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SYSTEMS

A. N. Tyrsin', at2001@Qyandex.ru,

G. G. Gevorgyan', garnik.ggg@gmail.com.

! Ural Federal University named after the first President of Russia B.N. Yeltsin,
Ekaterinburg, Russian Federation.

Two approaches to the entropy management of Gaussian stochastic system are
considered. The first approach is scalar and implements the concept of "growth points".
In this case the problem of maximizing (increasing) or minimizing (decreasing) the system
entropy is solved. The second approach is the vector management, allowing to ensure
effective changing of the entropy of two-dimensional vector, the components of which are
randomness and self-organization entropies. For vector control an optimization problem on
the conditional extremum is formulated. This problem can be solved using penalty methods.
It is shown that the vector management of entropy for a number of cases has advantages
compared to the scalar management. Examples of entropy models of real stochastic systems
are provided.
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Introduction

A number of real systems can be classified as complex multidimensional stochastic
systems. The main important feature of these systems is having multiple elements that are
intricately linked. In situations like this, the multidimensional stochastic system is often
being modeled as a random vector.

One of the perspectives of modeling complex stochastic systems is based on the
application of entropy. It is known that entropy is a fundamental property of all systems
with an ambiguous or probabilistic behavior [1] .The concept of entropy is rather flexible
and it can be clearly interpreted in terms of that specific area, where it is applied. It is being
widely used in modern science to describe the structural organization and disorganization,
the degree of destruction of the connections between the elements of the system [2-§].

Let’s take a complex stochastic system S as a multidimensional continuous random
variable Y = (Y1, Y3, ..., Y},). Each Y; element of the vector Y is a one-dimensional random
variable which is characterizing the functioning of the particular element of the system
under study. Those elements can be either interdependent or independent of each other.

In [9] the differential entropy of random vector Y with py (21, ..., z,,) joint probability
density was introduced:

“+o00 “+o00
HY)=- / /py(:z:l,xg, ooy T)logpy (x)dx dxs. . ta,.

Let’s consider the approach to the management of multidimensional stochastic systems
using differential entropy on the example of Gaussian systems.
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1. The Entropy Model of a Gaussian Stochastic System

We take that the Y = (Y1,Y3,..,Y,,) random variable has a multivariate normal
distribution with a X' = {0y}, .~ covariance matrix with its elements o;; = cov (V;,Y))
is the covariance between Y; and Y; random variables, oy = O'Z-Q is the variance of random
variable Y;, 1,7 =1,2,...,m.

For a multidimensional normally distributed random variable Y the differential
entropy (the entropy from now on) H(Y) is equal to [10]:

H(Y) = Jlog(2re)" | 5] 1)

The entropy (1), being a functional from the set of probability densities of random
variable Y, is a number. And therefore it cannot be counted as an adequate mathematical
model of a multidimensional system. Let’s represent the (1) in the form [11]:

H(Y)=H(Y)y + H(Y)g, (2)

where

HOY)y = Y H (V). H(Y) = log [(2me) o?].

k=1
) 1
i=1,2 ..., m, HY)r= alog(\RD,

|R| is the determinant of the correlation matrix R = {r;;}, . of the random variable Y,
045

Tz’j = .
0:i0jj

The first term of (2) is the sum of differential entropies and is equal to the joint entropy
in the case of mutual independence of the Y; components of the random variable Y. It
can be conditionally called randomness entropy. The second term of (2) is equal to the
entropy which occurs due to the correlations between the elements of the system. It can
be conditionally called self-organization entropy.

2. The Entropy Management Based on the Concept of Growth
Points

Many authors [3,12,13] note that the increase of the system functioning efficiency can
be examined from the perspective of increasing or decreasing its entropy. Therefore, the
entropy model (2) allows us to solve the problems of effective management of the stochastic
system. The most obvious option of that management is the provision of a control influence
on the system in order to increase or decrease its entropy. An increase of the entire system
entropy can be achieved either due to the growth of uncertainty (variances) of one or
several elements or due to the stagnation of the correlations degree between the elements
(increasing the determinant of the correlation matrix). A decrease of the entire system
entropy, on the other hand, is achieved by reducing the variances of its elements or by
increasing the correlation degree between the elements.

