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Two approaches to the entropy management of Gaussian stochastic system are
considered. The first approach is scalar and implements the concept of "growth points".
In this case the problem of maximizing (increasing) or minimizing (decreasing) the system
entropy is solved. The second approach is the vector management, allowing to ensure
effective changing of the entropy of two-dimensional vector, the components of which are
randomness and self-organization entropies. For vector control an optimization problem on
the conditional extremum is formulated. This problem can be solved using penalty methods.
It is shown that the vector management of entropy for a number of cases has advantages
compared to the scalar management. Examples of entropy models of real stochastic systems
are provided.
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Introduction

A number of real systems can be classified as complex multidimensional stochastic

systems. The main important feature of these systems is having multiple elements that are

intricately linked. In situations like this, the multidimensional stochastic system is often

being modeled as a random vector.

One of the perspectives of modeling complex stochastic systems is based on the

application of entropy. It is known that entropy is a fundamental property of all systems

with an ambiguous or probabilistic behavior [1] .The concept of entropy is rather flexible

and it can be clearly interpreted in terms of that specific area, where it is applied. It is being

widely used in modern science to describe the structural organization and disorganization,

the degree of destruction of the connections between the elements of the system [2–8].

Let’s take a complex stochastic system S as a multidimensional continuous random

variable Y = (Y1, Y2, ..., Ym). Each Yi element of the vector Y is a one-dimensional random

variable which is characterizing the functioning of the particular element of the system

under study. Those elements can be either interdependent or independent of each other.

In [9] the differential entropy of random vector Y with pY (x1, ..., xm) joint probability

density was introduced:

H(Y ) = −

+∞
∫

−∞

...

+∞
∫

−∞

pY (x1, x2, ... , xm)logpY (x)dx1dx2...txm.

Let’s consider the approach to the management of multidimensional stochastic systems

using differential entropy on the example of Gaussian systems.
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1. The Entropy Model of a Gaussian Stochastic System

We take that the Y = (Y1, Y2, .., Ym) random variable has a multivariate normal

distribution with a Σ = {σij}m×m covariance matrix with its elements σij = cov (Yi, Yj)
is the covariance between Yi and Yj random variables, σii = σ2

i is the variance of random

variable Yi, i, j = 1, 2, ..., m.

For a multidimensional normally distributed random variable Y the differential

entropy (the entropy from now on) H(Y ) is equal to [10]:

H(Y ) =
1

2
log [(2πe)m |Σ |] . (1)

The entropy (1), being a functional from the set of probability densities of random

variable Y , is a number. And therefore it cannot be counted as an adequate mathematical

model of a multidimensional system. Let’s represent the (1) in the form [11]:

H(Y ) = H(Y )V +H(Y )R, (2)

where

H(Y )V =
m
∑

k=1

H (Yk), H(Yi) =
1

2
log
[

(2πe) σ2

i

]

,

i = 1, 2, . . . , m, H(Y )R =
1

2
log(|R|),

|R| is the determinant of the correlation matrix R = {rij}m×mof the random variable Y ,

rij =
σij

√
σiiσjj

.

The first term of (2) is the sum of differential entropies and is equal to the joint entropy

in the case of mutual independence of the Yi components of the random variable Y . It

can be conditionally called randomness entropy. The second term of (2) is equal to the

entropy which occurs due to the correlations between the elements of the system. It can

be conditionally called self-organization entropy.

2. The Entropy Management Based on the Concept of Growth

Points

Many authors [3,12,13] note that the increase of the system functioning efficiency can

be examined from the perspective of increasing or decreasing its entropy. Therefore, the

entropy model (2) allows us to solve the problems of effective management of the stochastic

system. The most obvious option of that management is the provision of a control influence

on the system in order to increase or decrease its entropy. An increase of the entire system

entropy can be achieved either due to the growth of uncertainty (variances) of one or

several elements or due to the stagnation of the correlations degree between the elements

(increasing the determinant of the correlation matrix). A decrease of the entire system

entropy, on the other hand, is achieved by reducing the variances of its elements or by

increasing the correlation degree between the elements.

