € R", non-anticipat-
ing with respect to family (Fi)wcpr) of complete o-algebras, that satisfies (1) and (2) with
probability one.

1. Pseudo-inverse matrices

Everywhere below, by C*[0,T] we denote the space of C’-smooth matrix function of
corresponding dimension on the interval [0,7] C R. By E we denote the unit matrix,
by 0 — the zero matrix, by imA and kerA — the image and the kernel of matrix A,
respectively. We omit mentioning the dependence of the matrix on time ¢ if it does not
yield a misunderstanding.

Definition 2. [2, 5/ An n x m matriz A*(t) is called pseudo-inverse to m X n-matriz
A(t) if for any t

A()AT()A(t) = A(t), AT(AR)AT () = AT (1),
[AMAT ()] = A(DAT(®), [ATHA@)]" = AT(H)A®).

where the symbol T denotes the transposition.

Theorem 1. [2/ Let the n x n matriz A(t) be C'[0,T]-smooth, i = 0,1,... and
rankA(t) = const = p on T. Then there exists a pseudo-inverse matriz AT (t) € C'[0,T.

Lemma 1. Let

(i) m x n-matrices A(t) and B(t) belong to C°[0,T] and C' be a constant real m x n-
matriz;

(i1) the matrices AT(t), (B(t)Py(t))t,(CPy)", (CP(t))T and (B(t)Q2(t))T belong to
CO[O,T] s where PO =F— A+A,P2 = PO - Pl,QQ = P(] - QhPl = Po(BPO)+BPO and
Ql - P0(0P0)+CPO.

Then the matrices AT A, Py and Py, Py = Po— Py, P3 = Py(CPy)"CPy and Py = Po,—P3
are continuous projectors onto the sets imA, kerA, ker ANker B and ker ANker BNkerC,
respectively. The matrices Q1, Qo = Py — Q1, Q3 = Q2(BQ2)TBQy and Q; = Q2 — Q3
are continuous projectors onto the sets kerA, kerA N kerC' and kerA N kerB N kerC,
respectively.

Proof.

All the matrices in the hypothesis of Lemma are continuous since the product and
the sum of continuous matrices is continuous. From the definitions of projector and of
pseude-inverse matrix we obtain

AT AR AT (1) A(t) = AT()[AB)AT()A()] = AT(1)A(t)

and A(t)A*(t)A(t) = A(t). Hence, AT(¢t)A(t) is a projector onto imA. Then
Py(t) = E — AT (t)A(t) is a projector onto kerA. On the other hand,

P12 == P(][(BPO>+BPOP0(BPO>+]BPO == Po(BPO)+BPO - P1
and AQ, = AR)[(BPy))"BFPy) = 0. So, P; is a projector onto kerA. Further on,
P22:(PO—P1)2:PO2+P12—2P0P1:P0—|—P1—2P1:PO—P1:P2
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and
A(PO - Pl) - A(E - A+A - Po(BPO)+BPO> == A - AA+A—

—AP(BP))"BP|=A—A+0=0,
B(Py— P))=B— BATA—- BPy(BPR)"BPy=B - BATA—- BP, =
=B—-BATA—- B+ BATA=0.
Thus, P, = Py — P, is a projector onto ker AN kerB.

P32 — P2(CP2)+CP2P2(CP2)+CP2 = P2[(CP2)+CP2(CP2)+]CP2 =
P2(0P2)+CP2 - P3

and AP; = BP; = 0 (since P, is a projector onto ker AN kerB). Then Pj is a projector
onto kerANkerB.

One can easily see that P? = (P, — P)? = P} + P} — 2P} = P, — D3,
C(Py— P3) =CPy— CP,(CP)TCP, = 0. Then P, is a projector onto kerC. Since P,
and Pj3 are projectors onto ker A N kerB, P, is a projector onto ker A N ker B N kerC.

The other assertions of the Lemma are proved by complete analogy of the above
arguments.

