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Lv(n) =Mv + g (1)with the assumption kerL 6= {0} have been studied in di�erent aspets [18, 20, 21℄. Herethe operators L,M ∈ L(U;F) (i.e. linear and ontinuous), U and F are Banah spaes,absolute term g = g(t) models the external fore, natural number n ≥ 2. One of theprototypes of the equation (0.1) is the equation

(λ−∆)vtt = α∆v + f, (2)modelling the inompressible �uid free surfae perturbation under the assumption ofmotion potentiality and onservation of mass in a layer [23℄, longitudinal vibrations ofan elasti rod [22℄, wave proesses in smeti and plasma [9℄.2014, vol. 1, no. 1 55



A.A. ZamyshlyaevaThe shortoming of the model (2) with the deterministi absolute term onsists inthe fat that in natural experiments the system is exposed to random perturbation, forexample in the form of white noise. The stohasti ordinary di�erential equations withdi�erent additive random proesses (i.e. not only white noise, but more general Markovand di�usion proesses) are now atively studied [5℄. The traditional Ito � Stratonovih� Skorohod approah takes the priority, although new very promising diretions of theresearh have reently appeared [10, 12℄.The �rst results onerning the stohasti Sobolev type equations of the �rst order anbe found in [25℄. They are based on propagation of Ito � Stratonovih � Skorokhod methodto the partial di�erential equations (see, for example, [7℄). In this paper the stohastiSobolev type equation of higher order
Lη(n) =Mη +Nw (3)is onsidered. Here, in the right side, the term w denotes the random proess. It is requiredto �nd the random proess η(t), satisfying (in some sense) equation (3) and the initialonditions

η(m)(0) = ξm, m = 0, 1, . . . , n− 1, (4)where ξm are given random variables.Initially w was understood as white noise whih is a generalized derivative of theWiener proess. Meanwhile there have appeared [12℄ and is atively developing [13, 6℄ anew approah in the investigation of equation (3), where "white noise" means the Nelson �Gliklikh derivative of the Wiener proess. (Note that this "white noise" is more adequateto the theory of Brownian motion by Einstein � Smolukhovsky in omparison to traditionalwhite noise [12, 13℄). Initially the "white noise" was used in the theory of optimalmeasurement theory [14, 11℄, where the speial spae of "noises" was onstruted [15℄.The onept of "white noise" in this theory (that is only in the �nite dimensional spaes)showed its high e�ieny so there have appeared the idea of extending of this oneptto the in�nite-dimensional spaes. The main goal of this extending is the development ofthe theory of stohasti Sobolev type equations and elaboration of the appliations of thistheory to nonlassial models of mathematial physis of pratial importane.The paper in addition to the introdution inludes three setions. The �rst oneintrodues the spae of "noises" whih is fundamental for the further onstrutions. Thetheory of abstrat stohasti Sobolev type equations of higher order with relatively p-bounded operators is presented in the seond setion. In the third setion the resultsobtained for abstrat problem are applied to the investigation of the initial-boundaryproblem for the stohasti Boussinesq � Lòve equation with additive "white noise".1. Deterministi equations with (n,p)-setorial operatorsFundamentals of the relatively p-setorial operators theory were laid by G.A.Sviridyukand were developed by his disiples. We extend these ideas and methods to the ase ofequations of arbitrary order. Let U and F be separable re�exive Banah spaes, the operator
L ∈ L(U;F) (linear and bounded), the operator M ∈ Cl(U;F) (linear, losed and denselyde�ned in U).Consider the relative spetrum set σL(M) and build the sets

σL
n (M) = {µn : µ ∈ σL(M)}, ρLn(M) = C\σL

n (M)56 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSand the operator-funtions
RL

(µ,p)(M) =

p
∏

k=0

(µkL−M)−1L, LL
(µ,p)(M) =

p
∏

k=0

L(µkL−M)−1,alled the right and he left (L, p)-resolvents of the operator M .De�nition 1. The operator M is alled (n,p)-setorial with respet to operator L or(L,n,p)-setorial if there are onstants K > 0, θ ∈ (π/2, π), suh that the set
SL
θ,n(M) = {µ ∈ C : | arg(µn)| < θ, µ 6= 0} ⊂ ρLn(M), (5)and

max
{

∥

∥RL
(µn,p)(M)

∥

∥

L(U)
,
∥

∥LL
(µn,p)(M)

∥

∥

L(F)

}

≤ K
∏p

k=0 |µn
k |
. (6)Consider the Cauhy problem

lim
t→0+

v(m)(t) = vm, m = 0, 1, ..., n− 1 (7)for the deterministi Sobolev type equation (1). Take α ∈ ρl(M) and onsider equivalentequations
RL

α(M)v(n) = (αL−M)−1Mv + h1, (8)
LL
α(M)f (n) =M(αL−M)−1f + h2, (9)de�ned on U and F respetively.De�nition 2. The operator-funtion V • ∈ C∞(R+;L(U)) is alled a propagator of thehomogenious equation (8), if for all v ∈ U the vetor-funtion v(t) = V tv is the solutionof this equation.The propagator of (9) is de�ned analogously.Lemma 1. Let the operator M be (L, n, p)-setorial. Then the integrals of Dunford�Shwartz type

U t
m =

1

2πi

∫

γ

µn−m−1(µnL−M)−1Leµtdµ, (10)
F t
m =

1

2πi

∫

γ

µn−m−1L(µnL−M)−1eµtdµ, (11)where t ∈ R+, m = 0, 1, ..., n−1, and γ ⊂ ρLn(M) is the ontour formed by rays emanatingfrom the origin at angles θ and −θ, determine the propagators of the homogeneousequations (8) and (9).Set
U0 =

n−1
⋂

m=0

kerU•

m =

n−1
⋂

m=0

{ϕ ∈ U : U t
0ϕ = 0 ∃t ∈ R+},

F0 =
n−1
⋂

m=0

kerF •

0 =
n−1
⋂

m=0

{ψ ∈ F : F t
0ψ = 0 ∃t ∈ R+}.2014, vol. 1, no. 1 57



A.A. ZamyshlyaevaBy L0(M0) denote the restrition of the operator L(M) to the subspae U0.Corollary 1. Under the onditions of lemma 1 the operators L0 ∈ L(U0;F0),
M0 ∈ Cl(U0;F0), and there exists the operator M−1

0 ∈ L(F0;U0).Set U1 = im U .
0 = {u ∈ U : lim

t→0+
U t
0u = u}, F1 = im F .

0 = {f ∈ F : lim
t→0+

F t
0f = f}.By L1(M1) denote the restrition of the operator L(M) to the subspae U1.Corollary 2. Under the onditions of lemma 1 the operators L1 ∈ L(U1;F1),

M1 ∈ Cl(U1;F1).Obviously, U0 ⊕ U1 ⊂ U and F0 ⊕ F1 ⊂ F. Further we need the following assumptions:
U0 ⊕ U1 = U (F0 ⊕ F1 = F), (12)there exists the operator L−1

1 ∈ L(F1;U1). (13)The assumption(12) takes plae in the ase of re�exivity of the spaes U (F) (the Yagi �Fedorov theorem [4℄). The assumption (13) is true if (12) is ful�lled and im L1 = F1 (theBanah theorem). Note that (12) leads to the existene of the projetors P = s− lim
t→0+

U t
0and Q = s− lim

t→0+
F t
0 in the spaes U, F respetively.Corollary 3. Let the operator M be (L, n, p)-setorial and (12), (13) be ful�lled. Theoperator H =M−1

0 L0 ∈ L(U0) is nilpotent of a degree p.Due to the (L, n, p)-setoriality of the operator M and (12), (13) the equation (1) anbe redued to the form
H(v0)(n) = v0 +M−1

0 f 0, (14)
(v1)(n) = Sv1 + L−1

1 f 1, (15)where operator S = L−1
1 M1 ∈ Cl(U1), funtions f 0 = (I − Q)f , f 1 = Qf , v0 = (I − P )v,

v1 = Pv.Lemma 2. Let the operator M be (L, n, p)-setorial and (12), (13) be ful�lled. For anyvetor-funtion f 0 ∈ Cn(p+1)([0, T ];F0) there exists a unique solution of the equation (14),whih is represented in the form
v0(t) = −

p
∑

q=0

HqM−1
0 f 0(nq)(t).Proof.Substituting the vetor-funtion v0 = v0(t) into (14) one an verify the existeneof the solution. Uniqueness is obtained in a onsistent derivation of the equation (14):

0 = Hpv0(np) = . . . = Hv0(n) = v0.Remark 1. From Lemma 2 it diretly follows that all initial values vk need to belong tothe sets
Mk

f = {v ∈ U : (I− P )u = −
p

∑

q=0

HqM−1
0 f 0(nq+k)(0)}, k = 0, ..., n− 1. (16)58 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSLemma 3. Under the onditions of Lemma 2 for any vm ∈ U1, m = 0, ..., n − 1 è
f 1 ∈ C([0, T ];F1) there exists a unique solution of the Cauhy problem (7) for the equation(1), whih is represented in the form

v1(t) =
n−1
∑

m=0

V t
mvm +

t
∫

0

V t−s
n−1L

−1
1 f 1(s)ds.So, we have provedTheorem 1. Let the operator M be (L, n, p)-setorial and (12), (13) be ful�lled. For any

uk ∈ Mk
f , k = 0, ..., n−1 and vetor-funtion f = f(t), t ∈ [0, T ], satisfying the onditionsof Lemmas 2, 3, there exists a unique solution of the problem (14), (15), whih an berepresented as v(t) = v0(t) + v1(t).2. The spaes of "noises"Let Ω ≡ (Ω,A,P) be a omplete probability spae, R be a set of real numbers endowedwith Boreal σ-algebra. The measurable mapping ξ : Ω → R is alled a random variable.The set of random variables forms a Hilbert spae with the salar produt (ξ1, ξ2) = Eξ1ξ2.This Hilbert spae will be denoted by L2. The random variables ξ ∈ L2, with normal(Gaussian) distribution will be very important later on; they are alled Gaussian randomvariables. Let A0 be σ-subalgebra of σ-algebra A. Construt the spae L

0

2
of randomvariables, measurable with respet to A0. Obviously, L

0

2
is a subset of L2; denote by

Π : L2 → L
0

2
the orthoprojetor. Let ξ ∈ L2, then Πξ is alled onditional expetation ofthe random variable ξ and is denoted by E(ξ|A0). It is easy to see that E(ξ|A0) = Eξ, if

A0 = {∅,Ω}; and E(ξ|A0) = ξ, if A0 = A. Finally, the minimal σ-subalgebra A0 ⊂ A,regarding whih the random variable ξ is measurable, is alled the σ-algebra generated by
ξ. Let I ⊂ R be some interval. Consider two mappings: f : I → L2, whih maps eah
t ∈ I to a random variable ξ ∈ L2, and g : L2 × Ω → R, whih maps every pair (ξ, ω)to the point ξ(ω) ∈ R. The mapping η : I × Ω → R of the form η = η(t, ω) = g(f(t), ω)is alled a (one-dimensional) random proess. Thus, for every �xed t ∈ I the randomproess η = η(t, ·) is the random variable, i.e. η(t, ·) ∈ L2, and for every �xed ω ∈ Ωthe random proess η = η(·, ω) is alled the (sample) trajetory. The random proess ηis alled ontinuous if almost surely (a.s.) all its trajetories are ontinuous, that is, foralmost every (a.e.) ω ∈ Ω the trajetories η(·, ω) are ontinuous. The set of ontinuousrandom proesses form a Banah spae, whih will be denoted by CL2. The ontinuousrandom proess, representing di�erent t independent Gaussian random variables, is alledGaussian.The (one-dimensional) Wiener proess β = β(t), modeling Brownian motion on theline in Einstein � Smolukhovsky theory, is one of the most important examples of theontinuous Gaussian random proesses. It has the following properties:(W1) a.s. β(0) = 0, a.s. all its trajetories β(t) are ontinuous, and for all
t ∈ R+(= {0} ∪ R+) the random variable β(t) is Gaussian;(W2) the mathematial expetation E (β (t)) = 0 and autoorrelation funtion
E
(

(β (t)− β (s))2
)

= |t− s| for all s, t ∈ R+;2014, vol. 1, no. 1 59



A.A. Zamyshlyaeva(W3) the trajetories β(t) are nondi�erentiable at any point t ∈ R+ and haveunlimited variation at an arbitrarily small interval.Theorem 2. There exists a random proess β, satisfying properties (W1), (W2);moreover, it an be represented in the form
β(t) =

∞
∑

k=0

ξk sin
π

2
(2k + 1)t,where ξk are independent Gaussian variables, Eξk = 0, Dξk = [π

2
(2k + 1)]−2.The random proess β, satisfying properties (W1) � (W3), will be alled Brownianmotion.Now �x η ∈ CL2 and t ∈ I(= (ε, τ) ⊂ R) and byN η

t denote the σ-algebra generated bythe random variable η(t). For the sake of brevity, we introdue the notation E
η
t = E(·|N η

t ).De�nition 3. Let η ∈ CL2, the random variable
Dη (t, ·) = lim

△t→0+
E

η
t

(

η (t+△t, ·)− η(t, ·)
△t

)

(

D∗η (t, ·) = lim
△t→0−

E
η
t

(

η (t, ·)− η (t−△t, ·)
△t

))

,is alled a forward Dη(t, ·) (a bakward D∗η(t, ·)) mean derivative of the random proess
η at the point t ∈ (ε, τ) if the limit exists in the sense of uniform metri on R.The random proess η is alled forward (bakward) mean di�erentiable on (ε, τ), if forevery point t ∈ (ε, τ) there exists the forward (bakward) mean derivative.Now let the random proess η ∈ CL2 be forward (bakward) mean di�erentiableon (ε, τ). Its forward (bakward) mean derivative is also a random proess; wedenote it by Dη (D∗η). If the random proess η ∈ CL2 is forward (bakward)mean di�erentiable on (ε, τ), then the symmetri (antisymmetri) mean derivative
DSη = 1

2
(D +D∗) η

(

DAη = 1
2
(D∗ −D) η

) an be de�ned. Sine the mean derivativeswere introdued by E. Nelson [12℄, and the theory of these derivatives was developedby Yu.E. Gliklikh [16℄, the symmetri mean derivative DS of the random proess η willheneforth be alled the Nelson � Gliklikh derivative for brevity and will be denoted by
o
η, i.e. DSη ≡ o

η. By o
η
(l), l ∈ N denote the l-th Nelson � Gliklikh derivative of the randomproess η. Note that, if the trajetories of the random proess η are a.s. ontinuouslydi�erentiable in a "ommon sense" on (ε, τ), then the Nelson � Gliklikh derivative of

η oinides with the "regular"derivative. This happens, for example, in the ase of therandom proess η = α sin(βt), where α is a Gaussian random variable, β ∈ R+ is a �xedonstant, and t ∈ R has the physial meaning of time.Theorem 3. (Yu.E. Gliklikh) o

β
(l)

(t) = (−1)l+1(2t)−lβ(t) for all t ∈ R+ and l ∈ N.Introdue the spae C
l
L2, l ∈ N of random proesses of CL2, whose trajetories area.s. Nelson � Gliklikh di�erentiable on I to order l inlusively. If I ⊂ R+, then due to60 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICStheorem 3 there exists the derivative o

β∈ C
1
L2, whih will be alled (one-dimensional)"white noise". In [15℄ it is suggested that the spaes Cl

L2 be alled spaes of di�erentiable"noises".Now let U ≡ (U, 〈·, ·〉) be a real separable Hilbert spae; onsider the operator
K ∈ L(U) with spetrum σ(K) being nonnegative disrete with �nite multipliity tendingonly to zero. By {νj} denote the sequene of eigenvalues of operator K, numbered indereasing order aording to multipliity. Note that the linear span of related orthonormaleigenfuntions {ϕj} of operator K is dense in U. Suppose that the operator K is nulear(i.e. its trae TrK =

∞
∑

j=1

νj < +∞).Take the sequene of independent random proesses {ηj} and de�ne the K-randomproess
ΘK(t) =

∞
∑

j=1

√
νjηj(t)ϕj , (17)provided that the series (2.2) onverges uniformly on any ompat from I. Note that,if {ηj} ⊂ CL2 and the K-random proess ΘK exists, then a.s. its trajetories areontinuous. Denote the spae of suh proesses by the symbol CK ≡ CK(I × Ω;U).Isolate in CK the subspae CKL2 of random proesses, whose random variables belongto L2(Ω;U) =

{

ξ :
∫

Ω
||ξ(ω)||2dP(ω) < +∞

}, i.e. η ∈ CKL2, if η(t, ·) ∈ L2(Ω;U) for eah
t ∈ I. Note that the spae CKL2 ontains, in partiular, those K-random proesses forwhih almost surely all trajetories are ontinuous, and all (independent) random variablesare Gaussian.We now introdue the Nelson � Gliklikh derivatives of K-random proess

o

Θ
(l)

K (t) =

∞
∑

j=1

√
νj

o
η
(l)

j (t)ϕj, (18)provided that the derivatives up to the degree of l in the right side of (18) exist and theseries uniformly onverges on any ompat from I.Similarly, introdue the spae C
l

K
L2 of K-random proesses with a.s. ontinuousNelson � Gliklikh derivatives up to order l ∈ N, whose random variables belong to L2(Ω;U).As an example, onsider the K-Wiener proess

WK(t) =

∞
∑

j=1

√
νjβj(t)ϕj, (19)that exists on R+.Corollary 4. o

W
(l)

K (t) = (−1)l+1(2t)−lWK(t) for all t ∈ R+, l ∈ N and nulear operator
K ∈ L(U).Moreover, the K-Wiener proess (19) satis�es the onditions(WW1) a.s. WK(0) = 0, a.s. all its trajetories β(t) are ontinuous, and for all
t ∈ R+(= {0} ∪ R) the random variable WK(t, ·) is Gaussian;(WW2) the mathematial expetation E (WK (t)) = 0 and autoorrelation funtion
E
(

(β (t)− β (s))2
)

= K |t− s| for all s, t ∈ R+ and the following theorem is true.2014, vol. 1, no. 1 61



A.A. ZamyshlyaevaTheorem 4. For any nulear operator K ∈ L(U), there exists a K-Wiener proess,satisfying the onditions (WW1), (WW2) and it an be represented in the form (2.4).3. The Cauhy problem for a Sobolev type higher order equationwith additive white noiseConsider the linear stohasti Sobolev type equation of higher order
L

o
η
(n)

=Mη +Nw, (20)where the absolute term will be spei�ed later. Supplement the equation (20) with theweakened (in the sense of S.G. Krein) initial Showalter � Sidorov ondition
lim
t→0+

[

RL
α(M)

]p+1
(

o
η
(m)

(t)− ξm

)

= 0, m = 0, ..., n− 1. (21)whih is the generalization of the ondition [3℄
lim
t→0+

L
o
η
(m)

(t) = Lξm, m = 0, ..., n− 1,and has advantages over the Cauhy ondition
lim
t→0+

o
η
(m)

(t) = ξm, m = 0, ..., n− 1 (22)in the ase of Sobolev type equations.Consider I = (0, τ). Let K ∈ L(U) be a nulear operator with eigenvalues {νj} ⊂ R+.The K-random proess η ∈ C
n
KL2 is alled (a lassial) solution of equation (20), if a.s.all its trajetories satisfy equation (20) for some K-random proess w ∈ CKL2, operator

N ∈ L(U;F) and t ∈ (0, τ). The solution η = η(t) of equation (20) is alled (the lassial)solution of problem (20), (21) if the ondition (21) is also ful�lled.Consider �rstly the problem (22) for the homogeneous equation
L

o
η
(n)

=Mη. (23)In this ase (and only in this ase) onsider I = R+.De�nition 4. The set P ⊂ U is alled the phase spae of equation (23) if(i) a.s. every trajetory of the solution η = η(t) lies in P pointwise, i.e. η(t) ∈ P forall t ∈ R+;(ii) for all random variables ξm ∈ L2(Ω;P), m = 0, 1, . . . , n− 1, there exists a uniquesolution η ∈ C
n
KL2 of the problem (22), (23).Theorem 5. Let the operator M be (L, n, p)-setorial, p ∈ {0} ∪ N and (12), (13) beful�lled. Then the subspae U1 is the phase spae of equation (23).In fat, due to orollaries 1, 2, equation (23) an be redued to the equivalent system

H
o
η
0(n)

= η0,
o
η
0(n)

= Sη1, (24)62 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSwhere η0 = (I−P )η, η1 = Pη. After applying Nelson � Gliklikh di�erentiation n times tothe �rst equation in (24) and using operator H on it, we onseutively obtain
0 = Hp+1

o
η
0(n(p+1))

= ... = H2
o
η
0(2n)

= ... = H
o
η
0(n)

= η0. (25)Thus, the ondition (i) of de�nition 4 is true. To prove the ful�llment of the ondition(ii), note that if ξm ∈ U1, m = 0, 1, . . . , n − 1, then there exists a unique solution ofthe problem (22), (24) and it is given by η1 = η1(t) =
n−1
∑

m=0

V t
mξm. Then the uniquesolution of the problem (22), (23) for ξm ∈ U1, m = 0, 1, . . . , n − 1, is given by

η(t) = η0(t) + η1(t) =
n−1
∑

m=0

V t
mξm.Corollary 5. Under the onditions of theorem 5 the solution of the problem (22), (23)is the Gaussian K-random proess if the random variables ξm, m = 0, 1, . . . , n − 1, areGaussian.We need to make a few remarks. Conditions (21) are respetively equivalent to thefollowing onditions:

P (
o
η
(m)

(0)− ξm) = 0 and lim
t→0+

P (
o
η
(m)

(t)− ξm) = 0. (26)Thus the following lemma is true.Lemma 4. Let the operator M be (L, n, p)-setorial, p ∈ {0} ∪ N and (12), (13) beful�lled. For all independent random variables ξm ∈ L2, m = 0, 1, . . . , n − 1, there existsa.s. a unique solution η ∈ C
∞
KL2 of the problem (21), (23), represented in the form

η(t) =
n−1
∑

m=0

V t
mξm, t ∈ R. If in addition ξm, m = 0, 1, . . . , n − 1 take values only in U1,then this solution is the unique solution of the problem (22), (23).Return to equation (20) and note that now I = (0, τ). Let the K-Wiener proess

w = w(t), t ∈ [0, τ) be suh that
(I−Q)Nw ∈ C

n(p+1)
K L2 and QNw ∈ CKL2, (27)then the K-random proess

η(t) = −
p

∑

q=0

HqM−1
0 (I−Q)N

o
w

(qn)
(t) +

t
∫

0

V t−s
n−1L

−1
1 QNw(s)ds (28)is a unique lassial solution of the problem (20), (21) with ξm ∈ V0, m = 0, ..., n− 1.Lemma 5. Let the operator M be (L, p)-bounded, p ∈ {0} ∪ N. For any K-random proess w = w(t) satisfying (27), and all independent random variables

ξm ∈ L2(Ω;U
0), m = 0, 1, . . . , n− 1, independent with w, there exists a.s. a uniquesolution η ∈ C

n
KL2 of the problem (20), (21), given by (28). If in addition

ξm = −
p

∑

q=0

HqM−1
0 (I−Q)N

o
w

(qn+m)
(0),2014, vol. 1, no. 1 63



A.A. Zamyshlyaevathen this solution is a unique solution of the problem (20), (22).Theorem 6. Let the operator M be (L, n, p)-setorial, p ∈ {0} ∪ N and (12), (13) beful�lled. For any N ∈ L(U;F) and K-random proess w = w(t) satisfying (27), and forall independent random variables ξm ∈ L2(Ω;U
0), m = 0, 1, . . . , n − 1, independent with

w, there exists a.s. a unique solution η ∈ C
n
KL2 of the problem (20), (21), represented inthe form

η(t) =
n−1
∑

m=0

V t
mξm −

p
∑

q=0

HqM−1
0 (I−Q)N

o
w

(qn)
(t) +

t
∫

0

V t−s
n−1L

−1
1 QNw(s)ds. (29)If in addition ξm, m = 0, 1, . . . , n− 1, satisfy

(P − I)ξm =

p
∑

q=0

HqM−1
0 (I−Q)N

o
w

(qn+m)
(0), (30)then the solution (29) is the solution of the problem (20), (22).However, "white noise" w(t) = o

WK (t) = (2t)−1WK(t) does not satisfy ondition (27),therefore it annot stand in the right side of (20). One approah to solving this problemis suggested in [24, 25℄ (inidentally, it also works for traditional white noise). To use thisapproah, transform the seond term in the right side of (28) as follows:
t

∫

ε

V t−s
n−1L

−1
1 QN

o

WK (s)ds = −V t−ε
n−1L

−1
1 QNWK(ε)−

t
∫

ε

d

dt
V t−s
n−1L

−1
1 NWK(s)ds =

= −V t−ε
n−1L

−1
1 QNWK(ε)−

t
∫

ε

V t−s
n−2L

−1
1 NWK(s)ds. (31)This integration by parts makes sense for any ε ∈ (0, t), t ∈ R+ due to de�nition ofthe Nelson � Gliklikh derivative. Letting ε → 0 in (31) we get

t
∫

0

V t−s
n−1L

−1
1 QN

o

WK (s)ds = −
t

∫

0

V t−s
n−2L

−1
1 NWK(s)ds. (32)Corollary 6. Let the operator M be (L, n, p)-setorial, p ∈ {0} ∪ N, and (12), (13) beful�lled, the operator N satis�es

QN = N. (33)Let I ⊂ R+. For all independent random variables ξm ∈ L2, m = 0, 1, . . . , n − 1,independent with WK, there exists a.s. a unique solution η ∈ C
n
KL2 of the problem (21)for the equation

L
o
η
(n)

=Mη +N
o

WK , (34)given by
η(t) =

n−1
∑

m=0

V t
mξm −

t
∫

0

V t−s
n−2L

−1
1 NWK(s)ds. (35)64 Journal of Computational and Engineering Mathematis



COMPUTATIONAL MATHEMATICSIf in addition ξm, m = 0, ..., n− 1 take values only in U1, then (35) is the unique solutionof the problem (22) for equation (34).Obviously, (35) is obtained from (28) due to (33) and limit transition (31) → (32),whereas ondition (33) plays the main role here.Theorem 7. Let the operator M be (L, n, p)-setorial, p ∈ {0} ∪ N, and (12), (13) beful�lled. For any operator N ∈ L(U;F) and for all independent U-valued random variables
ξm ∈ L2, independent with WK, there exists a.s. unique solution η = η(t) of the problem(26), (34) given by

η(t) =
n−1
∑

m=0

V t
mξm −

t
∫

0

V t−s
n−2L

−1
1 QNWK(s)ds−

p
∑

q=0

HqM−1
0 (I−Q)N

o

W
(qn+1)

K (t).4. The Cauhy problem for the stohasti Boussinesq � Lòveequation with additive "white noise"Let D ⊂ R
d be a bounded domain with the boundary ∂D of lass C∞. Fix l ∈ {0}∪Nand set G = W l
2(D), V = {u ∈ W l+2

2 (D) : u(x) = 0, x ∈ ∂D}. Obviously, V is a realseparable Hilbert spae densely and ontinuously embedded in G.Let {νj} be the sequene of eigenvalues of the Laplae operator (de�ned in D withhomogenous Dirihlet boundary onditions), numbered in nondereasing order aordingto multipliity, and by {ϕj} denote the set of orresponding eigenfuntions, orthonormalin the sense of V.Introdue the V-valued K-random proesses. Construt the operator Λ = (−1)m−1∆mwith domain domΛ = {W l+2(m+1)
2 (D) : ∆ku(x) = 0, x ∈ ∂D, k ∈ 0, 1, ..., m − 1}, m ∈ N.Note that the operator Λ has the same eigenfuntions {ϕj}, as the Laplae operator, but itsspetrum onsists of eigenvalues |νj |m. Sine their asymptoti |νj|m ∼ j

2m

d → ∞, j → ∞,we onsider that number m ∈ N is taken suh that the series ∞
∑

j=1

|νj|−m onverges for a�xed d ∈ N. Then the operator Λ is ontinuously invertible on V, whereas the inverseoperator (i.e. the Green operator) has the spetrum onsisting of eigenvalues µj = |νj|−m.That very operator we take as the nulear operator K.In the ylinder D × [0, T ], T ∈ R+ onsider the Cauhy � Dirihlet problem
ξ(x, 0) = ξ0(x), ξt(x, 0) = ξ1(x), x ∈ D, (36)

ξ(x, t) = 0, (x, t) ∈ ∂D × [0, T ] (37)for the equation
(λ−∆x)

o

ξtt= α∆xξ+
o

WK , (38)where WK =WK(t) is a V-valued K-Wiener proess.Set A = λ−∆, B = α∆.Lemma 6. For arbitrary λ ∈ R, α ∈ R+ the operator M is (L, 2, 0)-setorial.2014, vol. 1, no. 1 65



A.A. ZamyshlyaevaProof.The L-spetrum of the operator M has the form
σL(M) =

{

µk =
ανk
λ− νk

, k ∈ N \ {l : νl = λ}
}

. (39)Sine νk ∼ −k2/d for k → ∞, then, �rstly, there exists a setor, inluding σL(M), andonsequently the set
SL
θ,2(M) = {µ ∈ C : | arg(µ2)| < θ, µ 6= 0} ⊂ ρL2 (M).Seondly, for su�iently large |µ|, lying outside of this set
max

{

‖RL
µ2(M)‖L(U), ‖LL

µ2(M)‖L(F)
}

≤ const |µ|−2

∀µ ∈ SL
θ,2(M).This means that the operator M is (L, 2, 0)-setorial.

2Lemma 7. For arbitrary λ ∈ R, α ∈ R+ the onditions (12), (13) are ful�lled.Proof.Find out if the onditions (12), (13) take plae. Sine the spaes U and F are re�exive,then by Yagi � Fedorov theorem [4℄ and lemma 6 the ondition (12) is ful�lled and
(i) U0 = F0 = {0}, U1 = U, F1 = F, if λ 6= νk;
(ii) U0 = F0 = kerL = span {ϕj , j : λ = νj},
U1 = {u ∈ U : 〈u, ϕj〉 = 0, j : λ = νj},
F1 = {f ∈ F : 〈f, ϕj〉 = 0} = imL, if λ = νj ;The ondition (13) also takes plae and the operators

L−1
1 =

∑

k

′
〈·, ϕk〉ϕk

λ− νk
, M−1

0 =
∑

k:λ−νk=0

〈·, ϕk〉ϕk

ανk
.A single quote by the sum means the lak of summands for whih λ− νk = 0.

2Construt the propagators of the homogenous equation (38):
V t
0 =

∑

λ>λk

(·, ϕk)ϕk ch

√

αλk
λ− λk

t+
∑

λ<λk

(·, ϕk)ϕk cos

√

αλk
λk − λ

t,

V t
1 =

∑

λ<λk

(·, ϕk)ϕk

√

λ− λk
αλk

sh

√

αλk
λ− λk

t +
∑

λ>λk

(·, ϕk)ϕk

√

λk − λ

αλk
sin

√

αλk
λk − λ

t.Moreover,
V t−s
0 A−1

1 =
∑

λ>λk

(·, ϕk)ϕk

λ− λk
ch

√

αλk
λ− λk

(t− s)+66 Journal of Computational and Engineering Mathematis
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+

∑

λ<λk

(·, ϕk)ϕk

λ− λk
cos

√

αλk
λk − λ

(t− s).Thus, due to theorem 7, the following theorem is true.Theorem 8. For any α ∈ R+, λ ∈ R, T ∈ R+, for all independent ξ0, ξ1 ∈ L2(Ω;V
1),independent with WK for every �xed t, there exists a.s. a unique solution of the problem(36)�(38), given by

ξ(t) = V t
0 ξ0 + V t

1 ξ1 −
t

∫

0

V t−s
0 A−1

1 QWK(s)ds−M−1
0 (I−Q)

o

WK (t). (40)Proof.Due to lemmas 6, 7 all the onditions of theorem 7 are ful�lled.
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