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on
ern is a numeri
al solution to the optimal 
ontrol problem for the operator-di�erential equation, unsolved with respe
t to the derivative by time, with Showalter�Sidorov 
ondition. Su
h equations are 
alled Sobolev type equations. Sobolev type equationsnow 
onstitute a vast area of non
lassi
al equations of mathemati
al physi
s. So inthis arti
le we 
onstru
t a numeri
al solution to the optimal 
ontrol problem for thenonstationary Dzektser model with Showalter � Sidorov 
ondition. Besides the introdu
tionand bibliography arti
le 
omprises three parts. The �rst part provides essential informationregarding the theory of relatively p-se
torial operators. Also in this part the existen
eof solutions for optimal 
ontrol problem with Showalter�Sidorov 
ondition. The optimal
ontrol problem over solutions of Dzektser model is des
ribed in the se
ond part. The thirdone 
ontains the results of the numeri
al solution of optimal 
ontrol problem for Dzektsermodel 
onsidered on a re
tangle.Keywords: non-stationary Sobolev type equation, the optimal 
ontrol problem, Showalter� Sidorov 
ondition, Dzektser model.Introdu
tionLet Ω ⊂ R
n be a bounded domain with a boundary ∂Ω of C∞ 
lass. In the 
ylinder

Ω× R 
onsider the Diri
hlet problem for Sobolev type equation [1℄
(λ−∆)xt = a(t)(α∆x− β∆2x) + u, (1)that models the evolution of the surfa
e of the �ltered �uid [2℄. Here λ ∈ R, α ∈ R and

β > 0 are equation's parameters and a s
alar fun
tion a : [0, T ] → R+ 
hara
terizes theenvironment. Ve
tor-fun
tion u : R → L2(Ω) is a 
ontrol fun
tion, and it 
hara
terizes theexternal in�uen
e on the system. Equation (1) belongs to a 
lass of Sobolev type equationsthat are the base of a large amount of non-
lassi
al models of mathemati
al physi
s [4℄. Adetailed histori
al review of Sobolev type equations and an extensive bibliography 
an befound in [3℄. Let us note that in 
ontrast to earlier (1) studies of equation (1), we 
onsiderit with a 
oe�
ient that depends on time.Let Z be a Hilbert spa
e, operator C ∈ L(X;Z). Introdu
e the 
ost fun
tional
J(x, u) =

1
∑

q=0

T
∫

0

‖z(q) − z
(q)
d ‖2Zdt+

k
∑

q=0

T
∫

0

〈

Nqu
(q), u(q)

〉

U
dt, z = Cx, (2)where 0 ≤ k ≤ p + 1, Nq ∈ L(U), q = 0, 1, . . . , p + 1, are self-adjoint and positive de�nedoperators, zd = zd(t, s) is a required state from a Hilbert spa
e Z.We are interested in optimal 
ontrol over solutions of Diri
hlet problem for (1) withthe Showalter � Sidorov 
ondition [5℄

P (x(0)− x0) = 0, (3)46 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICSwhi
h is in this situation more appli
able than the traditional Cau
hy 
ondition (for moresee [5, 6℄). Namely we sear
h an optimal 
ontrol v ∈ H1
∂(U) whi
h satis�es the 
ondition

J(v) = inf
u∈H1

∂
(U)
J(x(t, u)). (4)The �rst results on the optimal 
ontrol problem for linear Sobolev type equation 
anbe found in [1℄. The optimal 
ontrol problem for non-linear Sobolev type equation is
onsidered in [7℄. Re
ently there were 
onsidered the optimal 
ontrol problems for variousstationary Sobolev-type models [8℄, [9℄. The numeri
al solution of the optimal 
ontrolproblem for non-stationary Sobolev type equations was 
onstru
ted in [10℄ in the 
ase ofrelatively p-bounded operator [1℄.Besides the introdu
tion and the bibliography arti
le 
omprises three parts. The �rstpart provides essential information regarding the theory of relatively p-se
torial operators[1℄ and the existen
e of solutions for optimal 
ontrol problem with Showalter�Sidorov
ondition [11℄. The optimal 
ontrol problem over solutions of Dzektser model is des
ribedin the se
ond part. The third one 
ontains the results of the numeri
al solution of optimal
ontrol problem for Dzektser model 
onsidered on a re
tangle. Referen
es do not purportto 
ompleaness and re�e
t only the authors' tastes and preferen
es.1. Abstra
t resultsLet X, Y be Bana
h spa
es, operator L ∈ L(X;Y) with nontrivial kernel

