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COMPUTATION OF PARAMETERS OF THE PISTON
MOTION IN THE TUBE UNDER THE GAS PRESSURE
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Mathematical models of a pneumatic system consisting of a tube closed on one side and
open on the other side are under consideration. The tube has the piston that limits a certain
volume of compressed gas. To find the parameters of the piston motion under pressure of
the expanding gas, the mathematical model of the system is constructed in several ways:
using ordinary differential equations and using partial differential equations (the equations
of gas dynamics). In addition, the corresponding boundary conditions are determined. All
the equations that make up the mathematical model are reduced to a dimensionless form. To
perform calculations, methods of finite differences and characteristics are used. Calculations
are carried out until the piston reaches the open end of the pipe or until the piston begins
to slow down. Then, the results obtained with the help of the methods under consideration
are compared according to the criteria of speed and accuracy. Recommendations are given
on the appropriateness of using each method of constructing a mathematical model.
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Introduction

Existing methods of mathematical modeling of pneumatic systems are not totally
acceptable. This is due to the fact that only some of the simplest problems can be solved
applying these models for calculations by precise analytical methods. Various numerical
methods are used for more complex problems. A numerical method allows to get only an
approximate solution of the problem. The methods are compared with each other according
to the of accuracy and speed criteria. Therefore, some methods are more preferred for
solution in comparison with others. So, it is necessary to examine each method and decide
which one is preferable.

In [1], a mathematical model of piston motion in the pipe taking into account the
clearance between the piston and the pipe and the friction forces in the system is
considered. The problem is solved using the finite difference method, using the Newton-
Raphson numerical method. In [2]| the problem of piston motion is solved by the method
of characteristics. In [1] and [2] it is recommended to divide the solution area into sections
with a small space step. This article compares the methods of solving the problem: 1) when
dividing the space into parts, 2) when the gas is evenly distributed over the space. It is
shown that the accuracy of the solution with the help of 1) and 2) differs by insignificantly
small value.

Consider a "tube-piston" class of systems designed to create an accelerated piston
motion. In general, such systems consist of two major parts: a sealed on one end cylinder
which contains compressed and heated gas, and the movable piston which is driven inside
the cylinder under the action of compressed air. In this case the piston speed until it
reaches the end of the cylinder (the maximum speed) is crucial (Fig. 1) [3, 4]. In addition,
it is necessary to take into account the possible gas heating in the process of piston motion.
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Fig. 1. The "Tube-piston" system

1. Methodology

1. Consider the system of equations of one-dimensional gas dynamics in Lagrange
variables. The unknown functions are: u (gas velocity), € (deformation), a (sound velocity).
The equations of continuity, motion and energy equations take the following form [3-8|:
The equation of continuity (compatibility)

Je Ov

- = 1
ot 0x’ (1)
— motion equation
0 2 0 1 da?
o« F, - X, 2)
ot ~v-(1+e? dx ~v-(1+¢€ Oz
— energy equation
da®* ~v—-1 , Ov
- ca? = = —1)-q.
o T1e @ g = Da (3)

2. Set the initial and boundary conditions. In any section at the initial time (¢t = 0)
density, pressure and temperature are the constant, and velocity and deformation are equal
to zero, so

p(xa O) = pOap(xa O) = Po;, T(JZ’, O) = To;
€(z,0) = 0,v(z,0) = 0,a(z,0) = a.
On the left end (x = 0) gas tights to the closed end of the tube and does not move
v(0,t) = 0. (4)

On the right end the piston moves under the influence of gas pressure and counter-pressure

Muv, = (p— P)F.

Since
_ poa’
PTAaTe
Then, for x = 1 we have € = €(l,t),v = v(l,t),a = a(l,t) and
ov poa?
Sk G Ea— - o) 5
ot (’y(l +€) ) (5)

3. Make a reduction to dimensionless form.
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Let

(6)

lag r_ T / v ! a _pOFl _P7 /_ql
l ao ap’ My pead’ 1 ad

Equations (1)—(4) retain their form but only by ¢,z,v,a,q we mean t', 2’ v’ d’, ¢
Condition (5) takes the form:

v a?
E_M(l—i—e_n)' (7)

After solving (1)—(4), (7) we change parameters ¢, z,v,a to t',2’,v', a’, and then these
primed parameters are replaced with the help of (6) to initial parameters ¢, x, v, a. These
manipulations are performed for simplicity. Note that for ¢ = 0, we obtain a = 1.

