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The aim of the paper is to amplify the statistic criterions in small test samples. We
propose to use the simulation tools and numerically get the density of distribution of
statistical excess criterion values in small samples. The spectrum of excess criterion states
becomes discrete, when the histogram intervals are synchronized with the mathematical
expectation of the sample. The chi-square Pearson’s molecule constructed before was
created with the use of the second-order statistical moment. In this paper, we prove that
such constructions are also efficient for forth-order statistical moments. The chi-square
mathematical Pearson’s molecule and mathematical excess molecule are analogous. We
surmise that there are infinitely many mathematical molecules, which are similar to the
actual physical molecules in their properties. The Schrédinger equations are not unique;
their analogues can be constructed for each mathematical molecule. We can expect a
synthesis of the mathematical molecules with inner multidimensional continuum states of
"electrons" and their displays in the form of discrete output spectrums of states for sixth-,
eighth-order and higher even statistical moments.

Keywords: quantum superposition, chi-square Pearson’s criterion, discrete spectrum of
states, statistical analysis of small samples.

1. Two Branches of Classical Statistics Dealing
with the Description of Continuous and Discrete Distribution
of the Values of a Random Variable

As is known, the modern classical statistics has two independent branches. The first

one deals with discrete distributions [1]:

e hypergeometric distribution;

e polynomial distribution;

e binomial distribution;

e Poisson distribution;

e geometric distribution;

e Pascal distribution;

e Polya distribution.
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The second branch deals with continuous distribution:

e Gaussian distribution;

e Student’s t-distribution;

e uniform distribution;

e Cauchy distribution;

e Laplace distribution;

e beta distribution;

e gamma distribution;

e Fisher-Snedecor distribution \ the F-distribution;
e chi-square Pearson’s distribution.

At the beginning, two above-mentioned groups of distribution were considered as
not intersect. Nevertheless, the conditions [2, 3|, under which the chi-square Pearson’s
distribution becomes discrete, were published in 2015. The fact that the same statistical
distribution under certain conditions can be refer to different classes raised and still raises
doubts. Nevertheless, subsequent publications [4, 5] answered some of the expert society’s
questions.

The important theoretical question is how many distributions previously considered
as continuous can be made discrete. We show that the mathematical chi-square molecule
with three [6] allowed orbitals can be transformed into the mathematical excess molecule
with discrete spectrum of the output states.

This is important to evaluate the number of continuous-quantum equations, which
are analogous to the Schrodinger equations. The quantum mathematics is based on the
Schrodinger equations |7, 8]. It is obvious that for the chi-square Pearson’s equations, the
quantum mathematics of the Schrédinger’s wave equations should be changed. Preliminary
examination shows that the changes are not numerous. Nevertheless, there may exist
other equations, which essentially correct the quantum mathematics based on the Manin—
Schrodinger paradigm |7, 8].

2. Continuous Distribution of the Excess Coeflicient Values

Mathematical statistics uses the excess coefficient of the sample vector from —n values
of a random variable:

M,(z)
(o(z))"
where My(+) is the fourth statistical moment, o(+) is the standard deviation.

It is obvious that for high value of sample, i.e. n — 0o, we obtain a parameter, which
is equal to zero for the normal distribution. If the sample has "heavy" tails and "blunt"
peak, then the excess coefficient is negative. On the contrary, the data with the "sharp"
peak and "thin" tails have the positive excess coefficient.

The distribution of the excess coefficient (1) essentially depends on the volume of
sample. An example for biometric data samples having actual volumes is given in Fig. 1.

7(]_:> = -3, (1>
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Fig. 1. The distribution density of the excess coefficients for samples of biometric data consisting
of 8, 12, 16 tests with the normal distribution of values

Fig. 1 shows that the distribution density functions of the excess coefficient essentially
depend on the sample volume. However, the functions also essentially depend on the
distribution of the initial data. If the initial biometric data have an even distribution, then
the distribution density functions of the excess coefficient are others, see Fig. 2.

