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Of concern is a numerical solution to the optimal control problem for the operator-
differential equation, unsolved with respect to the derivative by time, with Showalter—
Sidorov condition. Such equations are called Sobolev type equations. Sobolev type equations
now constitute a vast area of nonclassical equations of mathematical physics. So in
this article we construct a numerical solution to the optimal control problem for the
nonstationary Dzektser model with Showalter — Sidorov condition. Besides the introduction
and bibliography article comprises three parts. The first part provides essential information
regarding the theory of relatively p-sectorial operators. Also in this part the existence
of solutions for optimal control problem with Showalter—Sidorov condition. The optimal
control problem over solutions of Dzektser model is described in the second part. The third
one contains the results of the numerical solution of optimal control problem for Dzektser
model considered on a rectangle.
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Introduction

Let © C R™ be a bounded domain with a boundary 02 of C* class. In the cylinder
2 x R consider the Dirichlet problem for Sobolev type equation [1]

(A — Az, = a(t)(aAz — BA ) + u, (1)

that models the evolution of the surface of the filtered fluid [2|. Here A € R, a € R and
f > 0 are equation’s parameters and a scalar function a : [0,7] — R, characterizes the
environment. Vector-function u : R — Lo(£2) is a control function, and it characterizes the
external influence on the system. Equation (1) belongs to a class of Sobolev type equations
that are the base of a large amount of non-classical models of mathematical physics [4]. A
detailed historical review of Sobolev type equations and an extensive bibliography can be
found in [3|. Let us note that in contrast to earlier (1) studies of equation (1), we consider
it with a coefficient that depends on time.
Let 3 be a Hilbert space, operator C' € L(X; 3). Introduce the cost functional

1

T k T
J(w,u) =Y / 129 — 2P 2dt+ / (Nu® @) dt, 2= Cu, (2)
0 =07

q=0

where 0 <k <p+1, N, € L(M), ¢ =0,1,...,p+ 1, are self-adjoint and positive defined
operators, zq = z4(t, s) is a required state from a Hilbert space 3.

We are interested in optimal control over solutions of Dirichlet problem for (1) with
the Showalter — Sidorov condition [5]

P(z(0) — z) =0, (3)
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which is in this situation more applicable than the traditional Cauchy condition (for more
see |5, 6]). Namely we search an optimal control v € H}(4l) which satisfies the condition

Jw)= inf J(x(tu)). (4)

ueH (W)

The first results on the optimal control problem for linear Sobolev type equation can
be found in [1|. The optimal control problem for non-linear Sobolev type equation is
considered in |7|. Recently there were considered the optimal control problems for various
stationary Sobolev-type models [8], |9]. The numerical solution of the optimal control
problem for non-stationary Sobolev type equations was constructed in [10] in the case of
relatively p-bounded operator [1].

Besides the introduction and the bibliography article comprises three parts. The first
part provides essential information regarding the theory of relatively p-sectorial operators
[1] and the existence of solutions for optimal control problem with Showalter-Sidorov
condition [11]. The optimal control problem over solutions of Dzektser model is described
in the second part. The third one contains the results of the numerical solution of optimal
control problem for Dzektser model considered on a rectangle. References do not purport
to compleaness and reflect only the authors’ tastes and preferences.

1. Abstract results

Let X, 2 be Banach spaces, operator L € L£(X;9)) with nontrivial kernel
(ker L # {0}), operator M € Cl(%;9).

The sets p"(M) = {p € C: (uL—M)™" € L(Y;X)} and o% (M) = C\ p*(M) are called
L-resolvent set and L-spectrum of the operator M respectively . If ker L. NkerM # {0},
then pt(M) = 0.

Operator-functions (uL — M)~', RL(M)= (uL—M)"'L, Lj(M)= L(pL— M)
are called L-resolvent, right L-resolvent, and left L-resolvent of the operator M with
respect to the operator L respectively.

Theorem 1. Let operators L € L(X;%), M € CI(X;92), then the L-resolvent, right and
left L-resolvents of the operator M are analytic in p*(M).