(kerL 6= {0}), operator M ∈ Cl(X;Y).The sets ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(Y;X)} and σL(M) = C\ρL(M) are 
alled
L-resolvent set and L-spe
trum of the operator M respe
tively . If kerL ∩ kerM 6= {0},then ρL(M) = ∅.Operator-fun
tions (µL−M)−1, RL

µ(M) = (µL−M)−1L, LL
µ(M) = L(µL−M)−1are 
alled L-resolvent, right L-resolvent, and left L-resolvent of the operator M withrespe
t to the operator L respe
tively.Theorem 1. Let operators L ∈ L(X;Y), M ∈ Cl(X;Y), then the L-resolvent, right andleft L-resolvents of the operator M are analyti
 in ρL(M).De�nition 1. Let λq ∈ ρL(M), q = 0, 1, . . . , p. Operator-fun
tions

RL
(λ,p)(M) =

p
∏

k=0

RL
λk
(M)

(

LL
(λ,p)(M) =

p
∏

k=0

LL
λk
(M)

)are 
alled right p-resolvent (left p-resolvent) of the operatorM with respe
t to operator Lrespe
tively (brie�y, right (L, p)-resolvent and left (L, p)-resolvent of the operator M).De�nition 2. Operator M is 
alled strongly (L, p)-se
torial, if thereexist 
onstants K > 0, b ∈ R, θ ∈ (π
2
, π), su
h that the se
tor

SL
b,θ(M) = {µ ∈ C : | arg(µ− b)| < θ, µ 6= b} ⊂ ρL(M), for every µk ∈ SL

b,θ(M), k = 0, p,
max{‖RL

(µ,p)(M)‖L(X), ‖L
L
(µ,p)(M)‖L(Y)} ≤

K
p
∏

k=0

|µk − b|
,2014, vol. 1, no. 1 47



M.A. Sagadeevaand there exists a dense lineal ◦

Y in spa
e Y, su
h that for every y ∈
◦

Y and
λ, µ1, . . . , µp ∈ SL

b,θ(M)

‖M(λL−M)−1LL
(µ,p)(M)y‖Y ≤

const(y)

|λ− b|
p
∏

k=0

|µk − b|
,

‖RL
(µ,p)(M)(λL−M)−1‖L(Y,X) ≤

K

|λ− b|
p
∏

k=0

|µk − b|
.Theorem 2. Let operator M be strongly (L, p)-se
torial, then(i) there exists a strongly right-
ontinuous at zero semigroup {X t∈L(X) : t∈{0}∪Σ},analyti
 in the se
tor Σ = {t ∈ C : | arg t| < θ− π

2
} and solving equation Mẋ(t) = Lx(t)

(

{Y t∈ L(Y) : t∈R} for L(νL−M)−1ẏ(t) =M(νL−M)−1y(t) where ν ∈ ρL(M)
), of theform

X t =
1

2πi

∫

Γ

RL
µ(M)eµtdµ



Y t =
1

2πi

∫

Γ

LL
µ(M)eµtdµ



 ,were 
ontour Γ = {µ ∈ C : µ = s− |z|+ itgθz, z ∈ R}, s > b;(ii) X = X0 ⊕ X1, Y = Y0 ⊕ Y1, where X0 = kerX•, X1 = imX•, Y0 = ker Y •,
Y1 = imY •, proje
tors of this splitting are identities of these semigroups P = s- lim

t→0+
X t,

Q = s- lim
t→0+

Y t;(iii) Lk ∈ L(Xk;Yk), Mk ∈ Cl(Xk;Yk), (here Lk (Mk) is a restri
tion of L (M) on
Xk(domM ∩ Xk)), k = 0, 1;(iv) there exist operators M−1

0 ∈ L(Y0;X0), L−1
1 ∈ L(Y1;X1), and the operator

H =M−1
0 L0 ∈ L(X0) is nilpotent and the degree of its nilpoten
y does not ex
eed p ∈ N.Let X, Y, U be Hilbert spa
es. Denote N0 = {0} ∪ N. Consider the spa
e

Hp+1(Y) = {ξ ∈ L2(0, T ;Y) : ξ(p+1) ∈ L2(0, T ;Y), p ∈ N0} that is a Hilbert spa
e(be
ause Y is a Hilbert spa
e) with inner produ
t [ξ, η] =

p+1
∑

q=0

T
∫

0

〈

ξ(q), η(q)
〉

Y
dt.Consider the solution of Showalter�Sidorov problem (3) for the non-stationary Sobolevequation