Note that we owe some resource (energy) to impact the system during the open system

management. One of the key areas for effective solution of such problems is the concept of
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"growth points" first proposed by François Perroux [14]. The concept of "growth points"

allows to highlight those system elements which are significantly sensitive to the entropy

changes, and at very limited, small amount of dedicated resource to use it most efficiently.

As the system is a set of interrelated elements, an impact on a well matched point will

trigger a chain of processes that will lead to the greatest entropy change of the entire

system.

Definition 1. By the growth point of the system, in the problem of achieving an increase
(decrease) of the Y = (Y1, Y2, .., Ym) random vector’s entropy by the way of impacting on
its elements variances, we will understand the component Yi, the increase (decrease) of
which σ2

i variance by a fixed amount will lead to the greatest increase (decrease) of the
H(Y ) entropy, compared with the other components Yi, i 6= j.

Definition 2. By the growth points of the system, in the problem of achieving an increase
(decrease) of the Y = (Y1, Y2, .., Ym) random vector’s entropy by the way of impacting on
the rij correlations between its elements, we will understand the pair of the components Yi

and Yj, i 6= j, the change of rij of which by a fixed amount will lead to the greatest increase
(decrease) of the H(Y ) entropy, compared with the other pairs of components.

Depending on the purpose of management and on the available resources, it is possible

to formulate various objectives of changing the system entropy [15]: changing the entropy

to its maximum or minimum value under the existing constraints; changing the entropy

towards its increase or decrease.

Consider the problem of maximizing the entropy of a stochastic system.

We need to identify one growth point. Here is our problem:











0, 5log [(2πe)m(|Σ |+ σ2
UMii)] → max

i∈[1,m]

,

σ2
U = σ2,

cov(U, Yi) = 0, i = 1, 2, ... , m.

(3)

The problem (3) will allow to achieve the maximum increase in entropy via optimally

choosing the corresponding Yi element of the system and adding a random Gaussian

variable U with a given variance to it.

If there is a chance of a simultaneous influence on several elements of the system, the

problem (3) can be complicated. In this case we will additively impact on the Gaussian Y

system with an additional vector, components of which don’t correlate with the elements

of the initial random variable. Then we’ll get a problem of maximizing the entropy growth

of the multidimensional random variable by adding normally distributed random variables

Ui, Ui ∼ N
(

aUi
, σ2

Ui

)

, (i = 1, 2, . . .m), to the components Yi of Y random vector. The

problem has the following form:



























1

2
log [(2πe)m |Σ

∗

|] → max
σ2

Ui

,

m
∑

i=1

σ2
Ui

= σ2,

cov(Ui, Yj) = 0, i, j = 1, 2, ... , m,
cov(Ui, Uj) = 0, i, j = 1, 2, ... , m, i 6= j,

(4)
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where

|Σ∗

|=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ2
Y1
+σ2

U1
... cov(Y1, Yi) ... cov(Y1, Ym)

... ... ... ... ...
cov(Yi, Y1) ... σ2

Yi
+σ2

Ui
... cov(Yi, Ym)

... ... ... ... ...
cov(Ym, Y1) ... cov(Ym, Yi) ... σ2

Ym
+σ2

Um

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The problem (4) will allow an optimal distribution of the σ2 available resource within

the Yi system elements, having independent random variables Ui added to them. We can

solve this non-linear programming problem using numerical methods. In [15] the theorem

is proved.

Theorem 1. Let Y be a normally distributed random vector with a covariance matrix
Σ , Y1 ∼ N (ai, σ2

i ); - U = (U1, U2, . . . , Um), a random vector, Ui ∼ N
(

aUi
, σ2

Ui

)

. Then
the problem (4) has a solution, and any local maximum is global.