O

Consider the system
AX = B, (3)

where X is a vector we are looking for, A and B are a matrix and a vector of appropriate
size (i.e., such that system (3) is well-posed). Then the classical Kronecker-Capelli theorem
on solvability of system (3) takes place:

Theorem 2. [1] System (3) is solvable if and only if the equality
(E— AAY)B =0
holds.

We should present the theroem on the presentation of solutions of system (3).

Theorem 3. [1] If system (3) is solvable, its general solution is described by the formula
X=A"B+(E—-ATA)U,
where U is an arbitrary vector.
2. The study of the system with the use of pseudo-inverse matrices
For investigatilon of system (1), (2) we introduce the matrices
Py=FE—L"L,
Pr = By(MPBy)*MPy, Q= Py(SPy)*SE,

Py =Py — P, Q2=Q— Qn,
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Py = Py(SPy) TSPy, Q3= Qa(MQs)"MQs,
Py=P— P, Qi=0Qs— Q3.

We assume that the matrices LT and (M Py)* are continuous. Then by Lemma 1 matrix
Py is a projector of n-dimensional Euclidean space of vectors to zero space of the matrix
L, while P, and P5 are projectors to the intersection of the kernels of matrices L and M.
The matrix Py is a projector onto the intersection kerL N ker M NkerS. The matrices )1,
Q2 = Qo — Q1 and Q3 = Qa(MQ2)"MQs, Qs = Q2 — Q3 are projectors onto the stes
kerL, ker L N kerS and kerL N kerM N kerS, respectively.

Using projectors and properties of pseudo-inverse matrix, it is established that the
process £(t) is represented in the following two ways:

E=Ltn+u+ v+ h, (4)
&=L+ uy + vy + ho, (5)

where
n = LE, (6)
up = P&, v = P&, hy = Py, (7)
uy = (€, vo = Q3§, hy = Q4§ (8)

and

up € ker L, vy € ker LNker M, wuy € ker L, vy € ker L Nker S, 9)

Since the substitution of vectors (4) and (5) to problem (1) and (2) should give the
same result, we require that equalities

MUQ = M(Ul — Ug), (10)
SUl = S(UQ — U1> (11)

hold simultaneously.
Substitute vector (4) to the expression for u; and vy of (7), then taking into account
(9), we first obtain

[E — Py(MPy)" M]uy = 0. (12)
Then taking into account (11) and (12), we have
vy = Poy(SPy) TS (uy — uy). (13)
Substitution of vector (5) to (8) yields the equalities

[E - PO(SPO)+S]U2 = O, (14)
vy = Qo(MQ2) " M (uy — uy). (15)

Since equalities (10) and (11) should hold, from (13) and (15) it follows that

[E — SPQ(SP2>+]S(U1 — Ug) = O, (16)
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Substitution of any of equations (4) and (5) to formula (6) yields
(E— LL*)y = 0. (18)
On substituting vector (4) to equation (1) and vector (5) to condition (2), we obtain
dn(t) = M ()L™ (t)n(t)dt + M (t)uq (t)dt + f(t)dt + N(t)dw(t), (19)
L*(0)n(0) = a — Sus(0). (20)
Thus, problem (1), (2) is reduced to problem (19) and (20) with conditions (12), (14),
(16), (17) and (18). Note that if uy € kerM, from equation (12) it follows that equality

u; = 0 holds. Analogously, from equality (14) it follows that if uy € kerS we obtain us = 0.
The system of equations (12), (14), (16) and (17) with respect to vectors u; and us

can be solved explicitly. To do this, by introducing the notation u = Zl), we rewrite it
2
in the form of two equivalent systems
E — Po(MPy)™M 0 B
( 0 E—Pyspy)ts )= (21)
E — SP,(SP)* 0 S =S _
( 0 E— MQyMQy)*t ) \ M —m U= (22)
The general solution of system (21) takes the form
_( B(MPy)™M 0
“= ( 0 Py(SP)*S )P (23)

where p = (]Zj 1) is an arbitrary vector. This formula is derived with the application of
2

the fact that the matrices Py(M Py)*™ M and Py(SPy)" S are projectors. Since systems (21)
and (22) are equivalent, by substituting solution (23) of the first one to (22), we obtain a
condition, to which p must satisfy:

=Zp =0, (24)
where
— ( E=SRh(Sk)" 0 S =5\
== 0 E—MQy(MQ)*™ ) \ M —M
([ Po(MPy)™M 0
0 Py(SPy)*tS )
Equality (24) is satisfied by p such that:
p=(E—-E"3)r (25)
where r = ::1 is an arbitrary vector.
2

Finally, substituting (25) to (23), we get the general formula for the solution of system
(21), (22), namely: u = ®r, where

_( B(MP)*M 0 .
- ( 0 Po(SPy)*S (E-=75)
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and r is an arbitrary vector. Moreover, the components of vector u are calculated by

formulae:
= @17’, Ug = (I)QT', (26)

where

O, = ( P(MPy)*M 0)(E—Z*5),
Oy, = (0 By(SP)*S ) (E-E*E),

Formulae (13) and (15) for calculation of vectors v, and v now take the form:

v = PQ(SP2>+S((I)2 — (I)l)?", (27)
V2 = Q2(MQo) "M (1 — D). (28)

Substitution of vectors (26) to equation (19), (20) yields

dn(t) = M(H)L*()n(t)dt + M(E)®, ()r()dt + f(E)dt + N()dw(t), (29)
L7 (0)n(0) = a — SP,(0)r(0) (30)

Now take into account the fact that any solution of equation (29) satisfies the relation
n(t) = X(#)n(0) +6(1), (31)
where matrix X (¢) and vector 0(t) are solutions of Cauchy problems:

dX (1)

- =ML )X (), X(0)=E

and

dO(t) = M()LT(D)0()dt + M($)®, (£)r(t)dt + F(£)dt + N(t)dw(t),
9(0) = 0.

respectively. One can easily see that 0(t) = X (t)x(t), where
= [ X GMER ) + F)ds+ [ XN (o)

therefore, equality (31) can be rewritten in the form

n(t) = X (@)n(0) + X(#)x(1). (32)
Substituting (32) to conditions (18) and (3

[E = L) LT (0] X ()n(0) = —[E = L) LT (OIX ()x(t),

0), we obtain

where
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We have to apply the following lammas from the theory of algebraic systems.

Lemma 2. [6] Let the matriz A(t) be continuous on the interval [0,T] and

T
G= / A*(s)A(s)ds. (35)
0
Then any solution c of the system
Ge=0 (36)
s a constant solution of the system
Alt)e=0,0<t < T. (37)

And vice versa, any constant solution of system (37) is a solution of system (36)

Lemma 3. /7] Let in the system of equations
Altyy=B1t),0<t<T, (38)

matrices A(t) and B(t) be continuous. Then system (38) has a constant (independent of
t €[0,T]) solution y if and only if for all t € [0,T] the equality

AG* /0 A*(s)B(s)ds = B(t) (39)

holds, where G is matriz (35).

Lemma 4. [8] If the hypothesis of Lemma 8 and equality (39) hold, the general solution
of system (38) has the form

y=G* /OT A*(s)B(s)ds + (E — GTG)c, (40)

where ¢ 1s an arbitrary vector.

Corollary 1. /1] If there exists a constant solution y of system (38), the equality
T
(E — GG+)/ A*(s)B(s)ds =0
0

holds.