Lẋ(t) = a(t)Mx(t) + u(t), (5)where L ∈ L(X;Y), M ∈ Cl(X;Y), s
alar fun
tion a ∈ Cp+1([0, T ];R+) and fun
tion
u : R → Y is a 
ontrol fun
tion.De�nition 3. Ve
tor-fun
tion x ∈ H1(X) = {x ∈ L2(0, T ;X) : ẋ ∈ L2(0, T ;X)} is 
alleda strong solution of equation (5), if it transforms (5) to an identity almost everywhere on
(0, T ). Strong solution x = x(t) of (5) is 
alled a strong solution of Showalter � Sidorovproblem (3), (5), if it satis�es (3).Theorem 3. Let the operatorM be strongly (L, p)-se
torial, p ∈ N0, then for every x0 ∈ Xand u ∈ Hp+1(Y), a ∈ Cp+1([0, T ];R+), separated from zero, there exists a unique solution48 Journal of Computational and Engineering Mathemati
s
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x ∈ H1(X) of (3), (5) given by

x =X

t
∫

0

a(ζ)dζ
Px0 +

t
∫

0

X

t
∫

s

a(ζ)dζ
L−1
1 Qf(s)ds−

p
∑

k=0

HkM−1
0 (I −Q)(AD)kAu(t), (6)where (Ah)(t) = a−1(t)h(t) and (Dh)(t) =

dh

dt
(t).The proof of this Theorem is given in [11℄. Consider the optimal 
ontrol problem.Distinguish in spa
e Hp+1(U) a 
losed and 
onvex subset Hp+1

∂ (U) and 
all it the admissible
ontrols.De�nition 4. The ve
tor fun
tion v ∈ Hp+1
∂ (U) is an optimal 
ontrol over the solutionsof problem (3), (5) with fun
tional (2) if

J(v) = inf
u∈Hp+1

∂
(U)
J(x(t, u)), (7)where x ∈ H1(X) is the strong solution of (3), (5).Theorem 4. Let the operator M be strongly (L, p)-se
torial, p ∈ N0, the fun
tion

a ∈ Cp+1([0, T ];R+) be separated from zero. Then for every x0 ∈ X and every requiredstate zd ∈ H1
∂(Z) there exists a unique optimal 
ontrol v ∈ Hp+1

∂ (U) for the problem (3),(5), (7) with fun
tional (2).Following [12℄ let us des
ribe the approximate solution of the optimal 
ontrol problem.Repla
e the 
ontrol spa
e for �nite-dimensional spa
e Ul = Hp+1
l (Rn) of ve
tor-polynomialsof the form ul = ul(t), where

ul = col

(

l
∑

j=0

c1jt
j ,

l
∑

j=0

c2jt
j , . . . ,

l
∑

j=0

cnjt
j , . . .

)

. (8)Taking into a

ount (6), it is ne
essary that l > p. Substituting ul instead of u in (5),(2) and 
onsidering the optimal 
ontrol problem
J(vl) = min

H
p+1

∂
(Ul)

J(ul),we obtain the solution (vl, xl), where xl = x(vl, t).2. Dzektser modelGroundwater is free (gravitational) water from the �rst surfa
e of the Earth stableaquifer en
losed in un
onsolidated sediments or fra
tured upper part of the bedro
koverlying the ground from the surfa
e area exposed for a waterproof layer. Their 
at
hmentarea 
oin
ides with distribution area of water-permeable ro
k. The upper boundary of thephreati
 zone is 
alled the phreati
 line. A saturated ro
k with water is 
alled the water-bearing horizon with 
apa
ity determined by the verti
al distan
e from the phreati
 lineto the 
on�ning layer. Groundwater supply appears due to in�ltration of pre
ipitation,2014, vol. 1, no. 1 49



M.A. Sagadeevasometimes due to in�ltration of water rivers and other surfa
e water bodies, and fromdeeper water-bearing horizon [2℄.The equation
(λ−∆)xt = α∆x− β∆2x (9)is of a great pra
ti
al interest in the theory of groundwater �ow. It is a generalizationof equation of the groundwater �ow with free surfa
e and models the evolution of free�ltered-�uid surfa
e.The parameter α in (9) is determined by the following formula

α =
(εα + k)2

kh0µ
,where µ is a void fra
tion, εα is a �ow's module power via free surfa
e, k is a 
oe�
ientof permeability, h0 is a pressure on the free surfa
e [2℄. The parameters λ and β aredetermined by the following formula

λ =
2(εα + k)

k2h20
, β =

h0
3µ
.Represent equation (9) as follows

(

2(εα + k)

k2h20
−∆

)

xt =
1

µ

(

(εα + k)2

kh0
∆x−

h0
3
∆2x

)