Since a system is a set of interrelated elements, in some cases for the problems (3)

and (4) we should introduce additional constraints for its elements correlations, like

a ≤ |R| ≤ b, which will allow to consider the range of possible correlations within the

system.

Let’s now consider the problem of minimizing the entropy of a stochastic system. We’ll

minimize the entropy by reducing the variances of Y random variable’s components, which,

for some certainty, we’ll assume are centered. Based on the random variable’s variance

properties, its reduction is achieved by dividing the random variable by a positive number.

Note, that transition to the changed variance σ2
i → σ2

i /xi will leave the correlation matrix

unchanged.

In this case we have a problem, where we need to optimally reduce the variances of

random vector’s some components:















1

2
log

[

(2πe)mσ2
Y1
σ2
Y2
...σ2

Ym
|R| /

l
∏

i=1

xi

]

→min
xi

,

l
∑

i=1

xi≤W, xi≥0, i= 1, 2, ... , l,

(5)

where |R| is the determinant of the correlation matrix, W is the amount of available

resource for reducing the variances, l = 1, 2, . . .m .

The theorem is valid [15].

Theorem 2. Let the Y be a normally distributed random variable with R correlation
matrix. Then the solution of problem (5) is xi = W/l, where l matches with the maximum

value of maxl

(

W
l

)l
, l = 1, 2, . . .m.

Note, that the problem (5), in fact, suggesting to equally distribute the resource among

several or all the system elements, doesn’t reveal the growth points (points to impact on

the system). Therefore, the minimizing of the system entropy can be considered from

the perspective of applying specific management activities to reduce the variances, on
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condition that the changes of |R| will be negligible.















1

2
log
[

(2πe)m(σ2
Y1

− x1)(σ
2
Y2

− x2)...(σ
2
Ym

− xm) |R|

]

→ min
xi

,
m
∑

i=1

xi ≤ W, 0 ≤ xi ≤ σ2
Yi
, i = 1, 2, ... , m,

|R| = const.

(6)

The theorem is valid [15].

Theorem 3. Let Y = (Y1, Y2, .., Ym) be a Gaussian random vector with R correlation
matrix, Yi ∼ N

(

ai, σ2
Yi

)

. Then the solution of (6) problem exists, and any local minimum
is global.

Let’s consider the problems of minimizing and maximizing the system entropy.

The system entropy can also be controlled by strengthening or weakening the

correlations between the components, on condition that with such an impact on the system

the variances of elements will change negligibly. For instance, when we need to change the

entropy towards the reduction of correlations, the problem will have the following form:

{

1

2
log [(2πe)m |Σ

∗

|] → min
rij

,

a ≤ |R
∗

| ≤ b, R
∗

∈ D,
(7)

where D is a set of positive definite correlation matrices with elements dij, −1 < dij < 1,
dij = 1, ∀ i 6= j.

Let’s consider this problem in details. Due to the fact, that f1(z) = log(z) is a

monotonically increasing and concave function, for the objective function (7) it is fair

to minimize the part, which is under the logarithm sign |Σ | = σ2
Y1
σ2
Y2
...σ2

Ym
|R|, namely:

{

|R|→min
rij

,

a≤ |R| ≤b, R∈D, 0≤a<b≤1.
(8)

Obviously, the solution of (8) comes to the achievement of to its minimal admissible

value a. Theoretically, changing the rij level of correlations by a certain unit dij should

require attraction of a certain amount of resources xij , therefore the problem of reducing

the entropy by impacting on the correlations can be as follows:















































∣

∣

∣

∣

∣

∣

∣

∣

1 r12+d12x12 ... r1m+d1mx1m

r21+d21x21 1 ... r2m+d2mx2m

... ... ... ...
rm1+dm1xm1 rm2+dm2xm2 ... 1

∣

∣

∣

∣

∣

∣

∣

∣

→min
xij

m
∑

i=1

m
∑

j=1,j 6=i

xij≤W,

xij≥0, i, j= 1, ...,m,
a≤ |R| ≤b, R∈D,

(9)

where W is the amount of available resource.