0.05

Fig. 2. The distribution density of the excess coefficient for biometric data samples consisting
of 8, 12, 16 tests with even distribution of the values

It is easy to see that Fig. 1 and Fig. 2 are different. The distribution in Fig. 2 is narrower
than in Fig. 1, i.e. the excess coefficient can be considered as a criterion of the normal
distribution of initial data in the test sample. The chi-square Pearson’s criterion |2, 3, 4, 5]
and excess criterion in the continuous case of their implementation have a comparable
power of decision making.
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3. The Mathematical Chi-square Molecule with Three Levels
of Allowed States
Classical quantum calculations [8] and quantum calculations of neural network
emulation of quantum states [7] have many common features. Therefore, by analogy with

the planetary model of the hydrogen molecule, we consider the mathematical chi-square
Pearson’s molecule. Both structures are illustrated in Fig. 3.

I’1~.CI1en
| series
H.llme: \'\\

]I"\Ll ics

Lyman
series

Fig. 3. The planetary model of hydrogen molecule based on the hypothesis of the normal
distribution of electron state continuum with quantization of data on 3 orbitals (three bars
of the histogram)

In the planetary model of the hydrogen atom, the electron moves from one orbit to
another and emits a light photon. As a result, the spectrum of hydrogen absorption (or
radiation) contains lines (series of lines). The left part of Fig. 1 gives the corresponding
names of series of hydrogen spectrum lines.

The papers [5, 6, 7| describe the spectrums of mathematical chi-square molecule for 4
and 6 orbitals. The spectrums of states for three orbitals can be constructed by analogy.
An example of the spectrum is given in Fig. 4.

Fig. 4 shows that the spectrum of states of two compared Pearson’s molecules is
not monotonous relatively power of its components. The neighboring components of the
spectrum of the same molecule can be described by a complex correlation.

4. Discrete Character of the Spectrum of  States
of the Mathematical Excess Molecule

The idea of the excess coefficient (1) is to compensate the correlation of the fourth
statistical moment to the fourth power of standard deviation for the normal distribution.
The excess molecule should be based on the similar idea. In order to synthesize the
molecule, we can use the normal distribution and calculate the limits of quantization
leading to similar probabilities of random data appearance in the central bar of the
histogram (Fig. 3) and in two outside bars. The following condition that the probabilities
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Fig. 4. An example of the correlation of 11 the most powerful components of output spectrum
of the chi-square Pearson’s molecule with three orbitals for the normal distribution (pale thick
lines) and for the even distribution (dotted line) in the case of 16 tests

are equal

E(P) + E(Ps) = E(P), (2)
is fulfilled, if the data in each sample are quantized by comparing them using the following
two limits.

ki = E(x) —0.675-o(x),
{ ky = ng; + 0.675 - agxg, (3)

where E(-) is the operator to calculate the mathematical expectation, o(-) is the operator
to calculate the standard deviation.

For such limits of data quantization, a histogram for each sample has the different
number of tests nl, n2, n3 in the first, second and third bars of the histogram, respectively.
However, for samples of the same size, these numbers have a discrete spectrum of states.
Therefore, we can normalize the number of tests and calculate the spectrum of states of
the excess molecule in the following way:

ny ns

R »

where N is the number of tests in the sample under examination.

The spectrum of states (4) is obviously discrete, because the calculations are based
on counting the number of tests, which are in the two outside intervals of the histogram.
The type of the distribution of discrete spectrum values (4) can be easily obtained by the
numerical experiment. The data of the numerical experiment for the sample of 16 tests
are given in Fig. 5.

Fig. 5 shows that the most probable value of the spectrum is 4 = 0 for the data with
the normal distribution. For the even distribution of the sample data, the value ¥ = 0.25 m
is the most probable. Spectrum lines for the normal law of continuum inside the molecule
coincide with those for the continuum with the even law, and a step between the lines is
the same.
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Fig. 5. An example of output spectrums of the excess molecule with 3 orbitals for the normal
distribution (pale thick lines) and for the even distribution (dotted lines)

The spectrum of the output states of the excess molecule for the inner continuum with
the normal and even distribution of values are similar and can be obtained by linear shift
with the mirror reflection with respect to the equiprobable component.

Therefore, the descriptions of the spectrums of the excess molecule and the chi-square
molecule are significantly different. That is, the quantum superposition and quantum
entanglement of these mathematical structures are described by different equations.
Moreover, the continuum-quantum equation for the excess molecule should be much easier
than for the chi-square molecule. The simplification is caused by the symmetrization of the
molecule by alignment of the states in outside bars and the central one of the histogram (2).
The method is similar to the method of symmetrization of the quantum entanglement (i.e.,
the correlations between the discharges of the quantum superposition) used previously [9].