Note that we owe some resource (energy) to impact the system during the open system
management. One of the key areas for effective solution of such problems is the concept of
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"growth points" first proposed by Francois Perroux [14]. The concept of "growth points"
allows to highlight those system elements which are significantly sensitive to the entropy
changes, and at very limited, small amount of dedicated resource to use it most efficiently.
As the system is a set of interrelated elements, an impact on a well matched point will
trigger a chain of processes that will lead to the greatest entropy change of the entire
system.

Definition 1. By the growth point of the system, in the problem of achieving an increase
(decrease) of the Y = (Y1,Ya, .., Ys,) random vector’s entropy by the way of impacting on
its elements variances, we will understand the component Y;, the increase (decrease) of
which o? variance by a fived amount will lead to the greatest increase (decrease) of the
H(Y) entropy, compared with the other components Yy, i # j.

Definition 2. By the growth points of the system, in the problem of achieving an increase
(decrease) of the Y = (Y1,Ya, .., Yo,) random vector’s entropy by the way of impacting on
the 13 correlations between its elements, we will understand the pair of the components Y;
and Y}, 1 # j, the change of ry; of which by a fized amount will lead to the greatest increase
(decrease) of the H(Y') entropy, compared with the other pairs of components.

Depending on the purpose of management and on the available resources, it is possible
to formulate various objectives of changing the system entropy [15]: changing the entropy
to its maximum or minimum value under the existing constraints; changing the entropy
towards its increase or decrease.

Consider the problem of maximizing the entropy of a stochastic system.

We need to identify one growth point. Here is our problem:

0,5log [(2me)™(|X| + 0f My;)] — max,

1€[1,m]
o =02, (3)
cov(U)Y;) =0, i=1,2 .., m.

The problem (3) will allow to achieve the maximum increase in entropy via optimally
choosing the corresponding Y; element of the system and adding a random Gaussian
variable U with a given variance to it.

If there is a chance of a simultaneous influence on several elements of the system, the
problem (3) can be complicated. In this case we will additively impact on the Gaussian Y
system with an additional vector, components of which don’t correlate with the elements
of the initial random variable. Then we’ll get a problem of maximizing the entropy growth
of the multidimensional random variable by adding normally distributed random variables
Uy, Uy ~ N (an, U?Ji), (1=1,2,...m), to the components Y; of Y random vector. The
problem has the following form:

( Slog[(2me)™ | 2] — maz,
Y,
£ - .
CO’U(UhY}) = 07 Za] = 17 27 ; M,
\ COU(Uiij) :07 Zu] 17 27 y M, Z%ja
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where
oy +of, woocov(Y,Y;) ..o ocov(Yy, Vi)
¥ =| cov(Y;, Y1) ... oy +op, . cov(Y;, Yy,
cov(Yy,, V1) ... cov(Y,,Y;) .. o} +of

The problem (4) will allow an optimal distribution of the o2 available resource within
the Y; system elements, having independent random variables U; added to them. We can
solve this non-linear programming problem using numerical methods. In [15] the theorem
is proved.

Theorem 1. Let'Y be a normally distributed random vector with a covariance matrix
Y, Yy~ N (a;, 02); -U = (U, Us,...,Upy), arandom vector, U; ~ N (CLU“ 0(2]1,). Then
the problem (4) has a solution, and any local maximum is global.

Since a system is a set of interrelated elements, in some cases for the problems (3)
and (4) we should introduce additional constraints for its elements correlations, like
a < |R| < b, which will allow to consider the range of possible correlations within the
system.

Let’s now consider the problem of minimizing the entropy of a stochastic system. We’ll
minimize the entropy by reducing the variances of Y random variable’s components, which,
for some certainty, we’ll assume are centered. Based on the random variable’s variance
properties, its reduction is achieved by dividing the random variable by a positive number.
Note, that transition to the changed variance o? — o2 /x; will leave the correlation matrix
unchanged.

In this case we have a problem, where we need to optimally reduce the variances of
random vector’s some components:

I
slog | (2me) "0} 0% .05 |R|/ [ i —>n}:iin,

! = (5)
Z%SVV, szOa 1= ]-7 27 Tt l7

i=1

where |R| is the determinant of the correlation matrix, W is the amount of available
resource for reducing the variances, [ =1,2,...m .
The theorem is valid [15].