4. Introduce the finite difference method.

According to the template (Fig. 2).

Pit1Uit1 + Dit1 — Pi—1Ui—1 — Pi-1

Pi U; = piu; + T
e oh
5= p, + Pit1Uit1 + Pit1 — Pi-1Ui-1 .
peen 2h ’
—1_— -1 i1 lisy + APl | — Ypimitiy — Sipi_qud
EjLV—EU?:me—piu?jtva 1+ G Pl — VP tiol — Ty Pt
? 2 oh
(1j*1)
T
(i-1,j) h i) h L

Fig. 2. Template

Recall that
B =14 u;, v=1u.

Considering equation of consistency, motion and Clapeyron, we obtain

1 0 1 0

ﬁ'a(p'ﬁ)‘ir%'p'a'ﬁ:qﬂ‘i‘qsa

or by differentiating the product, dividing by p - 8 and collecting terms, we obtain

g ot p ot p-p
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Set the initial and boundary conditions. At the initial time (f = 0) in any section the
density, pressure and temperature are constant, and the velocity and distortion are equal
to zero, so

p(I,O) = Po; p(ZE,O) = Do, ’U(l‘,O) = 07 6(1’,0) =1
On the left end (x = 0) gas tights to the closed end of the tube and does not move

v(0,t) = 0.

On the right end (z = ) the piston moves under the influence of gas pressure and
counter-pressure. Therefore, when x = [y we have 5 = B(ly,t),v = v(lp,t),p = p(lo, t) and

Mv, = (p— P)-F.

Make a reduction to dimensionless form

Let
Po
ag — Y-
Lo
Assuming that
t,:@ /:E ’U/:1 p/:£
lo’ l’ (10’ po’
B P Aoy -y —1 Aoy -y —1
:%’ p=—, ¢=10 0" gy LT (8)
e Po ag Qg

Now by ¢, z,v,p, q,qs we mean t', 2", 0", p', ¢, qs'.
In dimensionless variables we obtain
— the continuity equation:

op v
ot ox
— motion equation:
ov 1 op_
ot~ Oz ’

— energy equation:

— initial conditions (¢ = 0):
p(z,0) =1, v(z,0)=0, B(z,0)=1,
— conditions on the bottom of the tube (z = 0):
v(0,t) =0,
— conditions on the right end of piston takes the form (z = 1):

ov
E—M'(P—U)-

44 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

After solving (1)—(4), (7) it is necessary to replace parameters t, z,v,p by t', 2/, v/, p/,
and then the "primed" parameters using equations (8) must be replaced by the initial
parameters ¢, x, v, a again. These manipulations are performed for simplicity purposes.

Comment. Let . () - v(r) ")
_ q(7)-v(T) +qs(T -
ott) = [ A

Move to quadratures in equation (3). We get

p =po(%)V et

Making some rearrangement of the factors, we obtain the representation

(el () asr)
p‘/o B

2. Results

The mathematical model has been constructed with the help of ordinary differential
equations, based on Newton’s second law, ideal gas law and Poisson adiabatic equation
[9-10]:

dt?

and initial condition: if z = I, % = 0. Where z', 2% 2% are motion coordinates of

the piston in space, t is time, v = i—i’ = #, 1 is the number of degrees of freedom of

the molecule, ¢, and ¢, are heat capacities of a unit mass of gas at constant pressure and
constant volume respectively [9].

The mathematical model constructed with the help of partial differential equations is
based on the equations of gas dynamics [11-16]:

Fig. 3. The pneumatic system

— the continuity equation:

0 0 ey
EP‘F%(PU)—O,

where p is density of gas at time ¢, u is piston speed;
— motion equation:

9, s 0 .0
Q(PUH‘@(PUU)*‘ ~ =0,
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where p is the pressure of gas at time t;

— energy equation:

0 y—1 2 9 g, v —1 E o2
Pt ) g (yput o= )

with boundary conditions: when z = 0 the gas and the piston are at rest, so u = 0

(Fig. 3); when x = [, in accordance with Newton’s second law:
0u
M— = pF — pumF.
012 p Pat