.The void fra
tion µ 
hara
terizes the ratio of pores volume to the volume of its mineralpart. Considering that in many instan
es this ratio 
hanges in time, then this parameteris a s
alar fun
tion depending on time. Rename the 
oe�
ients of equation (9) as follows
β = h0

3
, α = (εα+k)2

kh0
, a(t) = 1

µ(t)
, then

(λ−∆) xt = a(t)
(

α∆x− β∆2x
)

.Taking into a

ount the formula determining these parameters we obtain α, λ ∈ R, β ∈ R+.Consider the problem of optimal 
ontrol over solutions for the Dzektser non-stationaryequation with Showalter � Sidorov 
ondition.Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω of C∞ 
lass. Consider theDiri
hlet problem
x(s, t) = ∆x(t, s) = 0, (s, t) ∈ Ω× R (10)in 
ylinder Ω× [0, T ] for partial di�erential equation

(λ−∆)xt = a(t)(α∆x− β∆2x) + u (11)with Showalter � Sidorov 
ondition (3). Coe�
ients λ, α, β and a s
alar fun
tion
a : [0, T ] → R+ were des
ribed above, and the 
ontrol ve
tor fun
tion u(t) 
orrespondsto the external in�uen
e on the system.Redu
e the problem (10), (11) to equation (5). For this purpose take Sobolev spa
es

X = {x ∈ W r+2
2 (Ω) : x(s) = 0, s ∈ ∂Ω} and U = Y = W r

2 (Ω),50 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICSwhere r ∈ {0} ∪ N, W r
2 (Ω) is a Sobolev spa
e.De�ne operators L, M by the formulas

L = λ−∆, M = α∆− β∆2,wereas the domain of operator M : domM = {x ∈ W 4
2 (Ω) : x(s) = ∆x(s) = 0, s ∈ ∂Ω}.Lemma 1. For every λ ∈ R \ {α

β
} and β > 0 operators M ∈ Cl(X;Y), L ∈ L(X;Y).Proof.This Lemma follows from the properties of the Lapla
e operator (namely linearity and
ontinuity) and formulas determining L and M .

2By σ(∆) denote the spe
trum of homogeneous Diri
hlet problem in the domain Ω forthe Lapla
e operator ∆. The spe
trum σ(∆) is negative, dis
rete, �nite-multiple and it is
on
entrated only at −∞, namely it is limited from right. The set of eigenvalues numberedin the non-in
reasing order with allowan
e for their multipli
ity is denoted by {λk}. Thefamily of the 
orresponding eigenfun
tions is orthonormalized (in the sense of the spa
e
L2(Ω), ψk ∈ C∞, k ∈ N with the s
alar produ
t 〈·, ·〉) and is denoted by {ψk}.Lemma 2. For every λ ∈ R \ {α/β} and β > 0 operator M is strongly (L, 0)-se
torial.Proof.If there exist λk su
h that λ − λk = 0 and αλk − βλ2k = 0 then kerL ∩ kerM 6= {0}.Therefore the 
ondition λ 6= α

β
is ne
essary. Constru
t the L-spe
trum of operator M .

µL−M =
∞
∑

k=1

(

µ(λ− λk)− (αλk − βλ2k)
)

〈·, ψk〉ψk.When
e it follows that the L-spe
trum of operator M takes the form
σL(M) =

{

µk =
αλk − βλ2k
λ− λk

, k ∈ N \ {l : λl = λ}

}

.Sin
e the spe
trum of the Lapla
e operator {λk}∞k=1 is negative, dis
rete, �nite-multipleand it is 
on
entrated only at −∞ then σL(M) has the same properties, namely it islimited from right.
2Under the 
onditions of Lemma 2 
onstru
t the L-resolvent and the right L-resolventof operator M :

(µL−M)−1 =
∑

k∈N:λ6=λk

〈·, ψk〉ψk

µ(λ− λk)− (αλk − βλ2k)
,

RL
µ(M) = (µL−M)−1L =

∑

k∈N:λ6=λk

〈·, ψk〉ψk

µ+
βλ2

k
−αλk

λ−λk

.Proje
tor P is de�ned as follows
P =

∑

k∈N\{l:λl=λ}

〈·, ψk〉ψk2014, vol. 1, no. 1 51



M.A. Sagadeevaand 
onsequently the Showalter � Sidorov 
ondition (3) takes the form
∑

k∈N\{l:λl=λ}

〈(x(0)− x0), ψk〉ψk = 0. (12)Under the 
onditions of Lemma 2 for every x0 ∈ X, u ∈ H1(U) and a ∈ C1([0, T ];R+),separated from zero, there exists a unique solution x ∈ H1(X) of (10), (11), (12) of theform
x(t) = −