Theorem 2. Let the Y be a normally distributed random variable with R correlation
matriz. Then the solution of problem (5) is x; = W/I, where | matches with the mazimum

value of max; (%)l ,I=1,2,...m.

Note, that the problem (5), in fact, suggesting to equally distribute the resource among
several or all the system elements, doesn’t reveal the growth points (points to impact on
the system). Therefore, the minimizing of the system entropy can be considered from
the perspective of applying specific management activities to reduce the variances, on
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condition that the changes of |R| will be negligible.

tlog [(2me)™ (0} — 21)(0%, — @2)...(0% — x) |R|] — n;in,

Yo < W, ngiga%,, 1=1, 2, ..., m, (6)
=1

|}%\ = const.
The theorem is valid [15].

Theorem 3. Let Y = (Y1,Ys, .., Y,) be a Gaussian random vector with R correlation
matriz, Y; ~ N (ai, 032/1,). Then the solution of (6) problem exists, and any local minimum
15 global.

Let’s consider the problems of minimizing and maximizing the system entropy.

The system entropy can also be controlled by strengthening or weakening the
correlations between the components, on condition that with such an impact on the system
the variances of elements will change negligibly. For instance, when we need to change the
entropy towards the reduction of correlations, the problem will have the following form:

{ slog [(2me)™ | 2] — min, (7)

a<|R|<b, R'eD,

where D is a set of positive definite correlation matrices with elements d;;, —1 < d;; < 1,
Let’s consider this problem in details. Due to the fact, that fi(z) = log(z) is a
monotonically increasing and concave function, for the objective function (7) it is fair

to minimize the part, which is under the logarithm sign |¥| = 03¢, 07, ...07. |R/|, namely:

|R| — min,
8
a<|R|<b, ReD, 0<a<b<l.

Obviously, the solution of (8) comes to the achievement of to its minimal admissible
value a. Theoretically, changing the r;; level of correlations by a certain unit d;; should
require attraction of a certain amount of resources x;;, therefore the problem of reducing
the entropy by impacting on the correlations can be as follows:

( 1 T12+d12$12 Tlm‘i_dlml‘lm
T91+d21T21 1 o TomtdomTom, . min
rm1+dm1xm1 Tm2+dm237m2 o1 (9)
m m
> > x<W,
i=1j=1#
l'ijZO, i,j: 1, .,m,
[ a<|R[<h, ReD,

where W is the amount of available resource.
The solution of problem (9) requires a complex work on obtaining and analyzing
the statistical information about the change level of correlation depending on the spent
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resources, which is practically very hard to implement. Therefore, it is advisable to consider
(8) as a task of identifying the main impact points for applying management actions. As
is known, the function gradient is a vector, whose direction points the direction of the
fastest increase of the function and the module matches with the highest speed of function
change on a certain point. The theorem is valid [15].

Theorem 4. The function f(ri2,713,.-,Tmm-1) = |R|, f: D — [0;1], defined on the
set of D = {’r e Rmm=1) . riy€[=1; 1], i=1m, j=i+1,m— 1} 1S convex.

According to theorem 4 to identify the reduction direction of f (ria, 713, .., "mm—1)
function we can consider the antigradient.

of of of )

(97’127 87“137 o 8rm7 -1

—grad(f) = — (

3. Examples of Entropy Modeling

Let’s consider some examples of entropy modeling.

Example 1. The modeling of a system that characterizes the safety of the production.
17 coal mining enterprises were investigated [15]. According to the system of primary
indicators, using factor analysis, two generalized factors (main components) were formed,
explaining the 88% of the entire variation of the initial characteristics: Y is the
factor characterizing the organization of safe production; Y5 is the factor reflecting the
professionalism of the staff.

All the enterprises were divided into two groups: 1) enterprises with low level of injuries
(the coefficient of injury rate in range of 5,8 - 16,5 cases per 1000 person); 2) enterprises
with high level of injuries (the coefficient of injury rate in range of 21,7 - 49,7 cases per
1000 person). The calculation results by enterprise groups:

HYWD)=HYW), + HYW), =2,4166 — 0,3111 = 2,1055,

HYP) = HY®), + HY®)g = 3,7360 — 0,6989 = 3,0371.

