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Mathematical modeling of physical processes using modern computer technology is
applied for studying the behavior of continuous media with dynamic loads. The system
of equations for the mechanics of a continuous medium is the laws of conservation of
mass, momentum, and energy. This system of equations is closed by the equation of
state constructed for a elementary substance or a complex chemical compound. A new
method of the formulation of state equations in the area of not very big pressures is
offered at this paper. Basic parameters of the equation of state are selected for complex
chemical compounds using the original version of the Simplex-method. The method uses
linear dependences of the shock wave velocity against the substance velocity and thermal
expansion data under constant pressure. For the target function a sum of quadratic
differences between calculated and experimental values has been selected. coincidence of
theoretical and experimental values is obtained. Satisfactory coincidence of theoretical and
experimental values is obtained. The paper was supported by RFBR, Grant 13-01-00072.
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Introduction

Now in literature [1-3] a large number of the equations of a state of substances (EOS)
from very simple to very difficult is described. When studying the behavior of continuous
media that are exposed to dynamic loads, mathematical modeling is used, which is
performed on computers.The number of components in difficult models of multicomponent
media with chemical reactions and phase transitions can reach several tens, and even
hundreds. When calculating a mixture in such models, computer time can be stretched for
a considerable time even with the use of modern computers. The proposed low-parametric
EOS will significantly reduce the calculation time on the computer of complex physical
processes. The paper was supported by REBR. Grant 13-01-00072.

1. Equations at the Surface of a Strong Discontinuity

The laws of conservation for mass, pulse, and energy at the surface of a strong
discontinuity (shock wave) in the case of an ideal medium (the deviator of the stress
tensor is zero and there is no thermal conductivity) have the following form

p-(D=U)=po-(D—"Uo), (1)

p(D—=U)U—=P=py-(D—=Up)Uy— F, (2)
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Py =0. (3)

Values without an index in equations (1)—(3) characterize the state behind the
discontinuity, D — the velocity of the shock wave. Values with index 0, such as p, —
density, Uy — mass velocity, Py — pressure, Ey — specific internal energy describe the state
of the substance before discontinuity. Let us consider a shock wave in a substance at rest.
According to [1], the equation of state was considered under the assumption that the
quantities P and FEy are negligible in comparison with P and E. Equations (1)—(3) take
the form of Py =0, £y =0 and Uy = 0.

E:%DU~(L—%). (5)

The system consists of three equations (4), (5) and contains five quantities P, p, E,
U, D. If any two of them are obtained form experiments, the remaining quantities can
be found from expressions (4) and (5). The point on the Hugoniot adiabat is completely
determined. The dependence between experimentally measured and known for more than
fifty years and is satisfactorily described by a linear ratio

D=Co+b-U. (6)

On the basis of a large number of processed experimental data, the reference book 2]
contains information on the D(U) ratio for elements and compounds.

Pressure is defined by the caloric equation of a state P = P (p, EY) form in case p and
E are independent thermodynamic variables. Complex and labor-consuming modern EOS
are considered in [3, 4]. However, for the express calculations it is possible to use rather
simple EOS.

In [1] the EOS of a form is considered

P:PX(p>+pT(pas>a E:EX(p)+ET(p75)7 (7>
where
_ pOCS -n _ 2 -y
Py = " (flf —1), Pr=poCy - f(S)- 277, (8)
2 1-n _ 2,
EX — CO (l' + Z (n 1) o 1) 7 ET _ CYO f (S> xl—’y‘ (9)
n—1 n n v—1

Cy — sound speed before shock wave for P = Py, p = py, S — enthropy, n = const,

v = const, x = po/p .
The dependencies Py (z), Ex (x) and Pr (Er,x) follow from (8) and (9)

—1)poE 1-— —1)po&
szzgl——&@—ﬁ—kmﬁﬁ‘( x)) pp = = Uil (10)
T T T
EOS is obtained by substituting (10) into (7), which takes the following form
P=(y=1)poEx™" + pC3 - ¢ (), (11)
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where

(n—1)n (n—1z n
According to [1], equation (11) is called an "equation with matched v and n" if v = n.
Thus, equation (11) takes the form

1—=x
P=(n=1)pB s+ poCi—, (12

where py and n have constant values.

Let us consider under what conditions the equations (4), (5), (12) agree with the linear
ratio D (U). The dependence D (U) is obtained by elimination P, F and z in expressions
(4), (5) and (12)

1 1 \?
D:”Z U+\/C§+(nz U). (13)

Comparing expression (13) to expression (6), it is possible to see that these
dependencies differ. The smallest differences are in area

n—+1
4

As the assumption of constancy n in EOS (12) leads to a nonlinear dependence in
expression (13) which, in turn, does not agree with the linear ratio D (U) (6), we do the
opposite. Linear ratio D (U) (6) is taken as a basis. Values P and F are expressed through
Cy and b from equations (4)—(6). After that, we will substitute the received expressions in
(11) and we will find the equation in which n along a Hugoniot adiabat can’t be a constant
quantity

U << Cy.

n=2b-(2-b-(1-x))—1. (14)

2. Equation of State

The behavior of the substance in place of EOS (12) will be described by an equation
in which the assumption that n depends on x

P=(n(z)=1) poxr™ E + pox Cgy - ¢ (). (15)

In the expression (15) pox, Cor is density and sound speed at the point of P =0, T =0,
r=1.

In [5-7], EOS of the type (15) was used, where the value n depends on x. In equation
(14), the quantity n is linearly dependent x on the range D and U in which relation D (U)
(6) is valid. From the expressions (4), (5) and (15) follows the dependence n(z) (14),
hereinafter named as experimental.

The function n(x) must have a maximum in the neighborhood x =~ 1 according to [2]
and [3]. Thus, if x = 0 and n = ny, then it is true that n,, > no. We will use a simple
function of the form.

ar?

ax? + (x? — x%n)Q’

n(z) = ng + (Ny — no) (16)
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where
1622

m

4 (M — 10)*
Knowing that for z = 0, and 2 = oo n () = ng also for x = x,,, n (x) = n,,, from (16), we
find the derivative n (z) in the form

dn  (nm —ng) - 2a2? (22, — 2?)
— = N R (17)
dz (axQ + (22 — a2 )2)

m

The derivative n(x) is equal to zero for x = 0, z = co and « = x,,,. Value ng, as well
as values n,,, x,, we select from the condition of the best description of the experimental
data. It is made because the area of applicability of low-parametrical EOS is limited to
final compression. We take the function ¢ (z) from (15) in the form closest to expression
(12)

11—z
¢ (x) =
We divide the pressure and energy into cold and thermal components to determine the
temperature and heat capacity

(18)

l-no—l—l :

In accordance with 7], we take the dependence Er (z,T) in the form

AT?

Ep— 7
T @)+ 1T

(20)

where A — individual characteristics of the substance, for simple substances close to %;

R — universal gas constant; ;1 — molecular mass. Differentiating expression (20), we obtain

the heat capacity at constant x

AT - (20 (x) + 1)
0 (x)+T)°

In accordance with [7], the expression for the thermal pressure will have the form

A df(x) T?

Cv

(21)

Pr=— ) 22
"7 0@ dr O(x)+T (22)
Knowing that the equation is fair
Pr=(n(x)—-1) pOTKET, (23)
we obtain the characteristic function 6(x), which is related to equation n(x)
dInf (z) n(z)—1
ASaC A St A 24
dx x (24)
The dependence 6(x) follows from expression (24) and (16)
2 2
B Ien x*+ B-x;,
o) =bo-c (Tm) 2
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where
. 2+ (nm — n())

B=———
2 — (N — no)

In addition, we make the condition that the isobar P = 10~* GPa pass through a
point characterizing the normal state (P = 107* GPa, T = 293 K, p = py, Cp = Cpy ),
and also through the melting point at P = 107* GPa (T = T,,, Cp = Cpm, p = pm). In
describing the dependence Cp (T') for P = const must be expressed Cp in terms of 7" and
x. To this end, we use the equation from [8]

T.(ﬁ_PQ
Cp=Cy — LIRS (26)
T e (B)r

oP

%)X = 0, we differentiate expression (23). The derivative (—) < 18

Knowing that ( o

written in the form

o5}

OPr (n(xz)—1)- pox
il = -Cy. 2
( oT )X x v (21)
Since expression (19) is valid, the derivative (?)_]:Z>T will have the form
oP dP oP
), ()
or ), dx or )

The equation of state of a substance is determined by the set of equations (15)-(17), (25)
and contains 7 parameters: pox, Cox, A, ng, Nyn, T, and Gy. The numerical values of these
parameters are determined in such a way as to best describe the behavior of the Hugoniot
adiabat state of matter at a point characterizing the normal state of P = 107*GPa,
T =293 K, po = p(Fo,Tp), Cro = Cp(po,To), Cp = Cpy and at the melting point
P=10"* GPa, T\ = T,,, p1 = pm (Trn, P), Cp1 = Cp (T1, Pp).

3. Results of Calculations

Calculations are performed for several simple substances and complex chemical
compounds. The selection of the basic parameters of the equation of state was carried
out with the help of the original version of the Simplex-method [9]. For target function,
we selected a sum of quadratic differences between calculation and experimental values of
function for the thermal expansion of matter and the specific heat at constant pressure.
For the materials considered, a satisfactory agreement with the experimental data was
obtained. A comparison of the Hugoniot adiabats for simple substances is shown in Fig. 1,
for complex chemical compounds — in Fig. 2, respectively. The value of the dimensionless
pressure is determined by expression (29)

P

II=—.
POC§

(29)

As comparative pressure values, the experimental values taken from [2| and the theoretical
values determined from expression (15) are used.
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Fig. 1. Comparison of experimental and theoretical Hugoniot adiabats of simple substances
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Fig. 2. Comparison of experimental and theoretical Hugoniot adiabats of complex compounds

8 Journal of Computational and Engineering Mathematics



ENGINEERING MATHEMATICS

The temperature dependence of the heat capacity for simple substances is shown in
Fig. 3, for complex chemical compounds — in Fig. 4, respectively. The experimental values
of the heat capacity are taken from the reference books [10-14].
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Fig. 3. Comparison of experimental and theoretical specific heat of simple substances
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Fig. 4. Comparison of experimental and theoretical specific heat of complex compounds
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Tables 1 and 2 are shown the results of calculations of the selection of the main
parameters of the EOS. The values indicated in the tables ng are adjustable parameters
and in the area where n < 1 it is not applied.

Table 1

The results of the selection of the basic parameters of the equation of state
for simple substances

Values Al Au Mg Pb Cu
(Aluminium) | (Aurum) | (Magnium) | (Plumbum) | (Cuprum)

no 1.62 1.515 1.291 1.719 1.49

N 1.933 2.564 1.944 2.027 2.997

T 1.908 2.485 2.613 1.66 2.484

pore, g/em® 2.908 19.668 1.833 11.501 0.014

Cox, km/s 5.642 3.402 4.724 2.102 3.904

A-10° kJ/g 920 141 1106 128 395

0o, K 15.012 8.004 43.141 39.168 1.466
Table 2

The results of the selection of the basic parameters of the equation of state
for complex compounds

Values Al203 CaCO3 Fe304 MgCO3 MgO
(Corundum) | (Calcite) | (Magnetite) | (Magnesite) | (Periclase)

no 0.554 1.1617 0.518 0.897 1.073

T 1.242 2.375 2.353 2.120 2.220

T, 1.522 0.621 1.041 1.415 0.852
poxc, g/cm? 3.969 2.755 5.294 3.183 3.501
Cox, km/s 8.757 3.813 4.722 6.482 5.972
A-10°, kJ/g 1251 1092 1064 1440 1184
0y, K 50.912 33.174 18.762 42.445 4.003

The paper was supported by RFBR, Grant 13-01-00072.
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MOAEJINMPOBAHUNE YIAPHOI'O C2KATUA
1N TEIIJIOBOI'O PACIIIVMPEHNA J1J1A ITPOCTBIX
BEIIIECTB 1 CJIOXKHBIX XUMNYECKIX COEANHEHUN

C.I0. ®uaamos

[Tpu u3yueHnn moBeieHNs CILIOIIHBIX CPEJl, KOTOPbhIE IIOBEPIratOTCsl BO3IEHCTBUIO IIMHA~
MUYECKUX HArPY30K, IMPUMEHSIETCsT MATEMaTHIeCKOe MOJeNpoBaHne (hU3NIECKUX MPOIIECc-
COB C UCIIOJIb30BAHIEM COBPEMEHHON BBIYUCIUTEILHON Texunku. CrucreMa ypaBHeHUH Mexa-
HUKU CILIOIIHON Cpebl IpecTaBiseT cOO0i 3aKOHBI COXPAHEHUsT MaCChl, UMITYJIbCA U SHEP-
ruu. JlaHHast cucreMa ypaBHEHU 3aMbIKAETCs yPABHEHHEM COCTOSIHISI, KOTOPO€e ITOCTPOEHO
JIJIsI KOHKPETHOI'O BEIECTBa, WJIA CJIOYKHOTO XUMUYECKOI0 COeInHeHus. B HacTosiIei pabo-
Te MPEJIoZKEH CI0CO0 MOCTPOEHNST YPABHEHNH COCTOSHUS B 00JIACTA HEOOJIBINNX TaBACHUIT
u Temueparyp. OCHOBHBIE TApAMeTPhl YPABHEHUsI COCTOSIHUSI TTOI0OPAHBI JIJIsi TPOCTHIX Be-
[ECTB ¥ CJIOXKHBIX XUMUIECKUX COEIUHEHU IPU TOMOIIA OPUTHHAIBLHOM BEPCUH CHMILIEKC-
MeToja. MeTos UCIo/Ib3yeT JIHHEHHbBIE 3aBUCUMOCTH CKOPOCTHU YIAPHOI BOJIHBI OT CKOPOCTH
BeIleCTBa U JIAHHBbIE II0 TEIJIOBOMY PACIIUPEHUIO IIPH IIOCTOSHHOM JiaBjieHnd. B KadecTse
1esieBoit (pyHKIMK BhIOpaHa CyMMa KBaJPATUIHBIX PA3HOCTEN MEXKy PACIETHBIMU U IKC-
[EPUMEHTAJIBHBIMI BEJINIMHAME TEIJIOBOTO PACIIMPEHUS BEIECTBA, & TAKXKE TEIJIOEMKOCTH
[IPU TIOCTOSTHHOM JIaBJjieHud. J[Jisi paCCMOTPEHHBIX MATEPUAJIOB TOJIYY€HO YI0BIETBOPUTE b
HOE COBIIQJIEHUE C YKCIIEPUMEHTOM.

Karouesvie caosa: ypashenue COCMOAHUSL BEWLCNEA; CUMNAECKC-MEMOJ; MENAOBOE PAC-

wuperue; YoapHoe corcamaue.
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