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Sobolev type equations theory experiences an epoch of blossoming. The majority
of researches is devoted to the determined equations and systems. However in natural
experiments there are the mathematical models containing accidental indignation, for
example, white noise. Therefore recently even more often there arise the researches devoted
to the stochastic differential equations. A new conception of "white noise", originally
constructed for finite dimensional spaces, is spread here to the case of infinite dimensional
spaces. The main purpose is to develop stochastic higher order Sobolev type equations
theory and practical applications. The main idea is in construction of "noise" spaces
using the Nelson — Gliklikh derivative. Abstract results are applied for the investigation
of the Boussinesq — Love model with additive "white noise" within the Sobolev type
equations theory. At studying the methods and results of theory of Sobolev type equations
with relatively p-sectorial operators are very useful. We use already well proved at the
investigation of Sobolev type equations the phase space method consisting in a reduction
of singular equation to regular one, defined on some subspace of initial space. In the first
part of article the spaces of noises are constructed. In the second — the Cauchy problem
for the stochastic Sobolev type equation of higher order is investigated. As an example the
stochastic Boussinesq — Love model is considered.

Keywords: Sobolev type equation, propagator, "white noise", K-Wiener process.

Introduction

The Sobolev type equations make up a vast area of nonclassical equations of
mathematical physics. Their systematic study started in the middle of last century after
the fundamental works of S.L. Sobolev, although a lot of representatives of this class were
obtained and studied earlier, in particular, the famous system of Navier — Stokes equations
(see excellent review in |2]). Nowadays the investigations of the Sobolev type equations are
increasing avalanche-like, we should mention several monographs adjoining our problems
[16, 3, 17, 19, 1, 8|. The noncomplete Sobolev type equations of higher order

Lo™ = Mv+g (1)

with the assumption kerLi # {0} have been studied in different aspects |18, 20, 21|. Here
the operators L, M € L(;F) (i.e. linear and continuous), $ and § are Banach spaces,
absolute term ¢ = ¢(t) models the external force, natural number n > 2. One of the
prototypes of the equation (0.1) is the equation

()\ — A)'Utt = aAv + f, (2)

modelling the incompressible fluid free surface perturbation under the assumption of
motion potentiality and conservation of mass in a layer |23, longitudinal vibrations of
an elastic rod [22], wave processes in smectic and plasma [9].
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The shortcoming of the model (2) with the deterministic absolute term consists in
the fact that in natural experiments the system is exposed to random perturbation, for
example in the form of white noise. The stochastic ordinary differential equations with
different additive random processes (i.e. not only white noise, but more general Markov
and diffusion processes) are now actively studied [5]. The traditional Ito — Stratonovich
— Skorohod approach takes the priority, although new very promising directions of the
research have recently appeared [10, 12].

The first results concerning the stochastic Sobolev type equations of the first order can
be found in [25]. They are based on propagation of Ito — Stratonovich — Skorokhod method
to the partial differential equations (see, for example, [7]). In this paper the stochastic
Sobolev type equation of higher order

Ln™ = Mn + Nw (3)

is considered. Here, in the right side, the term w denotes the random process. It is required
to find the random process n(t), satisfying (in some sense) equation (3) and the initial
conditions

n™0) =&, m=0,1,...,n—1, (4)
where &, are given random variables.

Initially w was understood as white noise which is a generalized derivative of the
Wiener process. Meanwhile there have appeared [12] and is actively developing [13, 6] a
new approach in the investigation of equation (3), where "white noise" means the Nelson —
Gliklikh derivative of the Wiener process. (Note that this "white noise" is more adequate
to the theory of Brownian motion by Einstein — Smolukhovsky in comparison to traditional
white noise [12, 13]). Initially the "white noise" was used in the theory of optimal
measurement theory [14, 11], where the special space of "noises" was constructed [15].
The concept of "white noise" in this theory (that is only in the finite dimensional spaces)
showed its high efficiency so there have appeared the idea of extending of this concept
to the infinite-dimensional spaces. The main goal of this extending is the development of
the theory of stochastic Sobolev type equations and elaboration of the applications of this
theory to nonclassical models of mathematical physics of practical importance.