In general, it was found out that the entropy is higher for the second group. For the
self-organization entropy H (Y(2)) r< H (Y(l)) R, the instability of work within the 2nd
group to some extent is compensated by more active intervention of the management (the
"administrative resource").

Example 2. The modeling of a macroeconomic system [15]. Let’s consider the yearly
data from Rosstat’s collection "Russia in figures" from 2000 to 2013. Using factor analysis,
it was found that the initial system can be represented by three factors (main components)
Y = (Y1,Ys, Y3) which explain the 93% of entire variations of initial characteristics.

We further carry out a comparative analysis of the behavior of macrosystem for two
periods (before 2006 (including) and after) using the analysis of entropy of the random
vector Y. The entropy of macrosystem for first and second periods equals to:

HY®)=HY )y + HYY)r=2,02-1,21=0,81,

HY®)=H(Y®), + HY®)=3,19-0,12 = 3,07.
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For the second period a significant increase happened both for randomness entropy
H(Y )y and the self-organization entropy H(Y ). This can speak about the deterioration
of the macroeconomics in Russia, as a whole, for the second period, which is caused by
the economic crisis and other events in comparison with the fact that the first period was
characterized by rather constant growth of economic development of the country.

Example 3. Let’s examine the possibilities of entropy modeling on the example of
population analysis in terms of preventing chronic non-communicable diseases by biological
risk factors [16]. To analyze the change in population entropy depending on the health
state, two age groups with equal range were formed: 18-26 years, 27-35 years.

Four risk factors were identified: "Total cholesterol" (TC), "Systolic blood
pressure" (SBP), "Body mass index" (BMI), "Blood sugar" (BS). The results of the
analysis are shown in the Table.

Table
The entropy levels for groups of "healthy", "practically healthy" and "diseased" people
Age, years Randomness Self- Total entropy
Health state entropy organization
entropy
Healthy 5,500 -0,514 4,986
18 - 26 Practically healthy | 7,131 -0,578 6,553
Diseased 7,847 -0,696 7,151
Healthy 5,731 -0,299 5,432
27 - 35 Practically healthy | 8,376 -0,542 7,834
Diseased 8,720 -0,781 7,939

With the deterioration of population health state an increase occurs in the total and
the randomness entropy, for all the risk factors. This can be explained by the fact that to
the pathological influence of risk factors on the human organism individually and to the
whole population in general, additional damaging effects of non-communicable diseases
are being added.

The self-organization entropy, on the contrary, with the deterioration of the population
health, is reduced which means stronger relationships between the subsystems. This can be
explained by the idea, that the disease development within the organism doesn’t happen
isolated. On the other hand, with the disease development some subsystems may adapt
to others, compensating the defects in their operating, i.e. some substitution effect can be
noted.

Analyzing these examples shows that the entropy management with maximizing and
minimizing the system entropy H(Y) in a lot of cases can appear to be not effective. Thus,
in the examples 1 and 3 the randomness H(Y )y and self-organization H (Y )g entropies
change in different directions. This means that the very scalar formulation of the problem
in the form of maximizing (increasing) or minimizing (decreasing) the system entropy
H(Y') may not be correct.
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4. Vector Management of Entropy

In open systems the entropy can both increase and decrease. Moreover, systems with
different randomness H(Y )y and self-organization H(Y )g entropies can have identical
values of entropy H(Y). Therefore, the management as maximization or minimization (1)
may not improve the stochastic system’s state, and we’ll need to consider the entropy (1)
as a vector h(Y) = (hyv; hr) = (H(Y)y; H(Y)g) [11]. In this case the management
consists in transforming the system entropy vector from the state of h(Y®) = (hY; h%) to
the state of h(Y™) = (h},; h}), corresponding to the effective functioning of the stochastic
system.

The objective of vector management of the entropy of a Gaussian stochastic system
consists in directing the entropy from one initial point (hY; h%) = (H(Y")y; H(Y?)R)
with X, covariance matrix to the (h{; h}) end point with the minimal changes in
covariance matrix (Fig. 1).

hR A

h(Y)
20

h'(Y)

Fig. 1. Entropy estimate dependence on L number of intervals, H* - theoretical value of
the entropy

The problem has the following form:

((G(2) =31 300 (of; — 03;)” — min,
H(Y)V = hq\t/v
H(Y)R = h*Rv (1())
O'Z~2j< 040345, Oij = Oji, 0; >0V 1§Z7]§m7
2 >0.

