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In the post-quantum era, asymmetric cryptosystems based on linear codes (code
cryptosystems) are considered as an alternative to modern asymmetric cryptosystems.
However, the research of the strength of code McEliece-type cryptosystems shows that
algebraically structured codes do not provide sufficient strength of these cryptosystems.
On the other hand, the use of random codes in such cryptosystems is impossible because
of the high complexity of its decoding. Strengthening of code cryptosystems is currently
conducted, usually, either by using codes for which no attacks are known, or by modifying
the cryptographic protocol. In this paper both of these approaches are used. On the one
hand, it is proposed to use the tensor product C' ® C? of the known codes C'* and C?, since
for C' ® C? in some cases it is possible to construct an effective decoding algorithm. On the
other hand, instead of a McEliece-type cryptosystem, it is proposed to use its modification,
a Berger — Loidreau cryptosystem. The paper proves a high strength of the constructed code
cryptosystem to attacks on the key even in the case when code cryptosystems on codes C*
and C? are cracked.

Keywords: the Berger — Loidreau cryptosystem; the tensor product of codes; the attack
on the key.

Introduction

In the basis of many cryptographic protocols which provide the confidentiality and /or
integrity of data in the process of protocol execution lays the use of numerical asymmetric
cryptosystems. For instance GOST P 34.10-2012, RSA, El-Gamal cryptosistem and more.
The security of these cryptosystems is based on the one way trapdoor functions. In
particular, the security of cryptosystems GOST R 34.10-2012 and El-Gamal is based
on the complexity of discrete logarithm in a finite group, and the security of RSA is
related to the complexity of factorization of large integers. According to [1], due to the
constant growth of computing capabilities, to provide acceptable resilience, the size of
the keys used in these cryptosystems should increase every year. However, increasing
the size of the key leads to an increase in the complexity of encryption and decryption.
Moreover, as follows from [2], for cryptoalgorithms based on complexity of factorization
of integers and on the complexity of discrete logarithm, there are theoretically effective
attacks based on quantum computing. In connection with the development of quantum
computing, an alternative to such numerical asymmetric cryptosystems can be asymmetric
code cryptosystems [3|, for instance, McEliece-type ones [4|. This assumption can be
justified. In fact, Grover’s quantum algorithm is effective for numerical cryptosystems
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and reinforces the attack on the ciphertext of the McEliece cryptosystem, nevertheless its
complexity depends exponentially on the n is a length of code underlying the McEliece
cryptosystem [5]. It should be noted that cryptosystems based on the McEliece are not
widely used in practice in the connection with the large size of their keys in comparison with
numerical cryptosystems, the strength of which is now considered sufficient. In addition to
high strength to breaking on quantum computers, encryption and decryption operations
of code cryptosystems are faster than similar operations of numerical cryptosystems. In
particular, a comparison of the hardware implementation of the McEliece cryptosystem
on Goppa codes with the hardware implementation of RSA-1024 in [6] showed that the
encryption and decryption operations of the code cryptosystem are faster by 20 and 2.5
times, respectively. Moreover, the encryption and decryption of the code cryptosystem
processes 50 and 30 respectively times more clear text bits than RSA-1024 [6].

Historically, the first code cryptosystem is the McEliece cryptosystem, which he
proposed in 1978 (see [4]). By now, many McEliece-type cryptosystems have been
extensively explored. Also, some weak classes of linear codes are known. It means that
McEliece-type cryptosystems based on such codes are vulnerable to attacks on the key —
structural attacks. In particular, in [8] - [10] effective algorithms of structural attacks are
constructed in the case when cryptosystem is based on Reed — Solomon codes. In [11],
[12] such algorithms are found in the case when cryptosystem is based on Reed — Muller
codes. In a number of works, in order to increase the strength to attacks on the key, it
is proposed to modify the cryptographic protocol (see [13], [14]). In particular, in [13] T.
Berger and P. Loidreau proposed a method of enhancing the strength of McEliece-type
cryptosystem. The main idea of the method is to use randomly selected subcode instead
of error correcting code. The weakness of the Berger — Loidreau system is shown in the
case of Reed — Solomon codes in [10], and in the particular case of Reed — Muller codes in
[15].