Definition 1. Let \, € p*(M),q =0,1,..., p. Operator-functions

RE () = [T RE () <L5,p><M> 1 LW))

are called right p-resolvent (left p-resolvent) of the operator M with respect to operator L
respectively (briefly, right (L, p)-resolvent and left (L, p)-resolvent of the operator M).

Definition 2. Operator M is called strongly (L,p)-sectorial, if there
exist constants K > 0, b € R, 6 <€ (,7m), such that the sector
SEA(M) = (s € C : |arg(p — b)| < 0, 1 £ b} € pH(M), for every u € SEy(M), k = 0.p,

K

max{ || R, ) (M)l ey 1 LG (M)lle@)} < ,
IR
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and there exists a dense lineal %) in space ), such that for every y € %) and
>\,,u1, sy Up € Slf:O(M)

- const(y)
ML = M)7' LG, ) (M)ylly < - |
A=l TT | — 0l
k=0
_ K
IRG, py(M)YAL = M) ™| 2.2y < - .
A= 01 11 i —

Theorem 2. Let operator M be strongly (L, p)-sectorial, then
(i) there exists a strongly right-continuous at zero semigroup {X'€ L(X): t€{0} UX},
analytic in the sector ¥ = {t € C: |argt| < -3} and solving equation Mi(t) = Lx(t)

<{Yt€ L) :teR} for LvL— M) 1y(t) = M(vL— M) y(t) where v € pL(M)>, of the
form

1 1
X' = —/Rﬁ(M)e“tdu Y= —,/Lﬁ(M)e“tdu :

271 271
r r

were contour T'={p e C:pu=s—|z|+itghz, z€R}, s> b
i) X=X XY, 9 = DY, where X° = ker X*, X! = imX*, 9° = kerV*,
D! = 1imY'®, projectors of this splitting are identities of these semigroups P = s- lim X,

t—0+
Q = s- lim Y?;
t—0+

(iii) Ly € L(X* %), My € CL(X*D%), (here Ly (My) is a restriction of L (M) on
XF(domM N XF)), k = 0,1;

(iv) there emist operators My* € L(P°X°), L' € L' XY), and the operator
H= Mo_lLo € L(X°) is nilpotent and the degree of its nilpotency does not exceed p € N.

Let X, 2, U be Hilbert spaces. Denote Ny = {0} U N. Consider the space
HPYHY) = {€ € Ly(0,T59) : €7D € L,(0,T;9), p € Ng} that is a Hilbert space
p+1 L
(because 9) is a Hilbert space) with inner product [£,n] = Z / <§(q), 77(‘1)>2j dt.
q=0 0

Consider the solution of Showalter—Sidorov problem (3) for the non-stationary Sobolev
equation
Li(t) = a(t)Mz(t) + u(t), (5)

where L € L(X;9), M € CI(X;9), scalar function a € CPT([0,T];R,) and function
u: R — %) is a control function.

Definition 3. Vector-function z € H'(X) = {z € Ly(0,T;X) : & € Ly(0,T;X)} is called
a strong solution of equation (5), if it transforms (5) to an identity almost everywhere on
(0,7"). Strong solution x = x(t) of (5) is called a strong solution of Showalter — Sidorov
problem (3), (5), if it satisfies (3).

Theorem 3. Let the operator M be strongly (L, p)-sectorial, p € Ny, then for every zo € X
and u € HP™Y(9), a € CPTL([0,T]; Ry, separated from zero, there exists a unique solution
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r € HY(X) of (3), (5) given by

t t

a(Q)d¢ fa P
T :Xof © Pxg + x! (C)dCLl‘lQ f(s)ds —ZHkMo‘l([ — Q)(AD)" Au(t), (6)
0 k=0

where (Ah)(t) = a1 (t)h(t) and (Dh)(t) = C;—?(t)

The proof of this Theorem is given in [11]. Consider the optimal control problem.
Distinguish in space H?*'(4() a closed and convex subset H5 ™ (8[) and call it the admissible
controls.

Definition 4. The vector function v € Hg“(il) is an optimal control over the solutions
of problem (3), (5) with functional (2) if

Jw)= inf J(z(t,u)), (7)

ue HE T (y)

where x € H'(X) is the strong solution of (3), (5).