Comparison of mathematical models which are based on ODE and the equation of gas
dynamics was made. The solution obtained using gas dynamics equation is more precise:
the deviation from the exact analytical solutions for simple problems is not more than 0.4—
1.1% (whereas in the case of ordinary differential equations — to 1.2%), but the method
works slower by 3-4% (Fig. 4). Comparison of finite difference methods and method of
characteristics by testing methods on different sets of data, shows that the difference
between solutions using these methods is 1-1.1%. Comparison of mathematical models
based on ODE and the equations of gas dynamics with gas heating (heating 2e + 07 J/kg)
was also made. The solution obtained using ordinary differential equations: the time
0.00240744 seconds, deformation 11.5002 path 0.500009 m, speed 235.899 m /sec., pressure
1.65846 atm. The average time of method operation is 0.06 seconds.
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Fig. 4. Time versus the piston velocity Dependency Graph

The solution obtained using the gas dynamics equations: time 0.00240744 seconds,
the deformation 11.5002, path 0.500009 m, speed 235.899 m/sec, pressure 1.65846 atm.
The average time of method operation is 7 seconds.
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The data show that the method of gas dynamics equations allows to obtain a more

precise solution of the problem and it is almost 117 times faster. The solution obtained by
gas dynamics equations is slightly different in terms of accuracy — 0.02 m/sec. At the same
time the finite difference method is more preferable than the method of characteristics.
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BBIYVCJIEHNE ITAPAMETPOB JIBU2KEHU A ITOPIITHA
B TPYBE IIPU1 JENCTBUU JABJIEHIS TA3A

H. C. Mudonouesa

PaccmaTrpusaiorcst MaTeMaTHIeCKHE MOJEIN THEBMATHYIECKON CUCTEMbBI, COCTOSINEH 13
TPYOKH, 3aKPBITOI C OJJHOI CTOPOHBI ¥ OTKPBITOM ¢ APYroil croponsl. Tpyba comepKuT mop-
III€Hb, KOTOPBIA OrpaHIYNBAET OIPEIEICHHbBI 06beM C2KaToro rasa. Urobbl HATH mapamMer-
PbI JIBUKEHMS IOPIIHS 10, JaBJIeHIEeM PACIINPSIOIIEroCs ra3a, CTPOUTCS MaTeMaTHIeCKast
MOJIESIb CUCTEMBI HECKOJIBKUMHE CITOCOOAMU: C MCIIOJH30BAHNEM OOBIKHOBEHHBIX Auddepen-
UAJIbHBIX YDABHEHHUA U C UCIOJIH30BAHHEM YDABHEHUIl B YaCTHBIX [IPOM3BOJHBLIX (ypaB-
HeHuii ra3oBoil auHamuku). Kpome Toro, 6bLIn ONpee/ieHbl COOTBETCTBYIONINE IPAHNIHbIE
ycsoBust. TakKe HEOOXOIUMO YI€CTh, YTO BCE YPABHEHUsI, COCTABJISIIONINE MATEMATHIECKY O
MOJIeJIb, CBOIATCS K Oe3pasMepHoil ¢popme. Pacyuersl BBIOJIHAIOTCA C IIOMOLIBIO METOIOB
KOHEUYHBIX PA3HOCTEH U XapaKTePUCTUK. BBIUNCIEHNsT BBIIOJHAIOTCS JI0 TEX 10D, IIOKa IIOP-
IIeHb He JOCTUTHET OTKPBLITOIO KOHIIA TPYObl WU IIOK& IOPIIEHb HE HAYHET 3aMEIJIAThHCH.
3areM pe3ysbTaThl, [TOJYYEHHBIE C IIOMOIIBI0 PACCMATPUBAEMBIX METOJOB, CPABHUBAIOTCS
10 KPUTEPHUSIM OBICTPOJAEHCTBUSA U TOYHOCTH. 3aTeM IPUBOJATCS PEKOMEHIAIINA OTHOCH-
TEJIBHO 11eJIeCO00PA3HOCTU UCIIOIbL30BAHNS KAXKIOTO METO/Ia ITOCTPOEHUST MaTeMaTHIECKOM
MOJIEJIN.

Karuesvie cro6a: mamemamuveckas MO()E./LT),' corcamoiti 2a3; NHEBMAMUYECKAA CUCME-
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