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es an epo
h of blossoming. The majorityof resear
hes is devoted to the determined equations and systems. However in naturalexperiments there are the mathemati
al models 
ontaining a

idental indignation, forexample, white noise. Therefore re
ently even more often there arise the resear
hes devotedto the sto
hasti
 di�erential equations. A new 
on
eption of "white noise", originally
onstru
ted for �nite dimensional spa
es, is spread here to the 
ase of in�nite dimensionalspa
es. The main purpose is to develop sto
hasti
 higher order Sobolev type equationstheory and pra
ti
al appli
ations. The main idea is in 
onstru
tion of "noise" spa
esusing the Nelson � Gliklikh derivative. Abstra
t results are applied for the investigationof the Boussinesq � Lòve model with additive "white noise" within the Sobolev typeequations theory. At studying the methods and results of theory of Sobolev type equationswith relatively p-se
torial operators are very useful. We use already well proved at theinvestigation of Sobolev type equations the phase spa
e method 
onsisting in a redu
tionof singular equation to regular one, de�ned on some subspa
e of initial spa
e. In the �rstpart of arti
le the spa
es of noises are 
onstru
ted. In the se
ond � the Cau
hy problemfor the sto
hasti
 Sobolev type equation of higher order is investigated. As an example thesto
hasti
 Boussinesq � Lòve model is 
onsidered.Keywords: Sobolev type equation, propagator, "white noise", K-Wiener pro
ess.Introdu
tionThe Sobolev type equations make up a vast area of non
lassi
al equations ofmathemati
al physi
s. Their systemati
 study started in the middle of last 
entury afterthe fundamental works of S.L. Sobolev, although a lot of representatives of this 
lass wereobtained and studied earlier, in parti
ular, the famous system of Navier � Stokes equations(see ex
ellent review in [2℄). Nowadays the investigations of the Sobolev type equations arein
reasing avalan
he-like, we should mention several monographs adjoining our problems[16, 3, 17, 19, 1, 8℄. The non
omplete Sobolev type equations of higher order
Lv(n) =Mv + g (1)with the assumption kerL 6= {0} have been studied in di�erent aspe
ts [18, 20, 21℄. Herethe operators L,M ∈ L(U;F) (i.e. linear and 
ontinuous), U and F are Bana
h spa
es,absolute term g = g(t) models the external for
e, natural number n ≥ 2. One of theprototypes of the equation (0.1) is the equation

(λ−∆)vtt = α∆v + f, (2)modelling the in
ompressible �uid free surfa
e perturbation under the assumption ofmotion potentiality and 
onservation of mass in a layer [23℄, longitudinal vibrations ofan elasti
 rod [22℄, wave pro
esses in sme
ti
 and plasma [9℄.2014, vol. 1, no. 1 55



A.A. ZamyshlyaevaThe short
oming of the model (2) with the deterministi
 absolute term 
onsists inthe fa
t that in natural experiments the system is exposed to random perturbation, forexample in the form of white noise. The sto
hasti
 ordinary di�erential equations withdi�erent additive random pro
esses (i.e. not only white noise, but more general Markovand di�usion pro
esses) are now a
tively studied [5℄. The traditional Ito � Stratonovi
h� Skorohod approa
h takes the priority, although new very promising dire
tions of theresear
h have re
ently appeared [10, 12℄.The �rst results 
on
erning the sto
hasti
 Sobolev type equations of the �rst order 
anbe found in [25℄. They are based on propagation of Ito � Stratonovi
h � Skorokhod methodto the partial di�erential equations (see, for example, [7℄). In this paper the sto
hasti
Sobolev type equation of higher order
Lη(n) =Mη +Nw (3)is 
onsidered. Here, in the right side, the term w denotes the random pro
ess. It is requiredto �nd the random pro
ess η(t), satisfying (in some sense) equation (3) and the initial
onditions