Theorem 4. Let the operator M be strongly (L,p)-sectorial, p € Ny, the function
a € CPT([0,T];R,) be separated from zero. Then for every xo € X and every required
state zg € HA(3) there ewists a unique optimal control v € HET () for the problem (3),
(5), (7) with functional (2).

Following [12] let us describe the approximate solution of the optimal control problem.
Replace the control space for finite-dimensional space U = H 7 +1(]R") of vector-polynomials
of the form u! = u!(t), where

! ! !
u! = col (ZCljtj,chjtj,...,chjtj,...) ) (8)
5=0 =0 =0

Taking into account (6), it is necessary that [ > p. Substituting u! instead of u in (5),
(2) and considering the optimal control problem

JY) = min J(u),
HEH )

we obtain the solution (v!, 2!), where 2! = z(v', t).

2. Dzektser model

Groundwater is free (gravitational) water from the first surface of the Earth stable
aquifer enclosed in unconsolidated sediments or fractured upper part of the bedrock
overlying the ground from the surface area exposed for a waterproof layer. Their catchment
area coincides with distribution area of water-permeable rock. The upper boundary of the
phreatic zone is called the phreatic line. A saturated rock with water is called the water-
bearing horizon with capacity determined by the vertical distance from the phreatic line
to the confining layer. Groundwater supply appears due to infiltration of precipitation,
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sometimes due to infiltration of water rivers and other surface water bodies, and from
deeper water-bearing horizon |[2|.
The equation
(A — A)z; = alz — fA 9)

is of a great practical interest in the theory of groundwater flow. It is a generalization
of equation of the groundwater flow with free surface and models the evolution of free
filtered-fluid surface.

The parameter « in (9) is determined by the following formula

(€a + k)?
khop

o =

where p is a void fraction, €, is a flow’s module power via free surface, k is a coefficient
of permeability, hg is a pressure on the free surface [2]. The parameters A and [ are
determined by the following formula

_ 2(ea +K)

ho
A\ = -9
K2h2

ﬁ—gﬂ-

Represent equation (9) as follows

2(5a + k) 1 (Ea + k)z ho 2
e T A =~ A — 2A% ).
<k2h3 )x u( khg 30"

The void fraction p characterizes the ratio of pores volume to the volume of its mineral
part. Considering that in many instances this ratio changes in time, then this parameter
is a scalar function depending on time. Rename the coefficients of equation (9) as follows

5 = %7 o = (62—55)27 a(t) = ﬁ; then

(A= A)zy = a(t) (aAz — BA%z) .

Taking into account the formula determining these parameters we obtain a, A € R, g € R,.
Consider the problem of optimal control over solutions for the Dzektser non-stationary
equation with Showalter — Sidorov condition.
Let Q C R” be a bounded domain with boundary 02 of C*° class. Consider the
Dirichlet problem
x(s,t) = Az(t,s) =0, (s,t) e QxR (10)

in cylinder Q x [0, 7] for partial differential equation
(A — Az, = a(t)(aAz — BA% ) +u (11)

with Showalter — Sidorov condition (3). Coefficients A, a, f and a scalar function
a:[0,7] - R, were described above, and the control vector function u(t) corresponds
to the external influence on the system.

Reduce the problem (10), (11) to equation (5). For this purpose take Sobolev spaces

X={zeW;(Q):2(s) =0,s€ 09} and U= =W;(Q),
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where r € {0} UN, W3 () is a Sobolev space.
Define operators L, M by the formulas

L=X—A, M=aA— (A%
wereas the domain of operator M: domM = {x € WH(Q) : z(s) = Ax(s) = 0,s € IQ}.
Lemma 1. For every A € R\ {3} and § > 0 operators M € CI(X;9), L € L(X;9).

Proof.
This Lemma follows from the properties of the Laplace operator (namely linearity and
continuity) and formulas determining L and M.

O
By o(A) denote the spectrum of homogeneous Dirichlet problem in the domain  for

the Laplace operator A. The spectrum o(A) is negative, discrete, finite-multiple and it is
concentrated only at —oo, namely it is limited from right. The set of eigenvalues numbered
in the non-increasing order with allowance for their multiplicity is denoted by {\z}. The
family of the corresponding eigenfunctions is orthonormalized (in the sense of the space
Ly(2), o € C*, k € N with the scalar product (-,-)) and is denoted by {}.