The paper in addition to the introduction includes three sections. The first one
introduces the space of "noises" which is fundamental for the further constructions. The
theory of abstract stochastic Sobolev type equations of higher order with relatively p-
bounded operators is presented in the second section. In the third section the results
obtained for abstract problem are applied to the investigation of the initial-boundary
problem for the stochastic Boussinesq — Love equation with additive "white noise".

1. Deterministic equations with (n,p)-sectorial operators

Fundamentals of the relatively p-sectorial operators theory were laid by G.A.Sviridyuk
and were developed by his disciples. We extend these ideas and methods to the case of
equations of arbitrary order. Let Ll and § be separable reflexive Banach spaces, the operator
L € £(4;F) (linear and bounded), the operator M € CI(4; F) (linear, closed and densely
defined in Y).

Consider the relative spectrum set o%(M) and build the sets

oy (M) = {p" : p € a“(M)}, p; (M) = C\o,; (M)

n
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and the operator-functions

p p

RE (M) = [J (L = M)7'L, LE, (M) = [ L L — M),

k=0 k=0
called the right and he left (L, p)-resolvents of the operator M.

Definition 1. The operator M is called (n,p)-sectorial with respect to operator L or
(L,n,p)-sectorial if there are constants K >0, 6 € (7/2,7), such that the set

Sg(M) ={neC:|arg(u")| <0, p+#0}Cpi(M), (5)
and %
e { | By D] g 1o i M|y } < 57— (6)
w0 |12
Consider the Cauchy problem
lim o™ (t) = v,,, m=0,1,....,n—1 (7)

t—0+

for the deterministic Sobolev type equation (1). Take o € p'(M) and consider equivalent
equations
RE(M)™ = (oL — M)™*Muv + hy, (8)
LE(M)f® = M(aL ~ M) + b, )
defined on 4 and § respectively.

Definition 2. The operator-function V* € C*(R,; L()) is called a propagator of the
homogenious equation (8), if for all v € { the vector-function v(t) = V*'v is the solution
of this equation.

The propagator of (9) is defined analogously.

Lemma 1. Let the operator M be (L,n,p)-sectorial. Then the integrals of Dunford—

Schwartz type
1

U, = 9 pt N (L — M) Letdp, (10)
Y
1
F, = 9 Pt L L — M) T et dp, (11)
VX

Y

wheret € Ry, m=0,1,...n—1, and v C pL(M) is the contour formed by rays emanating
from the origin at angles 0 and —0, determine the propagators of the homogeneous
equations (8) and (9).

Set ) )
W= (kerUs, = (({oelh: Ujp=03teR,},
m=0 m=0

n—1 n—1
F=(NkerFg = ({veF: Fp=03t eR,}.
m=0 m=0
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By Lo(My) denote the restriction of the operator L(M) to the subspace L°.

Corollary 1. Under the conditions of lemma 1 the operators Ly € L(U%F),
My € CI(U°%; %), and there exists the operator My ' € L(F0; U°).

Setill:i:rnU('):{ueﬂ.:tlir&r Uéu:u},gl:imF(j:{fES:tliI(Er Fif = f}.
— —
By L;(M;) denote the restriction of the operator L(M) to the subspace .

Corollary 2. Under the conditions of lemma 1 the operators L, € L(U4F),
M, € Cl(il17§1)

Obviously, U° @ ¢! C ¢ and F° D F' C F. Further we need the following assumptions:
Lol =UFeF =73, (12)

there exists the operator L' € £L(F'ub). (13)

The assumption(12) takes place in the case of reflexivity of the spaces 4 () (the Yagi —
Fedorov theorem [4]). The assumption (13) is true if (12) is fulfilled and im L; = §* (the

Banach theorem). Note that (12) leads to the existence of the projectors P = s — thlorﬁr Ut
—>

and @ = s — lim F{ in the spaces i, § respectively.

t—0+
Corollary 3. Let the operator M be (L,n,p)-sectorial and (12), (13) be fulfilled. The
operator H = My 'Ly € L(U°) is nilpotent of a degree p.

Due to the (L, n, p)-sectoriality of the operator M and (12), (13) the equation (1) can
be reduced to the form
H(W)™ =0+ My ' f°, (14)
(™ = St + L7 (15)
where operator S = L' M; € CI(4'), functions f° = (I—Q)f, f' = Qf, v° = (I — P)w,

vt = Po.