η(m)(0) = ξm, m = 0, 1, . . . , n− 1, (4)where ξm are given random variables.Initially w was understood as white noise whi
h is a generalized derivative of theWiener pro
ess. Meanwhile there have appeared [12℄ and is a
tively developing [13, 6℄ anew approa
h in the investigation of equation (3), where "white noise" means the Nelson �Gliklikh derivative of the Wiener pro
ess. (Note that this "white noise" is more adequateto the theory of Brownian motion by Einstein � Smolukhovsky in 
omparison to traditionalwhite noise [12, 13℄). Initially the "white noise" was used in the theory of optimalmeasurement theory [14, 11℄, where the spe
ial spa
e of "noises" was 
onstru
ted [15℄.The 
on
ept of "white noise" in this theory (that is only in the �nite dimensional spa
es)showed its high e�
ien
y so there have appeared the idea of extending of this 
on
eptto the in�nite-dimensional spa
es. The main goal of this extending is the development ofthe theory of sto
hasti
 Sobolev type equations and elaboration of the appli
ations of thistheory to non
lassi
al models of mathemati
al physi
s of pra
ti
al importan
e.The paper in addition to the introdu
tion in
ludes three se
tions. The �rst oneintrodu
es the spa
e of "noises" whi
h is fundamental for the further 
onstru
tions. Thetheory of abstra
t sto
hasti
 Sobolev type equations of higher order with relatively p-bounded operators is presented in the se
ond se
tion. In the third se
tion the resultsobtained for abstra
t problem are applied to the investigation of the initial-boundaryproblem for the sto
hasti
 Boussinesq � Lòve equation with additive "white noise".1. Deterministi
 equations with (n,p)-se
torial operatorsFundamentals of the relatively p-se
torial operators theory were laid by G.A.Sviridyukand were developed by his dis
iples. We extend these ideas and methods to the 
ase ofequations of arbitrary order. Let U and F be separable re�exive Bana
h spa
es, the operator
L ∈ L(U;F) (linear and bounded), the operator M ∈ Cl(U;F) (linear, 
losed and denselyde�ned in U).Consider the relative spe
trum set σL(M) and build the sets

σL
n (M) = {µn : µ ∈ σL(M)}, ρLn(M) = C\σL

n (M)56 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICSand the operator-fun
tions
RL

(µ,p)(M) =

p
∏

k=0

(µkL−M)−1L, LL
(µ,p)(M) =

p
∏

k=0

L(µkL−M)−1,
alled the right and he left (L, p)-resolvents of the operator M .De�nition 1. The operator M is 
alled (n,p)-se
torial with respe
t to operator L or(L,n,p)-se
torial if there are 
onstants K > 0, θ ∈ (π/2, π), su
h that the set
SL
θ,n(M) = {µ ∈ C : | arg(µn)| < θ, µ 6= 0} ⊂ ρLn(M), (5)and

max
{

∥

∥RL
(µn,p)(M)

∥

∥

L(U)
,
∥

∥LL
(µn,p)(M)

∥

∥

L(F)

}

≤ K
∏p

k=0 |µn
k |
. (6)Consider the Cau
hy problem

lim
t→0+

v(m)(t) = vm, m = 0, 1, ..., n− 1 (7)for the deterministi
 Sobolev type equation (1). Take α ∈ ρl(M) and 
onsider equivalentequations
RL

α(M)v(n) = (αL−M)−1Mv + h1, (8)
LL
α(M)f (n) =M(αL−M)−1f + h2, (9)de�ned on U and F respe
tively.De�nition 2. The operator-fun
tion V • ∈ C∞(R+;L(U)) is 
alled a propagator of thehomogenious equation (8), if for all v ∈ U the ve
tor-fun
tion v(t) = V tv is the solutionof this equation.The propagator of (9) is de�ned analogously.Lemma 1. Let the operator M be (L, n, p)-se
torial. Then the integrals of Dunford�S
hwartz type

U t
m =

1

2πi

∫

γ

µn−m−1(µnL−M)−1Leµtdµ, (10)
F t
m =

1

2πi

∫

γ

µn−m−1L(µnL−M)−1eµtdµ, (11)where t ∈ R+, m = 0, 1, ..., n−1, and γ ⊂ ρLn(M) is the 
ontour formed by rays emanatingfrom the origin at angles θ and −θ, determine the propagators of the homogeneousequations (8) and (9).Set
U0 =

n−1
⋂

m=0

kerU•

m =

n−1
⋂

m=0

{ϕ ∈ U : U t
0ϕ = 0 ∃t ∈ R+},

F0 =
n−1
⋂

m=0

kerF •

0 =
n−1
⋂

m=0

{ψ ∈ F : F t
0ψ = 0 ∃t ∈ R+}.2014, vol. 1, no. 1 57



A.A. ZamyshlyaevaBy L0(M0) denote the restri
tion of the operator L(M) to the subspa
e U0.Corollary 1. Under the 
onditions of lemma 1 the operators L0 ∈ L(U0;F0),
M0 ∈ Cl(U0;F0), and there exists the operator M−1

0 ∈ L(F0;U0).Set U1 = im U .
0 = {u ∈ U : lim

t→0+
U t
0u = u}, F1 = im F .

0 = {f ∈ F : lim
t→0+

F t
0f = f}.By L1(M1) denote the restri
tion of the operator L(M) to the subspa
e U1.Corollary 2. Under the 
onditions of lemma 1 the operators L1 ∈ L(U1;F1),

M1 ∈ Cl(U1;F1).Obviously, U0 ⊕ U1 ⊂ U and F0 ⊕ F1 ⊂ F. Further we need the following assumptions:
U0 ⊕ U1 = U (F0 ⊕ F1 = F), (12)there exists the operator L−1

1 ∈ L(F1;U1). (13)The assumption(12) takes pla
e in the 
ase of re�exivity of the spa
es U (F) (the Yagi �Fedorov theorem [4℄). The assumption (13) is true if (12) is ful�lled and im L1 = F1 (theBana
h theorem). Note that (12) leads to the existen
e of the proje
tors P = s− lim
t→0+

U t
0and Q = s− lim

t→0+
F t
0 in the spa
es U, F respe
tively.Corollary 3. Let the operator M be (L, n, p)-se
torial and (12), (13) be ful�lled. Theoperator H =M−1

0 L0 ∈ L(U0) is nilpotent of a degree p.Due to the (L, n, p)-se
toriality of the operator M and (12), (13) the equation (1) 
anbe redu
ed to the form
H(v0)(n) = v0 +M−1

0 f 0, (14)
(v1)(n) = Sv1 + L−1

1 f 1, (15)where operator S = L−1
1 M1 ∈ Cl(U1), fun
tions f 0 = (I − Q)f , f 1 = Qf , v0 = (I − P )v,

v1 = Pv.Lemma 2. Let the operator M be (L, n, p)-se
torial and (12), (13) be ful�lled. For anyve
tor-fun
tion f 0 ∈ Cn(p+1)([0, T ];F0) there exists a unique solution of the equation (14),whi
h is represented in the form
v0(t) = −

p
∑

q=0

HqM−1
0 f 0(nq)(t).Proof.Substituting the ve
tor-fun
tion v0 = v0(t) into (14) one 
an verify the existen
eof the solution. Uniqueness is obtained in a 
onsistent derivation of the equation (14):

0 = Hpv0(np) = . . . = Hv0(n) = v0.Remark 1. From Lemma 2 it dire
tly follows that all initial values vk need to belong tothe sets
Mk

f = {v ∈ U : (I− P )u = −
p

∑

q=0

HqM−1
0 f 0(nq+k)(0)}, k = 0, ..., n− 1. (16)58 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICSLemma 3. Under the 
onditions of Lemma 2 for any vm ∈ U1, m = 0, ..., n − 1 è
f 1 ∈ C([0, T ];F1) there exists a unique solution of the Cau
hy problem (7) for the equation(1), whi
h is represented in the form

v1(t) =
n−1
∑

m=0

V t
mvm +

t
∫

0

V t−s
n−1L

−1
1 f 1(s)ds.So, we have provedTheorem 1. Let the operator M be (L, n, p)-se
torial and (12), (13) be ful�lled. For any

uk ∈ Mk
f , k = 0, ..., n−1 and ve
tor-fun
tion f = f(t), t ∈ [0, T ], satisfying the 
onditionsof Lemmas 2, 3, there exists a unique solution of the problem (14), (15), whi
h 
an berepresented as v(t) = v0(t) + v1(t).2. The spa
es of "noises"Let Ω ≡ (Ω,A,P) be a 
omplete probability spa
e, R be a set of real numbers endowedwith Boreal σ-algebra. The measurable mapping ξ : Ω → R is 
alled a random variable.The set of random variables forms a Hilbert spa
e with the s
alar produ
t (ξ1, ξ2) = Eξ1ξ2.This Hilbert spa
e will be denoted by L2. The random variables ξ ∈ L2, with normal(Gaussian) distribution will be very important later on; they are 
alled Gaussian randomvariables. Let A0 be σ-subalgebra of σ-algebra A. Constru
t the spa
e L

0

2
of randomvariables, measurable with respe
t to A0. Obviously, L

0

2
is a subset of L2; denote by

Π : L2 → L
0

2
the orthoproje
tor. Let ξ ∈ L2, then Πξ is 
alled 
onditional expe
tation ofthe random variable ξ and is denoted by E(ξ|A0). It is easy to see that E(ξ|A0) = Eξ, if

A0 = {∅,Ω}; and E(ξ|A0) = ξ, if A0 = A. Finally, the minimal σ-subalgebra A0 ⊂ A,regarding whi
h the random variable ξ is measurable, is 
alled the σ-algebra generated by
ξ. Let I ⊂ R be some interval. Consider two mappings: f : I → L2, whi
h maps ea
h
t ∈ I to a random variable ξ ∈ L2, and g : L2 × Ω → R, whi
h maps every pair (ξ, ω)to the point ξ(ω) ∈ R. The mapping η : I × Ω → R of the form η = η(t, ω) = g(f(t), ω)is 
alled a (one-dimensional) random pro
ess. Thus, for every �xed t ∈ I the randompro
ess η = η(t, ·) is the random variable, i.e. η(t, ·) ∈ L2, and for every �xed ω ∈ Ωthe random pro
ess η = η(·, ω) is 
alled the (sample) traje
tory. The random pro
ess ηis 
alled 
ontinuous if almost surely (a.s.) all its traje
tories are 
ontinuous, that is, foralmost every (a.e.) ω ∈ Ω the traje
tories η(·, ω) are 
ontinuous. The set of 
ontinuousrandom pro
esses form a Bana
h spa
e, whi
h will be denoted by CL2. The 
ontinuousrandom pro
ess, representing di�erent t independent Gaussian random variables, is 
alledGaussian.The (one-dimensional) Wiener pro
ess β = β(t), modeling Brownian motion on theline in Einstein � Smolukhovsky theory, is one of the most important examples of the
ontinuous Gaussian random pro
esses. It has the following properties:(W1) a.s. β(0) = 0, a.s. all its traje
tories β(t) are 
ontinuous, and for all
t ∈ R+(= {0} ∪ R+) the random variable β(t) is Gaussian;(W2) the mathemati
al expe
tation E (β (t)) = 0 and auto
orrelation fun
tion
E
(

(β (t)− β (s))2
)

= |t− s| for all s, t ∈ R+;2014, vol. 1, no. 1 59



A.A. Zamyshlyaeva(W3) the traje
tories β(t) are nondi�erentiable at any point t ∈ R+ and haveunlimited variation at an arbitrarily small interval.Theorem 2. There exists a random pro
ess β, satisfying properties (W1), (W2);moreover, it 
an be represented in the form
β(t) =

∞
∑

k=0

ξk sin
π

2
(2k + 1)t,where ξk are independent Gaussian variables, Eξk = 0, Dξk = [π

2
(2k + 1)]−2.The random pro
ess β, satisfying properties (W1) � (W3), will be 
alled Brownianmotion.Now �x η ∈ CL2 and t ∈ I(= (ε, τ) ⊂ R) and byN η

t denote the σ-algebra generated bythe random variable η(t). For the sake of brevity, we introdu
e the notation E
η
t = E(·|N η

t ).De�nition 3. Let η ∈ CL2, the random variable
Dη (t, ·) = lim

△t→0+
E

η
t

(

η (t+△t, ·)− η(t, ·)
△t

)

(

D∗η (t, ·) = lim
△t→0−

E
η
t

(

η (t, ·)− η (t−△t, ·)
△t

))

,is 
alled a forward Dη(t, ·) (a ba
kward D∗η(t, ·)) mean derivative of the random pro
ess
η at the point t ∈ (ε, τ) if the limit exists in the sense of uniform metri
 on R.The random pro
ess η is 
alled forward (ba
kward) mean di�erentiable on (ε, τ), if forevery point t ∈ (ε, τ) there exists the forward (ba
kward) mean derivative.Now let the random pro
ess η ∈ CL2 be forward (ba
kward) mean di�erentiableon (ε, τ). Its forward (ba
kward) mean derivative is also a random pro
ess; wedenote it by Dη (D∗η). If the random pro
ess η ∈ CL2 is forward (ba
kward)mean di�erentiable on (ε, τ), then the symmetri
 (antisymmetri
) mean derivative
DSη = 1

2
(D +D∗) η

(

DAη = 1
2
(D∗ −D) η

) 
an be de�ned. Sin
e the mean derivativeswere introdu
ed by E. Nelson [12℄, and the theory of these derivatives was developedby Yu.E. Gliklikh [16℄, the symmetri
 mean derivative DS of the random pro
ess η willhen
eforth be 
alled the Nelson � Gliklikh derivative for brevity and will be denoted by
o
η, i.e. DSη ≡ o

η. By o
η
(l), l ∈ N denote the l-th Nelson � Gliklikh derivative of the randompro
ess η. Note that, if the traje
tories of the random pro
ess η are a.s. 
ontinuouslydi�erentiable in a "
ommon sense" on (ε, τ), then the Nelson � Gliklikh derivative of

η 
oin
ides with the "regular"derivative. This happens, for example, in the 
ase of therandom pro
ess η = α sin(βt), where α is a Gaussian random variable, β ∈ R+ is a �xed
onstant, and t ∈ R has the physi
al meaning of time.Theorem 3. (Yu.E. Gliklikh) o

β
(l)

(t) = (−1)l+1(2t)−lβ(t) for all t ∈ R+ and l ∈ N.Introdu
e the spa
e C
l
L2, l ∈ N of random pro
esses of CL2, whose traje
tories area.s. Nelson � Gliklikh di�erentiable on I to order l in
lusively. If I ⊂ R+, then due to60 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICStheorem 3 there exists the derivative o

β∈ C
1
L2, whi
h will be 
alled (one-dimensional)"white noise". In [15℄ it is suggested that the spa
es Cl

L2 be 
alled spa
es of di�erentiable"noises".Now let U ≡ (U, 〈·, ·〉) be a real separable Hilbert spa
e; 
onsider the operator
K ∈ L(U) with spe
trum σ(K) being nonnegative dis
rete with �nite multipli
ity tendingonly to zero. By {νj} denote the sequen
e of eigenvalues of operator K, numbered inde
reasing order a

ording to multipli
ity. Note that the linear span of related orthonormaleigenfun
tions {ϕj} of operator K is dense in U. Suppose that the operator K is nu
lear(i.e. its tra
e TrK =

∞
∑

j=1

νj < +∞).Take the sequen
e of independent random pro
esses {ηj} and de�ne the K-randompro
ess
ΘK(t) =

∞
∑

j=1

√
νjηj(t)ϕj , (17)provided that the series (2.2) 
onverges uniformly on any 
ompa
t from I. Note that,if {ηj} ⊂ CL2 and the K-random pro
ess ΘK exists, then a.s. its traje
tories are
ontinuous. Denote the spa
e of su
h pro
esses by the symbol CK ≡ CK(I × Ω;U).Isolate in CK the subspa
e CKL2 of random pro
esses, whose random variables belongto L2(Ω;U) =

{

ξ :
∫

Ω
||ξ(ω)||2dP(ω) < +∞

}, i.e. η ∈ CKL2, if η(t, ·) ∈ L2(Ω;U) for ea
h
t ∈ I. Note that the spa
e CKL2 
ontains, in parti
ular, those K-random pro
esses forwhi
h almost surely all traje
tories are 
ontinuous, and all (independent) random variablesare Gaussian.We now introdu
e the Nelson � Gliklikh derivatives of K-random pro
ess

o

Θ
(l)

K (t) =

∞
∑

j=1

√
νj

o
η
(l)

j (t)ϕj, (18)provided that the derivatives up to the degree of l in the right side of (18) exist and theseries uniformly 
onverges on any 
ompa
t from I.Similarly, introdu
e the spa
e C
l

K
L2 of K-random pro
esses with a.s. 
ontinuousNelson � Gliklikh derivatives up to order l ∈ N, whose random variables belong to L2(Ω;U).As an example, 
onsider the K-Wiener pro
ess

WK(t) =

∞
∑

j=1

√
νjβj(t)ϕj, (19)that exists on R+.Corollary 4. o

W
(l)

K (t) = (−1)l+1(2t)−lWK(t) for all t ∈ R+, l ∈ N and nu
lear operator
K ∈ L(U).Moreover, the K-Wiener pro
ess (19) satis�es the 
onditions(WW1) a.s. WK(0) = 0, a.s. all its traje
tories β(t) are 
ontinuous, and for all
t ∈ R+(= {0} ∪ R) the random variable WK(t, ·) is Gaussian;(WW2) the mathemati
al expe
tation E (WK (t)) = 0 and auto
orrelation fun
tion
E
(

(β (t)− β (s))2
)

= K |t− s| for all s, t ∈ R+ and the following theorem is true.2014, vol. 1, no. 1 61



A.A. ZamyshlyaevaTheorem 4. For any nu
lear operator K ∈ L(U), there exists a K-Wiener pro
ess,satisfying the 
onditions (WW1), (WW2) and it 
an be represented in the form (2.4).3. The Cau
hy problem for a Sobolev type higher order equationwith additive white noiseConsider the linear sto
hasti
 Sobolev type equation of higher order
L

o
η
(n)

=Mη +Nw, (20)where the absolute term will be spe
i�ed later. Supplement the equation (20) with theweakened (in the sense of S.G. Krein) initial Showalter � Sidorov 
ondition
lim
t→0+

[

RL
α(M)

]p+1
(

o
η
(m)

(t)− ξm

)

= 0, m = 0, ..., n− 1. (21)whi
h is the generalization of the 
ondition [3℄
lim
t→0+

L
o
η
(m)

(t) = Lξm, m = 0, ..., n− 1,and has advantages over the Cau
hy 
ondition
lim
t→0+

o
η
(m)

(t) = ξm, m = 0, ..., n− 1 (22)in the 
ase of Sobolev type equations.Consider I = (0, τ). Let K ∈ L(U) be a nu
lear operator with eigenvalues {νj} ⊂ R+.The K-random pro
ess η ∈ C
n
KL2 is 
alled (a 
lassi
al) solution of equation (20), if a.s.all its traje
tories satisfy equation (20) for some K-random pro
ess w ∈ CKL2, operator

N ∈ L(U;F) and t ∈ (0, τ). The solution η = η(t) of equation (20) is 
alled (the 
lassi
al)solution of problem (20), (21) if the 
ondition (21) is also ful�lled.Consider �rstly the problem (22) for the homogeneous equation
L

o
η
(n)

=Mη. (23)In this 
ase (and only in this 
ase) 
onsider I = R+.De�nition 4. The set P ⊂ U is 
alled the phase spa
e of equation (23) if(i) a.s. every traje
tory of the solution η = η(t) lies in P pointwise, i.e. η(t) ∈ P forall t ∈ R+;(ii) for all random variables ξm ∈ L2(Ω;P), m = 0, 1, . . . , n− 1, there exists a uniquesolution η ∈ C
n
KL2 of the problem (22), (23).Theorem 5. Let the operator M be (L, n, p)-se
torial, p ∈ {0} ∪ N and (12), (13) beful�lled. Then the subspa
e U1 is the phase spa
e of equation (23).In fa
t, due to 
orollaries 1, 2, equation (23) 
an be redu
ed to the equivalent system

H
o
η
0(n)

= η0,
o
η
0(n)

= Sη1, (24)62 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICSwhere η0 = (I−P )η, η1 = Pη. After applying Nelson � Gliklikh di�erentiation n times tothe �rst equation in (24) and using operator H on it, we 
onse
utively obtain
0 = Hp+1

o
η
0(n(p+1))

= ... = H2
o
η
0(2n)

= ... = H
o
η
0(n)

= η0. (25)Thus, the 
ondition (i) of de�nition 4 is true. To prove the ful�llment of the 
ondition(ii), note that if ξm ∈ U1, m = 0, 1, . . . , n − 1, then there exists a unique solution ofthe problem (22), (24) and it is given by η1 = η1(t) =
n−1
∑

m=0

V t
mξm. Then the uniquesolution of the problem (22), (23) for ξm ∈ U1, m = 0, 1, . . . , n − 1, is given by

η(t) = η0(t) + η1(t) =
n−1
∑

m=0

V t
mξm.Corollary 5. Under the 
onditions of theorem 5 the solution of the problem (22), (23)is the Gaussian K-random pro
ess if the random variables ξm, m = 0, 1, . . . , n − 1, areGaussian.We need to make a few remarks. Conditions (21) are respe
tively equivalent to thefollowing 
onditions:

P (
o
η
(m)

(0)− ξm) = 0 and lim
t→0+

P (
o
η
(m)

(t)− ξm) = 0. (26)Thus the following lemma is true.Lemma 4. Let the operator M be (L, n, p)-se
torial, p ∈ {0} ∪ N and (12), (13) beful�lled. For all independent random variables ξm ∈ L2, m = 0, 1, . . . , n − 1, there existsa.s. a unique solution η ∈ C
∞
KL2 of the problem (21), (23), represented in the form

η(t) =
n−1
∑

m=0

V t
mξm, t ∈ R. If in addition ξm, m = 0, 1, . . . , n − 1 take values only in U1,then this solution is the unique solution of the problem (22), (23).Return to equation (20) and note that now I = (0, τ). Let the K-Wiener pro
ess

w = w(t), t ∈ [0, τ) be su
h that
(I−Q)Nw ∈ C

n(p+1)
K L2 and QNw ∈ CKL2, (27)then the K-random pro
ess

η(t) = −
p

∑

q=0

HqM−1
0 (I−Q)N

o
w

(qn)
(t) +

t
∫

0

V t−s
n−1L

−1
1 QNw(s)ds (28)is a unique 
lassi
al solution of the problem (20), (21) with ξm ∈ V0, m = 0, ..., n− 1.Lemma 5. Let the operator M be (L, p)-bounded, p ∈ {0} ∪ N. For any K-random pro
ess w = w(t) satisfying (27), and all independent random variables

ξm ∈ L2(Ω;U
0), m = 0, 1, . . . , n− 1, independent with w, there exists a.s. a uniquesolution η ∈ C

n
KL2 of the problem (20), (21), given by (28). If in addition

ξm = −
p

∑

q=0

HqM−1
0 (I−Q)N

o
w

(qn+m)
(0),2014, vol. 1, no. 1 63



A.A. Zamyshlyaevathen this solution is a unique solution of the problem (20), (22).Theorem 6. Let the operator M be (L, n, p)-se
torial, p ∈ {0} ∪ N and (12), (13) beful�lled. For any N ∈ L(U;F) and K-random pro
ess w = w(t) satisfying (27), and forall independent random variables ξm ∈ L2(Ω;U
0), m = 0, 1, . . . , n − 1, independent with

w, there exists a.s. a unique solution η ∈ C
n
KL2 of the problem (20), (21), represented inthe form

η(t) =
n−1
∑

m=0

V t
mξm −

p
∑

q=0

HqM−1
0 (I−Q)N

o
w

(qn)
(t) +

t
∫

0

V t−s
n−1L

−1
1 QNw(s)ds. (29)If in addition ξm, m = 0, 1, . . . , n− 1, satisfy

(P − I)ξm =

p
∑

q=0

HqM−1
0 (I−Q)N

o
w

(qn+m)
(0), (30)then the solution (29) is the solution of the problem (20), (22).However, "white noise" w(t) = o

WK (t) = (2t)−1WK(t) does not satisfy 
ondition (27),therefore it 
annot stand in the right side of (20). One approa
h to solving this problemis suggested in [24, 25℄ (in
identally, it also works for traditional white noise). To use thisapproa
h, transform the se
ond term in the right side of (28) as follows:
t

∫

ε

V t−s
n−1L

−1
1 QN

o

WK (s)ds = −V t−ε
n−1L

−1
1 QNWK(ε)−

t
∫

ε

d

dt
V t−s
n−1L

−1
1 NWK(s)ds =

= −V t−ε
n−1L

−1
1 QNWK(ε)−

t
∫

ε

V t−s
n−2L

−1
1 NWK(s)ds. (31)This integration by parts makes sense for any ε ∈ (0, t), t ∈ R+ due to de�nition ofthe Nelson � Gliklikh derivative. Letting ε → 0 in (31) we get

t
∫

0

V t−s
n−1L

−1
1 QN

o

WK (s)ds = −
t

∫

0

V t−s
n−2L

−1
1 NWK(s)ds. (32)Corollary 6. Let the operator M be (L, n, p)-se
torial, p ∈ {0} ∪ N, and (12), (13) beful�lled, the operator N satis�es

QN = N. (33)Let I ⊂ R+. For all independent random variables ξm ∈ L2, m = 0, 1, . . . , n − 1,independent with WK, there exists a.s. a unique solution η ∈ C
n
KL2 of the problem (21)for the equation

L
o
η
(n)

=Mη +N
o

WK , (34)given by
η(t) =

n−1
∑

m=0

V t
mξm −

t
∫

0

V t−s
n−2L

−1
1 NWK(s)ds. (35)64 Journal of Computational and Engineering Mathemati
s



COMPUTATIONAL MATHEMATICSIf in addition ξm, m = 0, ..., n− 1 take values only in U1, then (35) is the unique solutionof the problem (22) for equation (34).Obviously, (35) is obtained from (28) due to (33) and limit transition (31) → (32),whereas 
ondition (33) plays the main role here.Theorem 7. Let the operator M be (L, n, p)-se
torial, p ∈ {0} ∪ N, and (12), (13) beful�lled. For any operator N ∈ L(U;F) and for all independent U-valued random variables
ξm ∈ L2, independent with WK, there exists a.s. unique solution η = η(t) of the problem(26), (34) given by

η(t) =
n−1
∑

m=0

V t
mξm −

t
∫

0

V t−s
n−2L

−1
1 QNWK(s)ds−

p
∑

q=0

HqM−1
0 (I−Q)N

o

W
(qn+1)

K (t).4. The Cau
hy problem for the sto
hasti
 Boussinesq � Lòveequation with additive "white noise"Let D ⊂ R
d be a bounded domain with the boundary ∂D of 
lass C∞. Fix l ∈ {0}∪Nand set G = W l
2(D), V = {u ∈ W l+2

2 (D) : u(x) = 0, x ∈ ∂D}. Obviously, V is a realseparable Hilbert spa
e densely and 
ontinuously embedded in G.Let {νj} be the sequen
e of eigenvalues of the Lapla
e operator (de�ned in D withhomogenous Diri
hlet boundary 
onditions), numbered in nonde
reasing order a

ordingto multipli
ity, and by {ϕj} denote the set of 
orresponding eigenfun
tions, orthonormalin the sense of V.Introdu
e the V-valued K-random pro
esses. Constru
t the operator Λ = (−1)m−1∆mwith domain domΛ = {W l+2(m+1)
2 (D) : ∆ku(x) = 0, x ∈ ∂D, k ∈ 0, 1, ..., m − 1}, m ∈ N.Note that the operator Λ has the same eigenfun
tions {ϕj}, as the Lapla
e operator, but itsspe
trum 
onsists of eigenvalues |νj |m. Sin
e their asymptoti
 |νj|m ∼ j

2m

d → ∞, j → ∞,we 
onsider that number m ∈ N is taken su
h that the series ∞
∑

j=1

|νj|−m 
onverges for a�xed d ∈ N. Then the operator Λ is 
ontinuously invertible on V, whereas the inverseoperator (i.e. the Green operator) has the spe
trum 
onsisting of eigenvalues µj = |νj|−m.That very operator we take as the nu
lear operator K.In the 
ylinder D × [0, T ], T ∈ R+ 
onsider the Cau
hy � Diri
hlet problem
ξ(x, 0) = ξ0(x), ξt(x, 0) = ξ1(x), x ∈ D, (36)

ξ(x, t) = 0, (x, t) ∈ ∂D × [0, T ] (37)for the equation
(λ−∆x)

o

ξtt= α∆xξ+
o

WK , (38)where WK =WK(t) is a V-valued K-Wiener pro
ess.Set A = λ−∆, B = α∆.Lemma 6. For arbitrary λ ∈ R, α ∈ R+ the operator M is (L, 2, 0)-se
torial.2014, vol. 1, no. 1 65



A.A. ZamyshlyaevaProof.The L-spe
trum of the operator M has the form
σL(M) =

{

µk =
ανk
λ− νk

, k ∈ N \ {l : νl = λ}
}

. (39)Sin
e νk ∼ −k2/d for k → ∞, then, �rstly, there exists a se
tor, in
luding σL(M), and
onsequently the set
SL
θ,2(M) = {µ ∈ C : | arg(µ2)| < θ, µ 6= 0} ⊂ ρL2 (M).Se
ondly, for su�
iently large |µ|, lying outside of this set
max

{

‖RL
µ2(M)‖L(U), ‖LL

µ2(M)‖L(F)
}

≤ const |µ|−2

∀µ ∈ SL
θ,2(M).This means that the operator M is (L, 2, 0)-se
torial.

2Lemma 7. For arbitrary λ ∈ R, α ∈ R+ the 
onditions (12), (13) are ful�lled.Proof.Find out if the 
onditions (12), (13) take pla
e. Sine the spa
es U and F are re�exive,then by Yagi � Fedorov theorem [4℄ and lemma 6 the 
ondition (12) is ful�lled and
(i) U0 = F0 = {0}, U1 = U, F1 = F, if λ 6= νk;
(ii) U0 = F0 = kerL = span {ϕj , j : λ = νj},
U1 = {u ∈ U : 〈u, ϕj〉 = 0, j : λ = νj},
F1 = {f ∈ F : 〈f, ϕj〉 = 0} = imL, if λ = νj ;The 
ondition (13) also takes pla
e and the operators

L−1
1 =

∑

k

′
〈·, ϕk〉ϕk

λ− νk
, M−1

0 =
∑

k:λ−νk=0

〈·, ϕk〉ϕk

ανk
.A single quote by the sum means the la
k of summands for whi
h λ− νk = 0.

2Constru
t the propagators of the homogenous equation (38):
V t
0 =

∑

λ>λk

(·, ϕk)ϕk ch

√

αλk
λ− λk

t+
∑

λ<λk

(·, ϕk)ϕk cos

√

αλk
λk − λ

t,

V t
1 =

∑

λ<λk

(·, ϕk)ϕk

√

λ− λk
αλk

sh

√

αλk
λ− λk

t +
∑

λ>λk

(·, ϕk)ϕk

√

λk − λ

αλk
sin

√

αλk
λk − λ

t.Moreover,
V t−s
0 A−1

1 =
∑

λ>λk

(·, ϕk)ϕk

λ− λk
ch

√

αλk
λ− λk

(t− s)+66 Journal of Computational and Engineering Mathemati
s
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+

∑

λ<λk

(·, ϕk)ϕk

λ− λk
cos

√

αλk
λk − λ

(t− s).Thus, due to theorem 7, the following theorem is true.Theorem 8. For any α ∈ R+, λ ∈ R, T ∈ R+, for all independent ξ0, ξ1 ∈ L2(Ω;V
1),independent with WK for every �xed t, there exists a.s. a unique solution of the problem(36)�(38), given by

ξ(t) = V t
0 ξ0 + V t

1 ξ1 −
t

∫

0

V t−s
0 A−1

1 QWK(s)ds−M−1
0 (I−Q)

o

WK (t). (40)Proof.Due to lemmas 6, 7 all the 
onditions of theorem 7 are ful�lled.
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