Lemma 2. For every A € R\ {«/5} and 5 > 0 operator M is strongly (L, 0)-sectorial.

Proof.
If there exist Ay such that A — A\, = 0 and a), — BA} = 0 then ker L Nker M # {0}.
Therefore the condition A\ # % is necessary. Construct the L-spectrum of operator M.

UL — M =" (A= M) — (ahe — BXD)) (- i) e

k=1
Whence it follows that the L-spectrum of operator M takes the form

Oé)\k - ﬁ)\z

ot = {n = 7

,kEN\{l:Al:A}}.

Since the spectrum of the Laplace operator {\;}72; is negative, discrete, finite-multiple
and it is concentrated only at —oo then o(M) has the same properties, namely it is
limited from right.

O
Under the conditions of Lemma 2 construct the L-resolvent and the right L-resolvent

of operator M:

_ <7¢k>¢k
L-M)"=
(u ) keN:ZA;é}\k HA = M) = (@A, — BAT)
RE(M) = (uL — M)™'L = s

kENIMAN, M+ =5
Projector P is defined as follows

keN\{l:\; =)}
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and consequently the Showalter — Sidorov condition (3) takes the form

> ((@(0) = o), v) v = 0. (12)

KEN\{l:\;=\}

Under the conditions of Lemma 2 for every 2y € X, u € H'(4) and a € C*([0, T]; R,),
separated from zero, there exists a unique solution z € H*(X) of (10), (11), (12) of the

form
aX,—BAZ J'Z

P

lEN:A = ()(Oé)‘ B kEN\{l:\;=A}

><$0,¢k>¢k+

Loy e e,

kEN\{I:\=A}

This follows from Theorems 2 and 3.

Theorem 5. Let A € R\ {«a/B} and 8 > 0. Then for every o € X, 24 € H}(3) and
a € CY([0,T);Ry), is separated from zero, there exists a unique solution v € HA(U) of
optimal control problem (4), (10), (11), (12) with functional (2).

The physical meaning of the optimal control problem is to regulate effectively the
groundwater flows in the system of layers.

3. Calculative experiment

Introduce a numerical method for solving of the optimal control problem for non-
stationary Dzektser model in the rectangle based on the obtained results.

Consider the basic steps of an algorithm for finding of the optimal control problem
solutions.

Step 1. Input parameters A, a(t), N, polynomial degree [ and the required state zg.

Step 2. Generation of components of optimal control in the form (8).

Step 3. Computation of the solution of Showalter — Sidorov problem (11) for equation
(3) with condition (10) in the form

adp—BAZ ft

o) = -y — Ll T+ 3 <“’“

ey U @A = BX%) )

><$0,¢k>¢k+

t O‘)‘k*»@“z ta
I G ECD ORI

A— A\
kEN\{L:N=A)

Step 4. Construction of the functional (2) and a closed convex subset of admissible
controls H3(4U') by the condition ||u!(#)]|Z < 1.

Step 5. Calculation of minimum point of the functional J(u') on the subset of
admissible controls with built-in procedure for finding of extrema of functions of several
variables in Maple 14.

Consider an example illustrating results obtained above. It is required to find the
solution of (10)—(12).
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Let [ = 2, N = 2. Domain ) = {(81,82) eER?:0 <81 <11,0< 8, < lg,} c R%
Parameters xy and a required state z; are given in forms

xo(81, S2) = sin(mwsy) sin(msy) + sin(27s;) sin(7ss),

z4(s1, S2,t) = (t + 1)(sin(msy) sin(msy) + sin(27sy) sin(7ss)).

The function a(t) = Hil and parameters « = 1, f = 5, A =372, C =1, N, = L.
Substituting these parameters in (9) and solving the optimal control problem (7) with the
functional (2) we found the function v! € H} (). The resulting solution of the optimal

control problem in the final time is shown in figure 1.

Fig. 1. The required state (dash line) and the solution of the optimal control problem

(solid line) at the final time (so = 1)

Figure 1 shows the graphs of solution of the optimal control problem (solid line) and the
required state (dashed line). It is seen that the results obtained by numerical experiment
and the required state are closed in the integral sense.
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