∑

l∈N:λl=λ

〈u, ψl〉ψl

a(t)(αλ− βλ2)
+

∑

k∈N\{l:λl=λ}

e

(

αλk−βλ2
k

λ−λk

t
∫

0

a(ζ)dζ

)

〈x0, ψk〉ψk+

+
∑

k∈N\{l:λl=λ}

t
∫

0

e

(

αλk−βλ2
k

λ−λk

t
∫

s

a(ζ)dζ

)

〈u(s), ψk〉ψk

λ− λk
ds.This follows from Theorems 2 and 3.Theorem 5. Let λ ∈ R \ {α/β} and β > 0. Then for every x0 ∈ X, zd ∈ H1

∂(Z) and
a ∈ C1([0, T ];R+), is separated from zero, there exists a unique solution v ∈ H1

∂(U) ofoptimal 
ontrol problem (4), (10), (11), (12) with fun
tional (2).The physi
al meaning of the optimal 
ontrol problem is to regulate e�e
tively thegroundwater �ows in the system of layers.3. Cal
ulative experimentIntrodu
e a numeri
al method for solving of the optimal 
ontrol problem for non-stationary Dzektser model in the re
tangle based on the obtained results.Consider the basi
 steps of an algorithm for �nding of the optimal 
ontrol problemsolutions.Step 1. Input parameters λ, a(t), N , polynomial degree l and the required state zd.Step 2. Generation of 
omponents of optimal 
ontrol in the form (8).Step 3. Computation of the solution of Showalter � Sidorov problem (11) for equation(3) with 
ondition (10) in the form
x(t) = −

∑

l∈N:λl=λ

〈u, ψl〉ψl

a(t)(αλ− βλ2)
+

∑

k∈N\{l:λl=λ}

e

(

αλk−βλ2
k

λ−λk

t
∫

0

a(ζ)dζ

)

〈x0, ψk〉ψk+

+
∑

k∈N\{l:λl=λ}

t
∫

0

e

(

αλk−βλ2
k

λ−λk

t
∫

s

a(ζ)dζ

)

〈u(s), ψk〉ψk

λ− λk
ds.Step 4. Constru
tion of the fun
tional (2) and a 
losed 
onvex subset of admissible
ontrols H1

∂(U
l) by the 
ondition ‖ul(t)‖2U < 1.Step 5. Cal
ulation of minimum point of the fun
tional J(ul) on the subset ofadmissible 
ontrols with built-in pro
edure for �nding of extrema of fun
tions of severalvariables in Maple 14.Consider an example illustrating results obtained above. It is required to �nd thesolution of (10)�(12).52 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICSLet l = 2, N = 2. Domain Ω = {(s1, s2) ∈ R2 : 0 ≤ s1 ≤ l1, 0 ≤ s2 ≤ l2, } ⊂ R2.Parameters x0 and a required state zd are given in forms
x0(s1, s2) = sin(πs1) sin(πs2) + sin(2πs1) sin(πs2),

zd(s1, s2, t) = (t + 1)(sin(πs1) sin(πs2) + sin(2πs1) sin(πs2)).The fun
tion a(t) = 1
t+1

and parameters α = 1, β = 1
π2 , λ = 3π2, C = I, Nq = I.Substituting these parameters in (9) and solving the optimal 
ontrol problem (7) with thefun
tional (2) we found the fun
tion vl ∈ H1

∂(U
l). The resulting solution of the optimal
ontrol problem in the �nal time is shown in �gure 1.

Fig. 1. The required state (dash line) and the solution of the optimal 
ontrol problem(solid line) at the �nal time (s2 = 1
2
)Figure 1 shows the graphs of solution of the optimal 
ontrol problem (solid line) and therequired state (dashed line). It is seen that the results obtained by numeri
al experimentand the required state are 
losed in the integral sense.Referen
es1. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and DegenerateSemigroups of Operators. Utre
ht, Boston, K�oln, Tokyo, VSP, 2003.2. Dzektser E.S. [Generalization of the motion of the �uid with free surfa
e℄. Dokl. A
ad.Nauk SSSR, 1972, vol. 202, no. 5. pp. 1031 � 1033. (in Russian)3. Demidenko G.V., Uspenskii S.V. [Equations and Systems that are not allowed for thehighest derivative℄. Novosibirsk, Nauka Publ., 1998. (in Russian)2014, vol. 1, no. 1 53
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