Now apply the above-mentioned Lemmas to equation (33). We have

A(t) = [E - LIOL* ()X (1),
B(t) = —A(H)x(t)

and since the matrix F — L(t)L*(¢) is a self-adjoint projector, the equality

A" (DA() = X*(1)[E — L)L ()] X (t)
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holds. Hence, .
G = /0 X*(s)[E — L(s)L*(s)] X (s)ds, (41)

/0 A%(5)B(s) = / X*($)E — L(s)L* ()] X ()x(s)ds,

then by formula (40) we obtain
n(0) = —G+/O X*(s)[E — L(s)L*(s)] X (s)x(s)ds + (E — GTG)c, (42)

where ¢ is an arbitrary vector, and G is matrix (41). By Lemma 3, here the condition of
solvability (33) with respect to 7(0) should hold:

[E = L)L ()] X(H)GT /0 X*(s)[E = L(s)L™(s)] X (s)x(s)ds =
[E — LLT) X (t)x(t),0 <t <T. (43)

By substituting vector (42) in equation (34), we obtain the equation for finding vector

(A —=AGTG)ec=a— SPy(0)r(0)+

+AG+/0 X*(s)[E — L(s)L*(s)] X (s)x(s)ds. (44)

By Theorem 3 the solution of equation (44) is written in the form :
¢ = (A = AG*G){a — SBy(0)r(0)+
ey "X ()E - L(s)LH (<)X (9)x(s)ds) +
[EO ~ (A — AGTG)H(A — AGT@))B, (45)

where [ is an arbitrary vector. By Theorem 3, formula (45) takes place if the condition of
compatibility for system (44) is satisfied

[E — (A — AGTG)(A — AGTG)M{a — S@,(0)r(0)+

T
+AG+/ X*(s)[E — L(s)L*(s)] X (s)x(s)ds} = 0. (46)
0
By substituting (45) to (42), we derive to the last expression for vector n(0), namely:

0(0) = —[F — (B — G*G)(A — AG*G)*AIG+ /0 X (B

—L(s)L*(s)] X (s)x(s)ds + (E — GTG)(A — AGTG)™"-
{a —5D,(0)r(0) }+
HE - GYQ)E — (A — AG* Q) (A — AG*G))5, (47)
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where [ is an arbitrary vector.

One can see that the solvability conditions (43), (46) have the form of a system of
integral equations with respect to vector r(¢) since vector x(), included in this system, is
associated with r(¢) by the integral formula

x(t) :/0 X_l(s)[M(s)Cbl(s)r(s)+f(s)]ds+/0 XY(s)N(s)dw(s). (48)

So, it is established that the General solution of problem (1), (2) can be represented in
two forms: either (4) or (5), where the vectors uy, ug, v1 and v, are calculated by formulae
(26), (27) end (28). Vector r(t) is an arbitrary solution of integral system (43), (46) and
(48), vector n(t) is a solution of equation (29) with initial condition (47). Since vectors
hq(t) and ho(t) belong to the intersection kerL N kerM N kerS, for their calculation the
formulae

hai(t) = Piy(t), ha(t) = Quy(1),

take place where y(t) is an arbitrary continuous vector given on the interval [0, 7). In |7, §]
it is established that the matrix that is applied to vector § in formula (47), is a projector
on the set kerGNkerA. Then the third term in the right-hand side of equality (47) (which
we denote by «) is an arbitrary solution of the system

Aa =0, Ga =0, (49)

The main difficulty in solving problem (1), (2) is in finding solution of integral system
(43), (46), (48), to which the vector r(t) satisfies. Now we can formulate the conditions
under which the resulting complex system relative to the vector r(t) admits a simple
solution.