The solution of problem (9) requires a complex work on obtaining and analyzing

the statistical information about the change level of correlation depending on the spent
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resources, which is practically very hard to implement. Therefore, it is advisable to consider

(8) as a task of identifying the main impact points for applying management actions. As

is known, the function gradient is a vector, whose direction points the direction of the

fastest increase of the function and the module matches with the highest speed of function

change on a certain point. The theorem is valid [15].

Theorem 4. The function f (r12, r13, . . . , rm,m−1) = |R|, f : D → [0; 1], defined on the
set of D =

{

r ∈ Rm(m−1) : rij ∈ [−1; 1], i = 1, m, j = i+ 1, m− 1
}

is convex.

According to theorem 4 to identify the reduction direction of f (r12, r13, . . . , rm,m−1)
function we can consider the antigradient.

−grad(f) = −

(

∂f

∂r12
,
∂f

∂r13
, ...,

∂f

∂rm, −1

)

.

3. Examples of Entropy Modeling

Let’s consider some examples of entropy modeling.

Example 1. The modeling of a system that characterizes the safety of the production.

17 coal mining enterprises were investigated [15]. According to the system of primary

indicators, using factor analysis, two generalized factors (main components) were formed,

explaining the 88% of the entire variation of the initial characteristics: Y1 is the

factor characterizing the organization of safe production; Y2 is the factor reflecting the

professionalism of the staff.

All the enterprises were divided into two groups: 1) enterprises with low level of injuries

(the coefficient of injury rate in range of 5,8 - 16,5 cases per 1000 person); 2) enterprises

with high level of injuries (the coefficient of injury rate in range of 21,7 - 49,7 cases per

1000 person). The calculation results by enterprise groups:

H(Y (1)) = H(Y (1))V +H(Y (1))R = 2, 4166− 0, 3111 = 2, 1055,

H(Y (2)) = H(Y (2))V +H(Y (2))R = 3, 7360− 0, 6989 = 3, 0371.

In general, it was found out that the entropy is higher for the second group. For the

self-organization entropy H(Y (2))R < H(Y (1))R, the instability of work within the 2nd

group to some extent is compensated by more active intervention of the management (the

"administrative resource").

Example 2. The modeling of a macroeconomic system [15]. Let’s consider the yearly

data from Rosstat’s collection "Russia in figures" from 2000 to 2013. Using factor analysis,

it was found that the initial system can be represented by three factors (main components)

Y = (Y1, Y2, Y3) which explain the 93% of entire variations of initial characteristics.

We further carry out a comparative analysis of the behavior of macrosystem for two

periods (before 2006 (including) and after) using the analysis of entropy of the random

vector Y . The entropy of macrosystem for first and second periods equals to:

H(Y (1)) = H(Y (1))V +H(Y (1))R = 2, 02− 1, 21 = 0, 81,

H(Y (2)) = H(Y (2))V +H(Y (2))R = 3, 19− 0, 12 = 3, 07.
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For the second period a significant increase happened both for randomness entropy

H(Y )V and the self-organization entropy H(Y )R. This can speak about the deterioration

of the macroeconomics in Russia, as a whole, for the second period, which is caused by

the economic crisis and other events in comparison with the fact that the first period was

characterized by rather constant growth of economic development of the country.

Example 3. Let’s examine the possibilities of entropy modeling on the example of

population analysis in terms of preventing chronic non-communicable diseases by biological

risk factors [16]. To analyze the change in population entropy depending on the health

state, two age groups with equal range were formed: 18-26 years, 27-35 years.

Four risk factors were identified: "Total cholesterol" (TC), "Systolic blood

pressure" (SBP), "Body mass index" (BMI), "Blood sugar" (BS). The results of the

analysis are shown in the Table.