The last limitation in (10) shows the positive definition of X' matrix. Note that the
efficiency criteria in (10) can differ, depending on the characteristics of specific system S.

The limitations of the non-linear programming problem (10) are not convenient for its
algorithmic implementation. Therefore, we transform them:

1 m
H(Y), = 5 ;111 (2me 0y) = A,
In <(27Te)m Haii> =24,
i=1
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2A—m

- e
Haii_wzou

1 1
HY)z= g | 5[5 | =B,

m
H O
i=1

1
m
H O
i=1

2| =28,

1
[T = e =0

H (7]
i=1

As a result, the problem (10) takes the following form:

( m n
G (E) = Z Z (Uzj az]) — 111,
i=1j5=1 Tij
62Afm
zl;ll 7 (27T)m ’
1
X —e* =0,
H Ois
i=1
02‘23’ < 0405, 0,5 = 04,04 >0V 1 <4, j <m,
> > 0.

\

(11)

We find the derivatives of the constraints of problem (11). For the first constraint, we

have:
2A—m

aO'ij
Let’s consider the second constraint:

1
g (X) = 13| —e?P =0.

m

H o7
i=1

Let’s find the partial derivatives of the function go(X):
( 1 ,

m ‘E Tij? 27&]7
g kl;llo'kk
| e (e ) i
W=z 2
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( 1 o
ﬁ (A + Aji), i # J,
Okk
— k=1
L (g +- A =
’L’L b 7’ :j7
[[ow \ o
\ k#l
( 1 o
177_1[ (AZJ+A]Z>7 Z#]a
Okk
_ k=1
m <A”—U%Z‘E|>, ’L:j.
Okk
\ kl;[].

The problem (11) will

be solved using the penalty methods [17]. Moreover, the

minimum of the merit functions can be found by numerical methods of searching for

an any order unconditional extremum.

Let’s consider the particular case of two-dimensional Gaussian stochastic system

Y = (V1,Y,) with covariance matrix Y =
according to (2), will be:
H(Y)=H(Y )y + H(Y)k,

where

1
H(Y)V = 510g [(271'6)20'110'22} s

H(Y)r = ;log

|: :|
2 0 116 22 '

)
— 07)* = min,

G(E) =33 ()

15
110g [(27’('6)2 110'22] = hV’

2
o
1 12 1k
§1Og - - hR?
011022

\ 012 = 021, Uii>07 221,2.

.

Example 4. Let the Y° have a covariance matrix of:

1,87 1,63
0= ( 1,63 2,08)
for it H(Y?) = 2,93, H(Y"),= 3,515, H(Y")z= —0, 585.
We’ll change the covariance matrix to be:
1,87 1,63
2= ( 1,63 2,58 )

for which H(Y') = 3,22, H(Y")y = 3,62, H(Y')r = —0, 39.
Let’s estimate the change of covariance matrix: A = (

2,58 —

{0ij}5.5- Then the entropy of Y vector,

(12)

2,08)* =0,5% =0, 25.
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Now let’s move from the initial (hY; h%) = (3,515; —0,585) state to the state of
(hi; hy) =(3,62; —0,39), using optimization problem (12). As a result of problem (12)
solution, we have a new covariance matrix:

oo _ ((2:09 1,608
—\ 1,608 2,28 /-

Let’s estimate the change of covariance matrix:
G(X*) = (2,09 — 1,87)% + (1,608 — 1,63)* + (2,28 — 2,08)? = 0, 089.

Example 5. Let’s go on with the example 1. For the first group of coal mining companies
with low level of injuries we have:

w _ (00671 0,4466
~— \ 0,4466 6,4138 )’

(hS); hg>):(2,4166; —0,3111),
H(YW) =2,1055.

For the second group of coal mining enterprises with high level of injuries:

p@ _ (0,253 2,1302
—\ 2,1302 18,5289 )

(h?: B2y = (3,7360; —0,6989),
H(Y®) =3,0371.
Solving the problem (12) in this form:

2 2
G(Z) =23 (01 — 0i)* — min,

i=1j=i Tij

tlog [(271'6)20121022] = hs)a (13)
Lo (1 -T2 ) = by,
208 011022 f

( O12 =091, 05 >0, 1=1,2,

we’ll have:
o 0,0232 0,4466
~\ 0,4466 18,5285 )’
(hi; hgp) = (2,4166; —0,3111),
H(Y™) =2,1055.