3. Theorems on the solvability of systems and formulae
for solutions

Problem (1), (2) should be considered for matrices L(t), M(t), S that satisfy the
identities

[E = LOLT (D)X (1) X (s)M(s)P1(s) = 0, (50)
[E— (A — AGHG)(A — AGTG)*]SPy(t) = 0, (51)
t,s €[0,7T].
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Then for problem (1), (2) compatibility conditions
[E— L(t)L+(t)]X(t)G+{/T X*()[E = L(s)L™(s)]z(s)ds+
/ X*(s)[E — L(t)L* (¢ / X! dw(u)lds} =
= [E = L) LT (0){=(t) + X(2) / X7 (s)N(s)dw(s)}, (52)

B — (A — AG*G)(A — AG*G)|{a + AG*| / X(8)[E — L(s)L* (s)](s)ds+

/ X*(s)[E — L(s)L*(s / X! dw(u)|ds]} =0, (53)
should hold where z(s) is a solution of the following Cauchy problem:

dz(t) = M(t)L"(t)=(t)dt + f(t)dt
z(0) = 0.
Thus, from the results of previous section we derive the following theorems.

Theorem 4. Let in problem (1), (2) for matrices L(t), M(t), S identities (50), (51)
hold. Then for sovability of the problem it is necessary and sufficient that conditions (52),
(53) are satisfied.

Theorem 5. If the matrices L(t), M(t) and S in problem (1), (2) satisfy equations (50)
and (51) and the problem has a solution, then its general solution can be written in two
ways:

§(t) = LT (t)n(t) + Hi(t)r(t) + Pat)ro(t), (54)
E(t) = LT (t)n(t) + Ha(t)r(t) + Qu(t)ro(t), (55)

where the matrices Hy(t) and Hy(t) are calculated as follows:

H1 - [E - P2(SP2)+S]®1 —|— PQ(SP2)+S(I)2,
Hy = [E — Qa(MQ2) " M]®y + Q2(MQ2) " M®y,

r(t), ro(t) are arbitrary continuous vectors and n(t) is a solution of Ito equation
dn(t) = M(t)L* (t)n(t)dt + M (t)®1(¢t)r(t)dt + f(t)dt + N(t)dw(t) (56)

with initial condition

7(0) = —[E — (E — G*G)(A — AGTG)*A]G*H{ / X*(5)[E — L(s)L*()]0(s)ds+

/ X*(s)[E — L(s)L*(s / x-! duw(u)]ds}+
H(E =G G)(A = AGTG)* - {a— SBy(0)r(0)} + o, (57)
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where a 1s a solution of the system
Aa =0, Ga =0, (58)
and vector 0(t) satisfies the equation

dO(t) = M(t)L*(£)0(t)dt + M(£)D, ()r(t)dt + f(t)dt
0(0) = 0, (59)

(note that vector r(t) in (56), (57), (59) is the same as in (54), (55)).

Theorem 6. The solution of problem (1), (2) (if it exists) is unique if and only if system
(58) has only zero solution o = 0 and the equality

Oy (t) = Do(t) =0, 0<t<T (61)
holds.

Theorem 7. Let in problem (1), (2) the compatibility conditions (52) and (53) hold and
equality (61) take place. Then solutions of problem (1) and (2) exist, and the general
solution has the form

§(t) = LT (t)n(t) + h(t),0 <t < T,
L)h(t) =0, M(t)h(t) =0, Sh(t) =0, (62)

where the vector n(t) is obtained from the following system

dz(t) = M(t)L*(¢)z(t)dt + f(t)dt, z(0) =0,
dn(t) = M(t)L"(t)n(t)dt + f(t)dt + N(t)dw(t)

with nitial condition
T
0(0) = —[E — (E — G*G)(A — AG*G)*AJG*H] / X*(s) [E — L(s)L* (s)] =(s)ds+
/ X*(s)[E — L(s)L*(s / X! dw(u)]ds}+
+(E - G*TG)(A - AG+G) a+ a,
where o 1s an arbitrary solution of the system
Aa=0, Ga=0,. (63)

Remark 1. If systems (62) and (63) have only zero solutions, then under the conditions
of Theorem 7 the solution of problem (1), (2) is unique and it is represented by the formula

§(t) = LT (t)n(t).

In this case in equality (7) it is necessary to set a = 0.
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