Lemma 2. Let the operator M be (L,n,p)-sectorial and (12), (13) be fulfilled. For any
vector-function O € C"PHI([0,T]; F°) there exists a unique solution of the equation (14),
which s represented in the form

V() == HIMG (),
q=0

Proof.Substituting the vector-function v = v°(¢) into (14) one can verify the existence

of the solution. Uniqueness is obtained in a consistent derivation of the equation (14):
0= HP'P) = = HoO) =0,

Remark 1. From Lemma 2 it directly follows that all initial values vy need to belong to
the sets

p
My ={vet: @-Pu=-> HM; f"r™(0)},k=0,.,n-1 (16)
q=0
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Lemma 3. Under the conditions of Lemma 2 for any v, € 4, m = 0,..,n —1 u
f1 e C(0,T]; ) there exists a unique solution of the Cauchy problem (7) for the equation
(1), which is represented in the form

n—1 ¢
vl(t) = Z Vi, +/V,f:fL1_1fl(s)ds.
m=0 0

So, we have proved

Theorem 1. Let the operator M be (L,n,p)-sectorial and (12), (13) be fulfilled. For any
ug € M'Jﬁ, k=0,..,n—1 and vector-function f = f(t), t € [0,T], satisfying the conditions
of Lemmas 2, 3, there ezists a unique solution of the problem (14), (15), which can be
represented as v(t) = v°(t) + vl (t).

2. The spaces of "noises"

Let Q = (2, A, P) be a complete probability space, R be a set of real numbers endowed
with Boreal o-algebra. The measurable mapping & : 2 — R is called a random variable.
The set of random variables forms a Hilbert space with the scalar product (&1, &) = E& €.
This Hilbert space will be denoted by Ls. The random variables £ € Ly, with normal
(Gaussian) distribution will be very important later on; they are called Gaussian random
variables. Let Ay be o-subalgebra of o-algebra A. Construct the space LY of random
variables, measurable with respect to Ag. Obviously, L3 is a subset of Lg; denote by
IT: Ly — LY the orthoprojector. Let & € Ly, then II¢ is called conditional expectation of
the random variable ¢ and is denoted by E({|.A). It is easy to see that E({|Ay) = E¢, if
Ao = {0,Q}; and E(¢|Ay) = &, if Ay = A. Finally, the minimal o-subalgebra A, C A,
regarding which the random variable £ is measurable, is called the o-algebra generated by
€.

Let J C R be some interval. Consider two mappings: f : J — Lg, which maps each
t € J to a random variable £ € Ly, and g : Ly x Q — R, which maps every pair (§,w)
to the point £(w) € R. The mapping 7 : J x  — R of the form n = n(t,w) = g(f(t),w)
is called a (one-dimensional) random process. Thus, for every fixed t € J the random
process n = 1(t,-) is the random variable, i.e. n(t,-) € La, and for every fixed w € ()
the random process n = n(-,w) is called the (sample) trajectory. The random process 7
is called continuous if almost surely (a.s.) all its trajectories are continuous, that is, for
almost every (a.e.) w € Q the trajectories 7(-,w) are continuous. The set of continuous
random processes form a Banach space, which will be denoted by CLy. The continuous
random process, representing different ¢ independent Gaussian random variables, is called
Gaussian.

The (one-dimensional) Wiener process 5 = ((t), modeling Brownian motion on the
line in Einstein — Smolukhovsky theory, is one of the most important examples of the
continuous Gaussian random processes. It has the following properties:

(W1) as. (0) = 0, as. all its trajectories [((t) are continuous, and for all
t € Ry (= {0} UR,) the random variable 3(t) is Gaussian;

(W2) the mathematical expectation E (5 (t)) = 0 and autocorrelation function
E((8(t) -8 (s))2) = |t — s| for all 5, € Ry;
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(W3) the trajectories [3(t) are nondifferentiable at any point ¢+ € R, and have
unlimited variation at an arbitrarily small interval.

Theorem 2. There exists a random process [, satisfying properties (W1), (W2);
moreover, it can be represented in the form

B(t) = i £, sin g(% + 1)t
k=0

where &, are independent Gaussian variables, BE, = 0, D&, = [5(2k + 1)]72.