5. Operations on the Quantum Superposition

After quantization of a random state of 16 continuous data into three intervals of the
histogram (Fig. 3), each interval includes different number of tests. For each probable state
of the histogram there exists its own value of the position of chi-square spectrum lines.
The numerical simulation with rounding off the data to three decimals after the decimal
point gives the following results, see Fig. 6.

If the quantum superposition is arranged in ascending order of the value of spectral
lines, then the lines corresponding to the spectrum x? = 0.197 and x* = 0.201 are the
first and appear with the probability P(0.197) and P(0.201). Other lines are on the right
on the first two lines according to Fig. 6.

In order to describe binary states of the quantum superposition in the Dirac bracket
it is necessary to use three binary digits for the outside bars of the histogram and four
binary digits for the central bar of the histogram.

Therefore, the first two elements of the quantum superposition can be given in the
following way:

2

2 3
1) = /P(0.197) - || 11 > ++/P(0.201) - || 11 > TR (5)
3
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Fig. 6. The states of three bars of the histogram corresponding to different values of the x?
molecule spectrum lines in the interval from 0 to 4.353

For the binary form, the same notation is the following:

010 011
= /P(0.197) - || 1011 + V/P(0.201) 1011 + o (6)
011 010

Therefore, the quantum superposition of chi-square molecule with 3 orbitals and 16
electrons allows to model the quantum superposition having length 10 qubits.

Note that in order to convert the chi-square molecule to the excess molecule, we reject
the data in the central interval of the histogram. That is, we create an intermediate
molecule with the masked central part of codes in the Dirac brackets keeping the quantum
superposition of 6 qubits.

Furthermore, in order to synthesize the excess molecule, we sum the states of the
outside right and left bars of the histogram (4). As a result, we obtain the quantum
superposition of the excess molecule having the lengh 4 qubits (13 spectral lines are given
in Fig. 5).

Therefore, the quantum superposition of the mathematical molecule is susceptible
to masking the data, which are in the intervals of the quantize and it is possible to
perform addition, subtraction and other arithmetic operations with the data of different
quantization intervals. In this case, we obtain a mathematical molecule in order to get and
maintain the quantum superposition and quantum entanglement, which are characteristic
of the molecule.

Conclusion

The Manin-Schrodinger paradigm was developed in 1980s. Some mathematicians
predicted the possibility of creating very effective computational algorithms within the
framework of the Manin—Schrédinger paradigm. Nevertheless, the attempt to realize the
algorithms in practice faced the problem of synchronizing hardware-based "Schrodinger’s
cats". The Schrodinger’s equation effectively describes the hydrogen molecule states,
though it is hard to use for creating macro objects and their synchronization. The software
package to solve the Schrodinger’s equation has about 250000 lines in high-level machine
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code. Moreover, the increase in the number of electrons in the equation up to 30 and more
leads to the necessity of using super computers. The increase in the number of electrons
in the Schrédinger’s equation leads to the the exponential increase in the difficulty of
its solution. The case of the chi-square molecule and excess molecule is different. The
software for realization of these molecules consists of several code lines, and the increase
in the number of tests (electrons) gives a linear growth of the computational complexity.

We show that the mathematical chi-square Pearson’s molecule and the mathematical
excess molecule can be software implemented by analogy with the hydrogen molecule.
Therefore, the Schrodinger equation is not the unique basis for the software quantum
calculators. Along with the Manin—Schrédinger paradigm, many other paradigms, which
use the equation of the chi-square molecule or the excess molecule or other mathematical
molecules created on the same principle, should be considered.

It is of fundamental importance that the equations of any mathematical molecules can
be symmetrized, that simplifies their formal description.

Moreover, the discrete character of the spectrum of excess molecules gives hope of the
increase in the power of the statistical analyses of excesses in small samples of biometrical
data by analogy with the increase in the power of the chi-square criterion described
previously [5, 6].
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YCJIOBUA ITOJIVHEHUNA INCKPETHOI'O CIIEKTP
SKCIIECCA CTATUCTUYECKUX PACIIPEJIEJIEHNN
BVNOMETPUNYECKUX JAHHBIX /14 MAJIBIX BBIBOPOK