The change of covariance matrix is:

G(2*) =(0,0232 — 0, 3253)4(0, 4466 — 2, 1302)°+
+(18, 5285 — 18, 5289)*= 2, 9258.
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Then, solving the minimization problem

( H(Y) = In[(27e)™ | Y]] — min,

2 o
2 & @) 2 ]

0110922 > O'%Q,

( 012 =091, 04>0, i=1,2,

we’ll have:

s ((0,1651 1,7439
—\ 1,7439 18,4801 )’

(h'; hi) = (3,3959; —2,7779), "
H(Y™) = 0,6180.

We can see that the solutions of (12) and (14) are significantly different.

The (13) solution of problem (12) gives a result, allowing with the minimal change of
Y@ covariance matrix elements, realize the entropy management.

The obtained (15) solution of problem (14) doesn’t correspond to the admissible
values of randomness and self-organization entropies. Indeed, the randomness entropy
HY™)y = 3,3959 turned to be too high, and the self-organization entropy
H(Y™)r = —2,7779 — to be too low compared with the required values.

5. Conclusion

1. Problems of entropy management for Gaussian stochastic systems were considered
in scalar form (based on the concept of "growth points") and in vector form.

2. It was demonstrated that the scalar management of entropy for a number of cases
turns to be ineffective.

3. Some examples are considered for Gaussian stochastic systems; the objective
of entropy management was formed. An example of solving the entropy management
problems for two-dimensional random vector was introduced.

The reported study was funded by REFBR according to the research project
Ne 17-01-00315a.
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SHTPOIINMTHOE YIIPABJIEHUE TAYCCOBCKIUMMU
CTOXACTUNYECKUMUN CUCTEMAMMN

A.H. Twpcun, I.I. I'eeopasan

PaccMmorpensl JiBa HOAX0a K SHTPONUHHOMY yIIPABJICHUIO M'ayCCOBCKUMU CTOXACTHYE-
CKUME cucTeMaMu. [lepBblil TOAXO] SIBJISIETCS CKAJISIPHBIM U PEAJN3yeT KOHIIENINI0 KTO-
4ek pocram. [Ipu aroM pemaercs 3agada Makcumu3anuu (yBeJIUYeHUs) UM MUHUMU3AIIN
(yMEHbBIIIEHUS) SHTPOIUK CUCTEMbL. BTODPOIi IIOAX0/1 IIPEICTABIISIET COOON BEKTOPHOE yIIPaB-
JIeHUe, MTO3BOoJIsTIoNIee 00ecrednThb 3 (MEKTUBHOE U3MEHEHNE SHTPOIINU Kak JBYMEPHOTO BEK-
TOpa, KOMIIOHEHTaAMU KOTOPOI'O sIBJIIOTCS SHTPOIUU Xa0THIHOCTH U caMoopranusamyn. s
BEKTOPHOTI'O yIIpaBjieHus chOpMyIMPOBAHA ONTUMHU3AIIMOHHAS 331298 HA YCJIOBHBIN 9KCTpe-
myMm. annas 3amada MOKET OBITE pererna Merogamu mrpadubix dynkmumit. [lokaszano, 1To
B psjie CJIydaeB BEKTOPHOE SHTPOIUIHOE yIIPaBJIeHIe UMEeT IIPEUMYIIEeCTBa [0 CPABHEHHIO
€O CKaJISIPHBIM yIIpaBjienueM. [IpuBeieHbl IpUMephl SHTPOIMIHOTO YIIPABJICHUS JIJIsl Peaib-
HBIX CTOXaCTUIECKUX CUCTEM.

Karouesvie caosa: duddepenyuasvhas sHMPonus, Mo0eAb, MHOLOMEPHAS CAYYATHAS
BEAUNUNA, 20YCCOBCKAA CMOTACNUYECKAA CUCTIEME, KOBAPUAUUOHHAA MAMPUUL, YNPAGAE-

HUe, 8EKMODP, TAOMUYHOCTD, CAMOOP2GHUSAUUA.
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