The random process 3, satisfying properties (W1) — (W3), will be called Brownian
motion.

Now fix n € CLy and t € J(= (¢,7) C R) and by N," denote the o-algebra generated by
the random variable 7(t). For the sake of brevity, we introduce the notation E] = E(-|N}").

Definition 3. Let n € CL3, the random variable

77(75 + Atv ) - 77(757 ))

At

At—0+

Dn(t,) = lim E/ (

<Dm )= tim B <77 (t,) — Z(tt ~ At ))) ’

is called a forward Dn(t,-) (a backward D.n(t,-)) mean derivative of the random process
n at the point t € (¢,7) if the limit exists in the sense of uniform metric on R.

The random process 7 is called forward (backward) mean differentiable on (e, ), if for
every point t € (g, 7) there exists the forward (backward) mean derivative.

Now let the random process n € CLg be forward (backward) mean differentiable
on (e,7). Its forward (backward) mean derivative is also a random process; we
denote it by Dn (D.n). If the random process n € CLgy is forward (backward)
mean differentiable on (e,7), then the symmetric (antisymmetric) mean derivative
Dsn=1(D+D,)n (Dan=2(D,— D)n) can be defined. Since the mean derivatives
were introduced by E. Nelson [12], and the theory of these derivatives was developed
by Yu.E. Gliklikh [16], the symmetric mean derivative Dg of the random process n will
henceforth be called the Nelson — Gliklikh derivative for brevity and will be denoted by

] o

1, i.e. Dgn =1. By ’;)](l), [ € N denote the [-th Nelson — Gliklikh derivative of the random
process 7. Note that, if the trajectories of the random process 7 are a.s. continuously
differentiable in a "common sense" on (e,7), then the Nelson — Gliklikh derivative of
1 coincides with the "regular"derivative. This happens, for example, in the case of the
random process 1 = asin(t), where « is a Gaussian random variable, 5 € R, is a fixed
constant, and ¢t € R has the physical meaning of time.

o)
Theorem 3. (Yu.E. Gliklikh) 8 (t) = (=1)"""(20)7'8(t) for all t € Ry and 1€ N.

Introduce the space C'Lo, | € N of random processes of CLy, whose trajectories are
a.s. Nelson — Gliklikh differentiable on J to order [ inclusively. If J C Ry, then due to
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theorem 3 there exists the derivative EE C'Ly, which will be called (one-dimensional)
"white noise". In |15] it is suggested that the spaces C'Ly be called spaces of differentiable
"noises".

Now let 84 = (8, (-,-)) be a real separable Hilbert space; consider the operator
K e L(4) with spectrum o(K) being nonnegative discrete with finite multiplicity tending
only to zero. By {v;} denote the sequence of eigenvalues of operator K, numbered in
decreasing order according to multiplicity. Note that the linear span of related orthonormal
eigenfunctions {¢,} of operator K is dense in Y. Suppose that the operator K is nuclear
(i.e. its trace Tr K = ) v; < +00).

j=1

Take the sequence of independent random processes {n;} and define the K-random

process

Ok(t) = Z NZUAGE (17)

provided that the series (2.2) converges uniformly on any compact from J. Note that,
if {n;} C CLy and the K-random process Ok exists, then a.s. its trajectories are
continuous. Denote the space of such processes by the symbol Cx = Cg(T x Q;4).
Isolate in Cg the subspace CgLsy of random processes, whose random variables belong
to La(Q;80) = {&: [,, [|§(w)|[?dP(w) < +o0}, i.e. n € CxLa, if n(t,-) € La(Q; ) for each
t € J. Note that the space CxLsy contains, in particular, those K-random processes for
which almost surely all trajectories are continuous, and all (independent) random variables
are Gaussian.
We now introduce the Nelson — Gliklikh derivatives of K-random process

o (1) e o)
Ox () =D V7, (t)e;, (18)
j=1

provided that the derivatives up to the degree of [ in the right side of (18) exist and the
series uniformly converges on any compact from J.
Similarly, introduce the space CkLs of K-random processes with a.s. continuous
Nelson — Gliklikh derivatives up to order [ € N, whose random variables belong to Lo (€2; L1).
As an example, consider the K-Wiener process

Wi(®) = > _ 7B (t)¢s (19)

that exists on R..

o (1)
Corollary 4. W, (t) = (—1)™(2t) "W (t) for all t € Ry, | € N and nuclear operator
K e L(4).