B.U. Boawuxun, A.U. Usaros, A.U. I'azun, A.I. Bannvix

[Hesbro paboOTHI ABJISETCS YCUJIEHHE MOITHOCTH CTATUCTUYECKUX KPUTEPUEB HA MAJIBIX
TECTOBBIX BbIOOpKax. [IpesyioyKeHO BOCIIOIB30BATHCS CPEICTBAMI UMUATAIOHHOTO MOJIEIIH-
POBaHWS W YUCJIEHHO II0JIYYaTh IJIOTHOCTD PaCIpee/IeHrsl 3HAYeHUN CTaTUCTIHIECKOrO IKC-
[IECC KPUTEpHUsl JJIsi MaJjblX BbIOOPOK. IIpu CHHXpOHU3AIMM WHTEPBAJIOB I'MCTOPAMMBI C
MATEeMATUIECKUM OXKUJIAHUEM BBIOOPKH CIIEKTD COCTOSTHUHN IKCIECC KPUTEPHUsST CTAHOBUTCS
JUCKpeTHBIM. Panee Oblita OCTpoeHa XU-KBaapaT Mojekyta [lupcona st Masbix BBIOOPOK,
COB3JIAHHAS C UCIOJIH30BAHIEM CTATHCTHIECKIX MOMEHTOB BTOPOTO MOPsijika. B mamuoii cra-
The IOKa3aHO, YTO MMOJ00HbIE KOHCTPYKIIUU OKA3BIBAIOTCsT PAOOTOCIIOCOOHBI U JIJIsi CTATUCTHU-
YeCKUX MOMEHTOB YETBEPTOrO MOPsJIKA. XMU-KBaJpaT MareMaTudeckas: MoJiekysia [lupcona
U MaTeMaTHYecKast IKCIECC MOJIEKYJIa SIBISIOTCs aHajoraMu. CiesIaHo IpeIioIoxKeHue, ITo
MATEeMATUIECKUX MOJIEKYJI, [TOXOXKUX 10 UX CBOHCTBAM Ha peasibHbIe (PU3UIECKUE MOJIEKYIIBI,
6eckoneuno MHOTO. Y paBuenus LIpequarepa He yHUKAIBHBL, I KAXK 0 MATEMATHIECKOM
MOJIEKYJIbI MOXKET OBITH IIOCTPOEH UX aHaJjor. MOXKHO 0XXMJIATh CHHTE3a MaTeMaTUIeCKUX
MOJIEKYJI ¢ BHYTPEHHUMHU MHOTOMEDHBIMU KOHTHHYYMAMM COCTOSIHHUI KJIEKTPOHOBH> M UX
0TOOpaXKEHUsIMA B BUJI€ BBIXOJHBIX JUCKPETHBIX CIIEKTPOB COCTOsHW 1jisi 6, 8 u OoJjiee
BBICOKUX YETHBIX CTATUCTUIECKUX MOMEHTOB.

Karoueswie caosa: keanmosasn cynepnosuyus, ru-xeadpam xpumeputs Iupcona, duc-

KpemHouill CNEKMP COCMOAHUT, CMAMUCTNUYECKUT AHAAU3 MAABLE 6blO0POK.

JImreparypa

1.

Koph, I'. CupaBoYHUK 110 MaTeMaTHIECKON CTATHCTUKE JIJIsT HAyJIHBIX PabOOTHUKOB 1
nmxenepos / I'. Kopn, T. Kopu. — M.: Hayka, 1974.

Axmeros, B.B. [luckpernbiit xapakTep 3aKOHA PaCIpeIeIeHns] XU-KBaJIpaT KPUTe-
pHst ISl MAJIBIX TeCcTOBLIX BBIOOpOK / B.B. Axmeros, A.J1. Usanos, H.I. Cepukosa,
F0.B. ®ynrukosa // Becrnuk HanmonanbHoii akagemun nayk Pecrybimku Kaszax-
cran. — 2015. — Ne 1. — C. 17-25.

Akhmetov, B. The family of chi-square molecules pearson: software-continuum
quantum accelerators of high-dimensional calculations / B. Akhmetov, A. Ivanov,
A. Gilmutdinov, A. Bezyaev, Y. Funtikova // 15th International Conference on
Control, Automation and Systems (ICCAS 2015). October 13-16, 2015. — Busan,
Korea. — 2015. — P. 1337-1341.