Table

The entropy levels for groups of "healthy", "practically healthy" and "diseased" people

Age, years

Health state

Randomness

entropy

Self-

organization

entropy

Total entropy

18 - 26

Healthy 5,500 -0,514 4,986

Practically healthy 7,131 -0,578 6,553

Diseased 7,847 -0,696 7,151

27 - 35

Healthy 5,731 -0,299 5,432

Practically healthy 8,376 -0,542 7,834

Diseased 8,720 -0,781 7,939

With the deterioration of population health state an increase occurs in the total and

the randomness entropy, for all the risk factors. This can be explained by the fact that to

the pathological influence of risk factors on the human organism individually and to the

whole population in general, additional damaging effects of non-communicable diseases

are being added.

The self-organization entropy, on the contrary, with the deterioration of the population

health, is reduced which means stronger relationships between the subsystems. This can be

explained by the idea, that the disease development within the organism doesn’t happen

isolated. On the other hand, with the disease development some subsystems may adapt

to others, compensating the defects in their operating, i.e. some substitution effect can be

noted.

Analyzing these examples shows that the entropy management with maximizing and

minimizing the system entropy H(Y ) in a lot of cases can appear to be not effective. Thus,

in the examples 1 and 3 the randomness H(Y )V and self-organization H(Y )R entropies

change in different directions. This means that the very scalar formulation of the problem

in the form of maximizing (increasing) or minimizing (decreasing) the system entropy

H(Y ) may not be correct.
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4. Vector Management of Entropy

In open systems the entropy can both increase and decrease. Moreover, systems with

different randomness H(Y )V and self-organization H(Y )R entropies can have identical

values of entropy H(Y ). Therefore, the management as maximization or minimization (1)

may not improve the stochastic system’s state, and we’ll need to consider the entropy (1)

as a vector h(Y ) = (hV ; hR) = (H(Y )V ; H(Y )R) [11]. In this case the management

consists in transforming the system entropy vector from the state of h(Y 0) = (h0
V ; h

0
R) to

the state of h(Y ∗) = (h∗

V ; h
∗

R), corresponding to the effective functioning of the stochastic

system.

The objective of vector management of the entropy of a Gaussian stochastic system

consists in directing the entropy from one initial point (h0
V ; h0

R) = (H(Y 0)V ; H(Y 0)R)
with Σ0 covariance matrix to the (h∗

V ; h∗

R) end point with the minimal changes in

covariance matrix (Fig. 1).

hR

hV

h
0
(Y)

h*(Y)

Σ0

Σ1

Σ2

Σ3

Fig. 1. Entropy estimate dependence on L number of intervals, H * - theoretical value of

the entropy

The problem has the following form:


























G(Σ ) =
∑m

i=1

∑m
j=i (σ

0
ij − σij)

2
→ min

σij

,

H(Y )V = h∗

V ,
H(Y )R = h∗

R,
σ2
ij < σiiσjj, σij = σji, σii > 0 ∀ 1 ≤ i, j ≤ m,

Σ > 0.

(10)

The last limitation in (10) shows the positive definition of Σ matrix. Note that the

efficiency criteria in (10) can differ, depending on the characteristics of specific system S.

The limitations of the non-linear programming problem (10) are not convenient for its

algorithmic implementation. Therefore, we transform them:

H(Y )V =
1

2

m
∑

i=1

ln (2πe σii) = A ,

ln

(

(2πe)m
m
∏

i=1

σii

)

= 2A ,
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m
∏

i=1

σii −
e2A−m

(2π)m
= 0,

H(Y )R =
1

2
ln









1
m
∏

i=1

σii

|Σ|









= B ,

ln









1
m
∏

i=1

σii

|Σ|









= 2B ,

1
m
∏

i=1

σii

|Σ| − e2B = 0.

As a result, the problem (10) takes the following form:























































G (Σ) =
m
∑

i=1

n
∑

j=1

(σij − aij)
2
→ min

σij

,

m
∏

i=1

σii −
e2A−m

(2π)m
= 0,

1
m
∏

i=1

σii

|Σ| − e2B = 0,

σ2
ij < σiiσjj, σij = σji, σii > 0 ∀ 1 ≤ i, j ≤ m,

Σ > 0.

(11)

We find the derivatives of the constraints of problem (11). For the first constraint, we

have:

g1 (Σ) =
m
∏

i=1

σii−
e2A−m

(2π)m
= 0,

∂g1
∂σij

=

{

0, i 6= j,
∏

k 6=i

σkk, i = j.

Let’s consider the second constraint:

g2 (Σ) =
1

m
∏

i=1

σii

|Σ| − e2B = 0.

Let’s find the partial derivatives of the function g2(Σ):

∂g2
∂σij

=



























1
m
∏

k=1

σkk

· |Σ|′σij
, i 6= j,

1
∏

k 6=i

σkk

(

−
1

σ2
ii

|Σ|+
1

σii
|Σ|′σii

)

, i = j,

=
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=



























1
m
∏

k=1

σkk

· (Aij + Aji) , i 6= j,

1
∏

k 6=i

σkk

(

−
1

σ2
ii

|Σ|+
1

σii
Aii

)

, i = j,

=

=































1
m
∏

k=1

σkk

· (Aij + Aji) , i 6= j,

1
m
∏

k=1

σkk

(

Aii −
1

σii
· |Σ|

)

, i = j.

The problem (11) will be solved using the penalty methods [17]. Moreover, the

minimum of the merit functions can be found by numerical methods of searching for

an any order unconditional extremum.

Let’s consider the particular case of two-dimensional Gaussian stochastic system

Y = (Y1, Y 2) with covariance matrix Σ = {σij}2×2
. Then the entropy of Y vector,

according to (2), will be:

H(Y ) = H(Y )V +H(Y )R,

where

H(Y )V =
1

2
log
[

(2πe)2σ11σ22

]

,

H(Y )R =
1

2
log

[

1−
σ2
12

σ11σ22

]

.

As a result, the problem (10) will look:































G(Σ ) =
2
∑

i=1

2
∑

j=i

(σ0
ij − σij)

2
→ min

σij

,

1

2
log [(2πe)2σ11σ22] = h∗

V ,

1

2
log

(

1−
σ2
12

σ11σ22

)

= h∗

R,

σ12 = σ21, σii > 0, i = 1, 2.

(12)

Example 4. Let the Y
0 have a covariance matrix of:

Σ0 =

(

1, 87 1, 63
1, 63 2, 08

)

,

for it H(Y 0) = 2, 93, H(Y0)
V
= 3, 515, H(Y0)

R
= −0, 585.

We’ll change the covariance matrix to be:

Σ1 =

(

1, 87 1, 63
1, 63 2, 58

)

,

for which H(Y 1) = 3, 22, H(Y 1)V = 3, 62, H(Y 1)R = −0, 39.
Let’s estimate the change of covariance matrix: ∆ = (2, 58− 2, 08)2 = 0, 52 = 0, 25.

2017, vol. 4, no. 4 47



A. N. Tyrsin, G. G. Gevorgyan

Now let’s move from the initial (h0
V ; h0

R) = (3, 515; −0, 585) state to the state of

(h∗

V ; h∗

R) = (3, 62; −0, 39), using optimization problem (12). As a result of problem (12)

solution, we have a new covariance matrix:

Σ
∗ =

(

2, 09 1, 608
1, 608 2, 28

)

.

Let’s estimate the change of covariance matrix:

G(Σ ∗) = (2, 09− 1, 87)2 + (1, 608− 1, 63)2 + (2, 28− 2, 08)2 = 0, 089.

Example 5. Let’s go on with the example 1. For the first group of coal mining companies

with low level of injuries we have:

Σ
(1) =

(

0, 0671 0, 4466
0, 4466 6, 4138

)

,

(h
(1)

V ; h
(1)

R ) = (2, 4166; −0, 3111),

H(Y (1)) = 2, 1055.

For the second group of coal mining enterprises with high level of injuries:

Σ
(2) =

(

0, 3253 2, 1302
2, 1302 18, 5289

)

,

(h
(2)

V ; h
(2)

R ) = (3, 7360; −0, 6989),

H(Y (2)) = 3, 0371.

Solving the problem (12) in this form:































G(Σ ) =
2
∑

i=1

2
∑

j=i

(σ
(2)

ij − σij)
2
→ min

σij

,

1

2
log [(2πe)2σ11σ22] = h

(1)

V ,

1

2
log

(

1−
σ2
12

σ11σ22

)

= h
(1)

R ,

σ12 = σ21, σii > 0, i = 1, 2,

(13)

we’ll have:

Σ
∗ =

(

0, 0232 0, 4466
0, 4466 18, 5285

)

,

(h∗

V ; h∗

R) = (2, 4166; −0, 3111) ,

H(Y ∗) = 2, 1055.

The change of covariance matrix is:

G(Σ∗) =(0, 0232− 0, 3253)2+(0, 4466− 2, 1302)2+

+(18, 5285− 18, 5289)2= 2, 9258.
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Then, solving the minimization problem



























H(Y ) = 1

2
ln [(2πe)m |Σ |] → min

σij

,

2
∑

i=1

2
∑

j=i

(σ
(2)

ij − σij)
2
≤ 2, 9258,

σ11σ22 > σ2
12,

σ12 = σ21, σii > 0, i = 1, 2,

(14)

we’ll have:

Σ∗∗=

(

0, 1651 1, 7439
1, 7439 18, 4891

)

,

(h∗∗

V ; h∗∗

R ) = (3, 3959; −2, 7779), (15)

H(Y∗∗) = 0, 6180.

We can see that the solutions of (12) and (14) are significantly different.

The (13) solution of problem (12) gives a result, allowing with the minimal change of

Σ
(2) covariance matrix elements, realize the entropy management.

The obtained (15) solution of problem (14) doesn’t correspond to the admissible

values of randomness and self-organization entropies. Indeed, the randomness entropy

H(Y ∗∗)V = 3, 3959 turned to be too high, and the self-organization entropy

H(Y ∗∗)R = −2, 7779 − to be too low compared with the required values.

5. Conclusion

1. Problems of entropy management for Gaussian stochastic systems were considered

in scalar form (based on the concept of "growth points") and in vector form.

2. It was demonstrated that the scalar management of entropy for a number of cases

turns to be ineffective.

3. Some examples are considered for Gaussian stochastic systems; the objective

of entropy management was formed. An example of solving the entropy management

problems for two-dimensional random vector was introduced.

The reported study was funded by RFBR according to the research project
№ 17-01-00315a.
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УДК 519.87:519.722:519.213.1 DOI: 10.14529/jcem170404

ЭНТРОПИЙНОЕ УПРАВЛЕНИЕ ГАУССОВСКИМИ

СТОХАСТИЧЕСКИМИ СИСТЕМАМИ

А.Н. Тырсин, Г.Г. Геворгян

Рассмотрены два подхода к энтропийному управлению гауссовскими стохастиче-
скими системами. Первый подход является скалярным и реализует концепцию ҝто-
чек ростањ. При этом решается задача максимизации (увеличения) или минимизации
(уменьшения) энтропии системы. Второй подход представляет собой векторное управ-
ление, позволяющее обеспечить эффективное изменение энтропии как двумерного век-
тора, компонентами которого являются энтропии хаотичности и самоорганизации. Для
векторного управления сформулирована оптимизационная задача на условный экстре-
мум. Данная задача может быть решена методами штрафных функций. Показано, что
в ряде случаев векторное энтропийное управление имеет преимущества по сравнению
со скалярным управлением. Приведены примеры энтропийного управления для реаль-
ных стохастических систем.

Ключевые слова: дифференциальная энтропия, модель, многомерная случайная

величина, гауссовская стохастическая система, ковариационная матрица, управле-

ние, вектор, хаотичность, самоорганизация.
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