Moreover, the K-Wiener process (19) satisfies the conditions

(WW1) as. Wg(0) = 0, as. all its trajectories 3(t) are continuous, and for all
t € Ry (= {0} UR) the random variable Wx(t, -) is Gaussian;

(WW2) the mathematical expectation E (W (t)) = 0 and autocorrelation function
E((8(t) -8 (s))2) = K |t — s| for all s, € R, and the following theorem is true.

2014, vol. 1, no. 1 61



A.A. Zamyshlyaeva

Theorem 4. For any nuclear operator K € L(L), there exists a K-Wiener process,
satisfying the conditions (WW1), (WW2) and it can be represented in the form (2.4).

3. The Cauchy problem for a Sobolev type higher order equation
with additive white noise

Consider the linear stochastic Sobolev type equation of higher order

o(n)
Ln = Mn+ Nw, (20)

where the absolute term will be specified later. Supplement the equation (20) with the
weakened (in the sense of S.G. Krein) initial Showalter — Sidorov condition

lim [RE(M)]" (fz(m) (t) — gm) =0, m=0,...,n— 1. (21)

t—0+

which is the generalization of the condition [3]

. o(m)
tl_l)I&Lﬁ (t) = L&n, m=0,...,n—1,

and has advantages over the Cauchy condition

o(m)
Jim 7 () = &y m =0, — 1 (22)
in the case of Sobolev type equations.

Consider J = (0, 7). Let K € L(4) be a nuclear operator with eigenvalues {v;} C R,.
The K-random process n € ChLy is called (a classical) solution of equation (20), if a.s.
all its trajectories satisfy equation (20) for some K-random process w € CgLs, operator
N € L(4;F) and t € (0, 7). The solution n = n(t) of equation (20) is called (the classical)
solution of problem (20), (21) if the condition (21) is also fulfilled.

Consider firstly the problem (22) for the homogeneous equation

o(”)
Ln = Mn. (23)

In this case (and only in this case) consider J = R,.

Definition 4. The set 8 C il is called the phase space of equation (23) if

(i) a.s. every trajectory of the solution n = n(t) lies in P pointwise, i.e. n(t) € B for
all t e Ry;

(ii) for all random variables &, € La(2;B), m = 0,1,...,n — 1, there exists a unique
solution n € C} Ly of the problem (22), (23).

Theorem 5. Let the operator M be (L,n,p)-sectorial, p € {0} UN and (12), (13) be
fulfilled. Then the subspace U is the phase space of equation (23).
In fact, due to corollaries 1, 2, equation (23) can be reduced to the equivalent system

O o0
Hn =n"n =89n' (24)

62 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

where n° = (I — P)n, n* = Pn. After applying Nelson — Gliklikh differentiation n times to
the first equation in (24) and using operator H on it, we consecutively obtain

00(n(p+1)) 00(2n) 00(n)
0= Ht'n =.=HNn =.=Hn =n" (25)
Thus, the condition (i) of definition 4 is true. To prove the fulfillment of the condition
(ii), note that if &, € U', m = 0,1,...,n — 1, then there exists a unique solution of
n—1
the problem (22), (24) and it is given by n' = n'(¢) = > V//&,. Then the unique
m=0

solution of the problem (22), (23) for &, € U, m = 0,1,...,n — 1, is given by
n—1
n(t) =n"(t) +n'(t) = Z_:O Vi

Corollary 5. Under the conditions of theorem 5 the solution of the problem (22), (23)
15 the Gaussian K-random process if the random variables &,,, m = 0,1,...,n— 1, are
Gaussian.

We need to make a few remarks. Conditions (21) are respectively equivalent to the
following conditions:

o(m) o(m)
n

PO (0) = &) =0 and lim P(] () = &) = 0. (26)

Thus the following lemma is true.

Lemma 4. Let the operator M be (L,n,p)-sectorial, p € {0} UN and (12), (13) be
fulfilled. For all independent random variables &, € Lo, m = 0,1,...,n — 1, there exists
a.s. a unique solution n € C%Ly of the problem (21), (23), represented in the form

n—1

n(t)= > Vi&,, t € R.If in addition &,, m = 0,1,...,n — 1 take values only in UL,
m=0

then this solution is the unique solution of the problem (22), (23).

Return to equation (20) and note that now J = (0,7). Let the K-Wiener process
w = w(t),t €[0,7) be such that

(I—Q)Nw € CI""L, and QNw € CxLs, (27)

then the K-random process
p t
-1 o (qn) t—s -1
n(t) ==Y HM'T-QNw  (t)+ [ VIZIL'QNw(s)ds (28)
q=0 0

is a unique classical solution of the problem (20), (21) with &, € 8°, m =0,....,n — 1.

Lemma 5. Let the operator M be (L,p)-bounded, p € {0} U N. For any K-
random process w = w(t) satisfying (27), and all independent random wvariables
Em € Lo(;4°%), m=0,1,....,n—1, independent with w, there erists a.s. a unique
solution n € C% Ly of the problem (20), (21), given by (28). If in addition

2 (gnt+m)

n=—Y HM; ' (I-Q)N w (0),

q=0
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then this solution is a unique solution of the problem (20), (22).

Theorem 6. Let the operator M be (L,n,p)-sectorial, p € {0} UN and (12), (13) be
fulfilled. For any N € L(;F) and K-random process w = w(t) satisfying (27), and for
all independent random variables &, € Ly(;4°%), m = 0,1,...,n — 1, independent with
w, there exists a.s. a unique solution n € C%Ly of the problem (20), (21), represented in
the form

t

n—1 P
00 = 3 Vi = S BN A= QN ™ 0+ [V aNu(sds. (29)
m=0 q=0 0
If in addition &,, m =0,1,...,n— 1, satisfy
P 1 o (gn+m)
(P=D)&n =Y HM;'(I- Q)N w (0), (30)
q=0

then the solution (29) is the solution of the problem (20), (22).

However, "white noise" w(t) Wk (t) = (2t) "' Wk (t) does not satisfy condition (27),
therefore it cannot stand in the right side of (20). One approach to solving this problem
is suggested in |24, 25| (incidentally, it also works for traditional white noise). To use this
approach, transform the second term in the right side of (28) as follows:

t t

0 d
/ VIS LT'QN Wi (s)ds = =V SLT'QNWik (e) — %V,f:folNWK(s)ds =

t
= VI LT'QNWk(e) — / VITSLTINWk(s)ds. (31)
This integration by parts makes sense for any ¢ € (0,¢),t € R, due to definition of
the Nelson — Gliklikh derivative. Letting ¢ — 0 in (31) we get

t t
/ VISLTIQN Wi (s)ds = — / VISLT N Wi (s)ds. (32)
0 0
Corollary 6. Let the operator M be (L,n,p)-sectorial, p € {0} UN, and (12), (13) be
fulfilled, the operator N satisfies
QN = N. (33)
Let 3 C R.. For all independent random variables &, € Ly, m = 0,1,...,n — 1,

independent with Wi, there exists a.s. a unique solution n € C%Ly of the problem (21)
for the equation

o(n) o
given by
n—1 t
n(t) = Z Vigm — /Vj:gLleWK(s)ds. (35)
m=0 0
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If in addition &,, m =0,....n — 1 take values only in ', then (35) is the unique solution
of the problem (22) for equation (34).

Obviously, (35) is obtained from (28) due to (33) and limit transition (31) — (32),
whereas condition (33) plays the main role here.

Theorem 7. Let the operator M be (L,n,p)-sectorial, p € {0} UN, and (12), (13) be
fulfilled. For any operator N € L(;F) and for all independent -valued random variables
&m € Lo, independent with Wy, there exists a.s. unique solution n = n(t) of the problem
(26), (34) given by

t
o (gn+1)

n—1 ¥4
n(t) =3 Viém - / VISLT QNWic(s)ds — Y HIMy ' (I— Q)N Wy ().
m=0

0 q=0

4. The Cauchy problem for the stochastic Boussinesq — Love
equation with additive "white noise"

Let D C R? be a bounded domain with the boundary D of class C*. Fix [ € {0} UN
and set & = WYD), U = {u € W2(D) : u(z) = 0,2 € dD}. Obviously, U is a real
separable Hilbert space densely and continuously embedded in &.

Let {v;} be the sequence of eigenvalues of the Laplace operator (defined in D with
homogenous Dirichlet boundary conditions), numbered in nondecreasing order according
to multiplicity, and by {¢;} denote the set of corresponding eigenfunctions, orthonormal
in the sense of *U.

Introduce the U-valued K-random processes. Construct the operator A = (—1)™"1A™
with domain domA = {W. ™" ™(D) : Afy(z) = 0,2 € D,k € 0,1,...,m — 1},m € N.
Note that the operator A has the same eigenfunctions {¢;}, as the Laplace operator, but its
spectrum consists of eigenvalues |v;|™. Since their asymptotic |v;|™ ~ jom — 00, ] — 00,
we consider that number m € N is taken such that the series ) |v;|™" converges for a

=1
fixed d € N. Then the operator A is continuously invertible 01jq U, whereas the inverse
operator (i.e. the Green operator) has the spectrum consisting of eigenvalues p; = |v;|~™.
That very operator we take as the nuclear operator K.
In the cylinder D x [0,T], T € R, consider the Cauchy — Dirichlet problem

S(ZL’,O) :fo($)> &(ZL’,O) 251(1’), reD, (36)
E(x,t) =0, (x,t)€0D x1[0,T] (37)

for the equation
(A= A,) Ey= al&t Wi, (38)

where Wy = Wi(t) is a U-valued K-Wiener process.
Set A=\—A, B=aA.

Lemma 6. For arbitrary A € R, a € R the operator M is (L, 2,0)-sectorial.

2014, vol. 1, no. 1 65



A.A. Zamyshlyaeva

Proof.
The L-spectrum of the operator M has the form

«

O—L(M):{uk:ﬁ,keN\{z;w:A}}. (39)

Since v, ~ —k?/d for k — oo, then, firstly, there exists a sector, including (M), and
consequently the set

Sia(M) = {p € C: [arg(p?)| < 0. p# 0} C py(M).
Secondly, for sufficiently large ||, lying outside of this set

max { [R5 (M)||zq. |1Li (M)l o) } < const [p] ™

Y € Sy (M).
This means that the operator M is (L, 2,0)-sectorial.

Lemma 7. For arbitrary A € R, a € Ry the conditions (12), (13) are fulfilled.

Proof.
Find out if the conditions (12), (13) take place. Sine the spaces il and § are reflexive,
then by Yagi — Fedorov theorem [4] and lemma 6 the condition (12) is fulfilled and

(i) 40 =% = {0}, U =8, §' = §, if X # 5

(i) U° = F° = ker L = span {p;,j : A = v},
W={uel: (up;)=0,7: =}

F = {feF: (fo) =0} =imLif A=

The condition (13) also takes place and the operators

-l — A5 on) O Mol — (- or) SOk.
! Z A— Vi ’ 0 Z AV,

k k:A—vp=0

A single quote by the sum means the lack of summands for which A — v, = 0.

Construct the propagators of the homogenous equation (38):

Mg a\
V= 3 G 522504 3 (o pgeeony 522

A> A A<k

A — A al e — A . \/Tk
=) ( \/ hy/ t : t.

1 Z(Mﬂk)% Y S = +Z(790k>80k o sin VDY

A<k A> Ak

Moreover,
. A
Vt—sA—l _ ( a‘Pk)SOk h A b
0 1 g; e LT w W Uiy
k
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(- or)er LI aNg
+/\§/\: N )\k )\k_)\(t s).

Thus, due to theorem 7, the following theorem is true.

Theorem 8. For any a € Ry, A € R, T € Ry, for all independent &y, & € Lo(2;0Y),
independent with Wy for every fized t, there exists a.s. a unique solution of the problem
(36)—(38), given by

t

E(t) = Vo + ViE, / VIS AT QWi (s)ds — My (I - Q) Wi (). (40)

0

Proof.
Due to lemmas 6, 7 all the conditions of theorem 7 are fulfilled.
([
The author would like to thank Georgy Sviridyuk for the support and given
opportunities.
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