Kynarun, B. [Hukimdeckue KOHTUHYAJIbHO-KBAHTOBBIE BBIYUC/ICHHUS: YCHUJICHUE MOIII-
HOCTH XU-KBaJ[paT Kpurepus Ha MaJibix Beibopkax / B. Kymarun, A. Vsanos, A. ['azum,
B. Axmeros // Anamuruka. — 2016. — Ne 5. — C. 22-29.

Bomunxun, B.U. [lepcriekTBa co3anns MUKINIECKON KOHTUHYAJIHHO-KBAHTOBON XW-
KBaJIPAT MAITUHBI JIJIsI TPOBEPKU CTATUCTHIECKUX TUIIOTE3 HA MaJIbIX TECTOBBIX BHIOOP-
KaX GHOMETPUIECKUX JIAHHBIX ¥ JIAHHBIX UHOH tipupoasl / B.U. Bomuuxun, A. 1. Ba-
HoB, JI.B. ITamenko, B.B. Axmeros, C.E. Baruanun // V3Bectus BbiCHIUX yIeOHBIX
saBesiennii. [Tooszkekmii pernon. Texnmaeckue nayku. — 2017. — Ne, 1(41). — C. 5-15.

62

Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

6. Borauxwun, B.J. Ucnonb3zoBanue 3hdeKToB KBAHTOBOM CYTIEPIO3UITUHI IIPH PETYJIISIPU-
3aIlMN BBIYUC/ICHUN CTAHIAPTHOTO OTKJIOHEHUS HA MAJIBIX BHIOOPKAX OMOMETPUIECKUX
nauabix / B Bomunxun, A.W. Usanos, A.B. Cepukos, FO.1. Cepukopa // U3me-
perne. Mouuropunr. Yupasjienue. Kourposb. — 2017. — Ne 1. — C. 57-63.

7. Usanos, A.ll. Muoromepnas meiipocereBast 00paboTKa OMOMETPUYECKUX JTAHHBIX C

IPOrpaMMHBIM Bocmpou3senerneM hdexros kBanToBoii cymneprnosunun / A.U. Ba-
noB. — Ilenza: Mzn-so <IITHUDW>, 2016.

8. Husnbcon, M. KsanrtoBble BbrumciieHusi u KBanToBas uHdopmanus /| M. Hubcos,
N. Yanr. — M.: Mup, 2006.

9. Bosranxun, B.J. BricTpblii aaroput™M cuMMeTpHU3aIllnd KOPPEIIINOHHBIX CBs3eil O1o-
MeTPHUYECKUX JIAHHBIX BbICOKOH pasmepuoctu / B.M. Bomunxun, B.B. Axmeros,
A . Usanos // UsBecrus Bhiciux y4ueOHbIX 3aBeaenuii. [loBoszkekuil pernon. Tex-
angeckne Hayku. — 2016. — Ne 1(37). — C. 5-15.

Boavuzun Baadumup Heanosuw, doxkmop mernuveckur Hayk, npogpeccop, npesu-
denm, Ilensencrkutl 2ocydapemeennviti yrusepcumem (2. Ilensa, Poccutickas Dedepavyusn),
president@pnzgu.ru.

Hearos Anexcandp Heanosuu, dokmop mexHuveckuxr Hayk, O0ouenm, 1abo-
pamopus  buomempuueckur U Hetpocemesur mexrnoaozut, Ilensenckull  HaywHO-
uccaedosamesvekull arexmpomexrnuveckut uncmumym (e. Iensa, Poccutickas @edepa-
yua), wan@pniei.penza.ru.

Tasun Anexcelit HUsanosuu, kandudam mernuveckuxr wayk, xapedpa ungpopmamuru,
UHPOPMAYUOHHBLT METHOA02UT U 3aUumbL Undopmayuu, Jluneykut 2ocydapcmeeruiil
nedazozuneckuti ynusepcumem umenu 1111 Cemenosa-Tan-Ilanckozo (2. JIuneyrk, Poc-
cutickas Pedepavyus), yearn@bk.ru.

Bannvixr Andpeti 'puzopvesuy, acnupanm, Kapedpa mernury cucmem uH@opmMayuot-
Hoti 6esonacnocmu, Iensencrkut 2ocydapemeennviti yrusepcumem (2. Ilensa, Poccutickas
Dedepavus), 1bst@pgzqgu.ru.

Hocmynuana 6 pedaxyuro 31 oxkTssObpst 2017 .

2017, vol. 4, no. 4 63



	Soder.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf



