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n be a bounded domain with a boundary ∂Ω of C∞ lass. In the ylinder

Ω× R onsider the Dirihlet problem for Sobolev type equation [1℄
(λ−∆)xt = a(t)(α∆x− β∆2x) + u, (1)that models the evolution of the surfae of the �ltered �uid [2℄. Here λ ∈ R, α ∈ R and

β > 0 are equation's parameters and a salar funtion a : [0, T ] → R+ haraterizes theenvironment. Vetor-funtion u : R → L2(Ω) is a ontrol funtion, and it haraterizes theexternal in�uene on the system. Equation (1) belongs to a lass of Sobolev type equationsthat are the base of a large amount of non-lassial models of mathematial physis [4℄. Adetailed historial review of Sobolev type equations and an extensive bibliography an befound in [3℄. Let us note that in ontrast to earlier (1) studies of equation (1), we onsiderit with a oe�ient that depends on time.Let Z be a Hilbert spae, operator C ∈ L(X;Z). Introdue the ost funtional
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d ‖2Zdt+
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〈

Nqu
(q), u(q)
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U
dt, z = Cx, (2)where 0 ≤ k ≤ p + 1, Nq ∈ L(U), q = 0, 1, . . . , p + 1, are self-adjoint and positive de�nedoperators, zd = zd(t, s) is a required state from a Hilbert spae Z.We are interested in optimal ontrol over solutions of Dirihlet problem for (1) withthe Showalter � Sidorov ondition [5℄

P (x(0)− x0) = 0, (3)46 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSwhih is in this situation more appliable than the traditional Cauhy ondition (for moresee [5, 6℄). Namely we searh an optimal ontrol v ∈ H1
∂(U) whih satis�es the ondition

J(v) = inf
u∈H1

∂
(U)
J(x(t, u)). (4)The �rst results on the optimal ontrol problem for linear Sobolev type equation anbe found in [1℄. The optimal ontrol problem for non-linear Sobolev type equation isonsidered in [7℄. Reently there were onsidered the optimal ontrol problems for variousstationary Sobolev-type models [8℄, [9℄. The numerial solution of the optimal ontrolproblem for non-stationary Sobolev type equations was onstruted in [10℄ in the ase ofrelatively p-bounded operator [1℄.Besides the introdution and the bibliography artile omprises three parts. The �rstpart provides essential information regarding the theory of relatively p-setorial operators[1℄ and the existene of solutions for optimal ontrol problem with Showalter�Sidorovondition [11℄. The optimal ontrol problem over solutions of Dzektser model is desribedin the seond part. The third one ontains the results of the numerial solution of optimalontrol problem for Dzektser model onsidered on a retangle. Referenes do not purportto ompleaness and re�et only the authors' tastes and preferenes.1. Abstrat resultsLet X, Y be Banah spaes, operator L ∈ L(X;Y) with nontrivial kernel

(kerL 6= {0}), operator M ∈ Cl(X;Y).The sets ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(Y;X)} and σL(M) = C\ρL(M) are alled
L-resolvent set and L-spetrum of the operator M respetively . If kerL ∩ kerM 6= {0},then ρL(M) = ∅.Operator-funtions (µL−M)−1, RL

µ(M) = (µL−M)−1L, LL
µ(M) = L(µL−M)−1are alled L-resolvent, right L-resolvent, and left L-resolvent of the operator M withrespet to the operator L respetively.Theorem 1. Let operators L ∈ L(X;Y), M ∈ Cl(X;Y), then the L-resolvent, right andleft L-resolvents of the operator M are analyti in ρL(M).De�nition 1. Let λq ∈ ρL(M), q = 0, 1, . . . , p. Operator-funtions

RL
(λ,p)(M) =

p
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RL
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(

LL
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p
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LL
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)are alled right p-resolvent (left p-resolvent) of the operatorM with respet to operator Lrespetively (brie�y, right (L, p)-resolvent and left (L, p)-resolvent of the operator M).De�nition 2. Operator M is alled strongly (L, p)-setorial, if thereexist onstants K > 0, b ∈ R, θ ∈ (π
2
, π), suh that the setor

SL
b,θ(M) = {µ ∈ C : | arg(µ− b)| < θ, µ 6= b} ⊂ ρL(M), for every µk ∈ SL

b,θ(M), k = 0, p,
max{‖RL
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M.A. Sagadeevaand there exists a dense lineal ◦

Y in spae Y, suh that for every y ∈
◦

Y and
λ, µ1, . . . , µp ∈ SL

b,θ(M)

‖M(λL−M)−1LL
(µ,p)(M)y‖Y ≤

const(y)

|λ− b|
p
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,

‖RL
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p
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.Theorem 2. Let operator M be strongly (L, p)-setorial, then(i) there exists a strongly right-ontinuous at zero semigroup {X t∈L(X) : t∈{0}∪Σ},analyti in the setor Σ = {t ∈ C : | arg t| < θ− π

2
} and solving equation Mẋ(t) = Lx(t)

(

{Y t∈ L(Y) : t∈R} for L(νL−M)−1ẏ(t) =M(νL−M)−1y(t) where ν ∈ ρL(M)
), of theform

X t =
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2πi
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RL
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LL
µ(M)eµtdµ



 ,were ontour Γ = {µ ∈ C : µ = s− |z|+ itgθz, z ∈ R}, s > b;(ii) X = X0 ⊕ X1, Y = Y0 ⊕ Y1, where X0 = kerX•, X1 = imX•, Y0 = ker Y •,
Y1 = imY •, projetors of this splitting are identities of these semigroups P = s- lim

t→0+
X t,

Q = s- lim
t→0+

Y t;(iii) Lk ∈ L(Xk;Yk), Mk ∈ Cl(Xk;Yk), (here Lk (Mk) is a restrition of L (M) on
Xk(domM ∩ Xk)), k = 0, 1;(iv) there exist operators M−1

0 ∈ L(Y0;X0), L−1
1 ∈ L(Y1;X1), and the operator

H =M−1
0 L0 ∈ L(X0) is nilpotent and the degree of its nilpoteny does not exeed p ∈ N.Let X, Y, U be Hilbert spaes. Denote N0 = {0} ∪ N. Consider the spae

Hp+1(Y) = {ξ ∈ L2(0, T ;Y) : ξ(p+1) ∈ L2(0, T ;Y), p ∈ N0} that is a Hilbert spae(beause Y is a Hilbert spae) with inner produt [ξ, η] =

p+1
∑

q=0

T
∫

0

〈

ξ(q), η(q)
〉

Y
dt.Consider the solution of Showalter�Sidorov problem (3) for the non-stationary Sobolevequation

Lẋ(t) = a(t)Mx(t) + u(t), (5)where L ∈ L(X;Y), M ∈ Cl(X;Y), salar funtion a ∈ Cp+1([0, T ];R+) and funtion
u : R → Y is a ontrol funtion.De�nition 3. Vetor-funtion x ∈ H1(X) = {x ∈ L2(0, T ;X) : ẋ ∈ L2(0, T ;X)} is alleda strong solution of equation (5), if it transforms (5) to an identity almost everywhere on
(0, T ). Strong solution x = x(t) of (5) is alled a strong solution of Showalter � Sidorovproblem (3), (5), if it satis�es (3).Theorem 3. Let the operatorM be strongly (L, p)-setorial, p ∈ N0, then for every x0 ∈ Xand u ∈ Hp+1(Y), a ∈ Cp+1([0, T ];R+), separated from zero, there exists a unique solution48 Journal of Computational and Engineering Mathematis
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x ∈ H1(X) of (3), (5) given by

x =X

t
∫
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a(ζ)dζ
Px0 +

t
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X

t
∫

s

a(ζ)dζ
L−1
1 Qf(s)ds−
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HkM−1
0 (I −Q)(AD)kAu(t), (6)where (Ah)(t) = a−1(t)h(t) and (Dh)(t) =

dh

dt
(t).The proof of this Theorem is given in [11℄. Consider the optimal ontrol problem.Distinguish in spae Hp+1(U) a losed and onvex subset Hp+1

∂ (U) and all it the admissibleontrols.De�nition 4. The vetor funtion v ∈ Hp+1
∂ (U) is an optimal ontrol over the solutionsof problem (3), (5) with funtional (2) if

J(v) = inf
u∈Hp+1

∂
(U)
J(x(t, u)), (7)where x ∈ H1(X) is the strong solution of (3), (5).Theorem 4. Let the operator M be strongly (L, p)-setorial, p ∈ N0, the funtion

a ∈ Cp+1([0, T ];R+) be separated from zero. Then for every x0 ∈ X and every requiredstate zd ∈ H1
∂(Z) there exists a unique optimal ontrol v ∈ Hp+1

∂ (U) for the problem (3),(5), (7) with funtional (2).Following [12℄ let us desribe the approximate solution of the optimal ontrol problem.Replae the ontrol spae for �nite-dimensional spae Ul = Hp+1
l (Rn) of vetor-polynomialsof the form ul = ul(t), where

ul = col
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∑
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c2jt
j , . . . ,

l
∑
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j , . . .

)

. (8)Taking into aount (6), it is neessary that l > p. Substituting ul instead of u in (5),(2) and onsidering the optimal ontrol problem
J(vl) = min

H
p+1

∂
(Ul)

J(ul),we obtain the solution (vl, xl), where xl = x(vl, t).2. Dzektser modelGroundwater is free (gravitational) water from the �rst surfae of the Earth stableaquifer enlosed in unonsolidated sediments or fratured upper part of the bedrokoverlying the ground from the surfae area exposed for a waterproof layer. Their athmentarea oinides with distribution area of water-permeable rok. The upper boundary of thephreati zone is alled the phreati line. A saturated rok with water is alled the water-bearing horizon with apaity determined by the vertial distane from the phreati lineto the on�ning layer. Groundwater supply appears due to in�ltration of preipitation,2014, vol. 1, no. 1 49



M.A. Sagadeevasometimes due to in�ltration of water rivers and other surfae water bodies, and fromdeeper water-bearing horizon [2℄.The equation
(λ−∆)xt = α∆x− β∆2x (9)is of a great pratial interest in the theory of groundwater �ow. It is a generalizationof equation of the groundwater �ow with free surfae and models the evolution of free�ltered-�uid surfae.The parameter α in (9) is determined by the following formula

α =
(εα + k)2

kh0µ
,where µ is a void fration, εα is a �ow's module power via free surfae, k is a oe�ientof permeability, h0 is a pressure on the free surfae [2℄. The parameters λ and β aredetermined by the following formula

λ =
2(εα + k)

k2h20
, β =

h0
3µ
.Represent equation (9) as follows

(

2(εα + k)

k2h20
−∆

)

xt =
1

µ

(

(εα + k)2

kh0
∆x−

h0
3
∆2x

)

.The void fration µ haraterizes the ratio of pores volume to the volume of its mineralpart. Considering that in many instanes this ratio hanges in time, then this parameteris a salar funtion depending on time. Rename the oe�ients of equation (9) as follows
β = h0

3
, α = (εα+k)2

kh0
, a(t) = 1

µ(t)
, then

(λ−∆) xt = a(t)
(

α∆x− β∆2x
)

.Taking into aount the formula determining these parameters we obtain α, λ ∈ R, β ∈ R+.Consider the problem of optimal ontrol over solutions for the Dzektser non-stationaryequation with Showalter � Sidorov ondition.Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of C∞ lass. Consider theDirihlet problem
x(s, t) = ∆x(t, s) = 0, (s, t) ∈ Ω× R (10)in ylinder Ω× [0, T ] for partial di�erential equation

(λ−∆)xt = a(t)(α∆x− β∆2x) + u (11)with Showalter � Sidorov ondition (3). Coe�ients λ, α, β and a salar funtion
a : [0, T ] → R+ were desribed above, and the ontrol vetor funtion u(t) orrespondsto the external in�uene on the system.Redue the problem (10), (11) to equation (5). For this purpose take Sobolev spaes

X = {x ∈ W r+2
2 (Ω) : x(s) = 0, s ∈ ∂Ω} and U = Y = W r

2 (Ω),50 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSwhere r ∈ {0} ∪ N, W r
2 (Ω) is a Sobolev spae.De�ne operators L, M by the formulas

L = λ−∆, M = α∆− β∆2,wereas the domain of operator M : domM = {x ∈ W 4
2 (Ω) : x(s) = ∆x(s) = 0, s ∈ ∂Ω}.Lemma 1. For every λ ∈ R \ {α

β
} and β > 0 operators M ∈ Cl(X;Y), L ∈ L(X;Y).Proof.This Lemma follows from the properties of the Laplae operator (namely linearity andontinuity) and formulas determining L and M .

2By σ(∆) denote the spetrum of homogeneous Dirihlet problem in the domain Ω forthe Laplae operator ∆. The spetrum σ(∆) is negative, disrete, �nite-multiple and it isonentrated only at −∞, namely it is limited from right. The set of eigenvalues numberedin the non-inreasing order with allowane for their multipliity is denoted by {λk}. Thefamily of the orresponding eigenfuntions is orthonormalized (in the sense of the spae
L2(Ω), ψk ∈ C∞, k ∈ N with the salar produt 〈·, ·〉) and is denoted by {ψk}.Lemma 2. For every λ ∈ R \ {α/β} and β > 0 operator M is strongly (L, 0)-setorial.Proof.If there exist λk suh that λ − λk = 0 and αλk − βλ2k = 0 then kerL ∩ kerM 6= {0}.Therefore the ondition λ 6= α

β
is neessary. Construt the L-spetrum of operator M .

µL−M =
∞
∑

k=1

(

µ(λ− λk)− (αλk − βλ2k)
)

〈·, ψk〉ψk.Whene it follows that the L-spetrum of operator M takes the form
σL(M) =

{

µk =
αλk − βλ2k
λ− λk

, k ∈ N \ {l : λl = λ}

}

.Sine the spetrum of the Laplae operator {λk}∞k=1 is negative, disrete, �nite-multipleand it is onentrated only at −∞ then σL(M) has the same properties, namely it islimited from right.
2Under the onditions of Lemma 2 onstrut the L-resolvent and the right L-resolventof operator M :

(µL−M)−1 =
∑

k∈N:λ6=λk

〈·, ψk〉ψk

µ(λ− λk)− (αλk − βλ2k)
,

RL
µ(M) = (µL−M)−1L =

∑

k∈N:λ6=λk

〈·, ψk〉ψk

µ+
βλ2

k
−αλk

λ−λk

.Projetor P is de�ned as follows
P =

∑

k∈N\{l:λl=λ}

〈·, ψk〉ψk2014, vol. 1, no. 1 51



M.A. Sagadeevaand onsequently the Showalter � Sidorov ondition (3) takes the form
∑

k∈N\{l:λl=λ}

〈(x(0)− x0), ψk〉ψk = 0. (12)Under the onditions of Lemma 2 for every x0 ∈ X, u ∈ H1(U) and a ∈ C1([0, T ];R+),separated from zero, there exists a unique solution x ∈ H1(X) of (10), (11), (12) of theform
x(t) = −

∑
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e
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k

λ−λk
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〈x0, ψk〉ψk+
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t
∫

s

a(ζ)dζ

)

〈u(s), ψk〉ψk

λ− λk
ds.This follows from Theorems 2 and 3.Theorem 5. Let λ ∈ R \ {α/β} and β > 0. Then for every x0 ∈ X, zd ∈ H1

∂(Z) and
a ∈ C1([0, T ];R+), is separated from zero, there exists a unique solution v ∈ H1

∂(U) ofoptimal ontrol problem (4), (10), (11), (12) with funtional (2).The physial meaning of the optimal ontrol problem is to regulate e�etively thegroundwater �ows in the system of layers.3. Calulative experimentIntrodue a numerial method for solving of the optimal ontrol problem for non-stationary Dzektser model in the retangle based on the obtained results.Consider the basi steps of an algorithm for �nding of the optimal ontrol problemsolutions.Step 1. Input parameters λ, a(t), N , polynomial degree l and the required state zd.Step 2. Generation of omponents of optimal ontrol in the form (8).Step 3. Computation of the solution of Showalter � Sidorov problem (11) for equation(3) with ondition (10) in the form
x(t) = −

∑
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〈x0, ψk〉ψk+

+
∑
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∫
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e

(

αλk−βλ2
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t
∫

s

a(ζ)dζ

)

〈u(s), ψk〉ψk

λ− λk
ds.Step 4. Constrution of the funtional (2) and a losed onvex subset of admissibleontrols H1

∂(U
l) by the ondition ‖ul(t)‖2U < 1.Step 5. Calulation of minimum point of the funtional J(ul) on the subset ofadmissible ontrols with built-in proedure for �nding of extrema of funtions of severalvariables in Maple 14.Consider an example illustrating results obtained above. It is required to �nd thesolution of (10)�(12).52 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSLet l = 2, N = 2. Domain Ω = {(s1, s2) ∈ R2 : 0 ≤ s1 ≤ l1, 0 ≤ s2 ≤ l2, } ⊂ R2.Parameters x0 and a required state zd are given in forms
x0(s1, s2) = sin(πs1) sin(πs2) + sin(2πs1) sin(πs2),

zd(s1, s2, t) = (t + 1)(sin(πs1) sin(πs2) + sin(2πs1) sin(πs2)).The funtion a(t) = 1
t+1

and parameters α = 1, β = 1
π2 , λ = 3π2, C = I, Nq = I.Substituting these parameters in (9) and solving the optimal ontrol problem (7) with thefuntional (2) we found the funtion vl ∈ H1

∂(U
l). The resulting solution of the optimalontrol problem in the �nal time is shown in �gure 1.

Fig. 1. The required state (dash line) and the solution of the optimal ontrol problem(solid line) at the �nal time (s2 = 1
2
)Figure 1 shows the graphs of solution of the optimal ontrol problem (solid line) and therequired state (dashed line). It is seen that the results obtained by numerial experimentand the required state are losed in the integral sense.Referenes1. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and DegenerateSemigroups of Operators. Utreht, Boston, K�oln, Tokyo, VSP, 2003.2. Dzektser E.S. [Generalization of the motion of the �uid with free surfae℄. Dokl. Aad.Nauk SSSR, 1972, vol. 202, no. 5. pp. 1031 � 1033. (in Russian)3. Demidenko G.V., Uspenskii S.V. [Equations and Systems that are not allowed for thehighest derivative℄. Novosibirsk, Nauka Publ., 1998. (in Russian)2014, vol. 1, no. 1 53
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