The results of [8] - [15] show that not any code may be used in McEliece-type or
Berger — Loidreau-type cryptosystems. Instead of searching for new codes for a McEliece-
type cryptosystem, it is possible to use codes based on known codes. For example, in [16]
it is suggested to use the induced codes in McEliece-type cryptosystems and in [17] it
is suggested to use tensor product of codes, which is a generalization of induced codes.
In these works, the high strength to key attacks on such McEliece-type cryptosystems is
shown. Using of such code constructions is also justified by the fact that there are effective
decoders for them [18], [17]. The present article is a continuation of the [16], [17] and is
devoted to the investigation of the possibility of using the tensor product of codes in code
cryptosystems of the Berger — Loidreau-type.

The definition of the tensor product of codes and the corresponding cryptosystem of
Berger — Loidreau-type are described in the first section.The second section is devoted
to the analysis of the strength of this cryptosystem. A third section is devoted to some
examples.

1. The Berger — Loidreau System Based on the Tensor Product

In this section the McEliece-type and the Berger — Loidreau-type code cryptosystems
are defined, known structural attacks on these cryptosystems are described and new
Berger — Loidreau-type cryptosystem based on the tensor product of codes is constructed.
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We shall use the basic of coding theory (see [7]). Let C be [n, k, d]-code of length n, of
dimension k with code distance d over the Galois field IF, and let G be the generator matrix
of this code. The linear span generated by the rows of the matrix M will be denoted by
L(M); in particular, £(G) = C. We also need the Gauss,, ,,, algorithm, which uses (m'xm)
matrix I' of rank s(< m’) and finds the (s x m/) matrix Z such that £(ZT") = L(I"). The
Hamming’s weight of vector e will be denoted as wt(e).

1.1. McEliece-type Cryptosystem

Under the McEliece-type cryptosystem based on [n, k, d]-code C' we mean an analogue
of an asymmetric cryptosystem described in [4]. In this cryptosystem the public key kpyup
is a pair (G,t = |(d—1)/2]), and the secret key Ky is a pair of matrices (S, P): S is a
random matrix from the set of nonsingular (k x k) matrices GL(k, ), P is a random matrix
from the set of permutational (n x n) matrices MP,,, and G = SGP. The encryption rule
for an arbitrary message s(€ F;) has the form:

z=sG +e, (1)

where wt(e) < t. For decryption z the secret key kg, is used:
s = Decc(zP)S™ 1, (2)

where Dece @ Fy — F’q“ — decoder of the code C'. Further such cryptosystem will be denoted
by McE(C).

1.2. Berger — Loidreau-type Cryptosystem

Let GL(K" x k;F,) be the set of (k' x k)-matrices of rank &k’ over F,. The public
key kyup in Berger — Loidreau-type cryptosystem based on [n,k,d]-code C is the pair
(G,t = [(d—1)/2]), and a secret key Ky is the pair (H, P), where H is randomly chosen
matrix from GL(K' x k;F,), P is randomly chosen matrix from MP,,, G = HGP. The rule
for encryption of an arbitrary message s(€ F ’;/) has the form (1), and for decryption z the

next rule is used: .
s = Decc(zP~ ') H™, (3)

where H™ is right inverse matrix, i.e. (k x k')-matrix such that H-H™ = [}, is the identity
matrix of rank £’. Further Berger — Loidreau-type system will be denoted by BLy (C).

1.3. On the Structural Attacks on Cryptosystems McE(C) and BL;/ (C)

Strength of cryptosystems McE(C') and BLy (C) depends on the underlying code
C. For example, if the C' is a Reed — Solomon code, then effective structural attacks on
the corresponding cryptosystems are constructed in [8] and [10]. In the case of using the
Reed — Muller code such attacks are constructed in [12], [15]. Note that in structural
attacks cryptanalyst usually finds not the original secret key, but suitable one as in the
case of McEliece-type cryptosystems. Recall that the automorphism group of the [n, k, d]-
code C' with the generator matrix G is the set PAut of permutation (n X n)-matrices P
for each of which there is a nonsingular (k x k)-matrix R’ such that |7]

R'G = GP. (4)
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Note that if the automorphism group of the [n, k] — code C' is nontrivial and G = HGP is
public key of the Berger — Loidreau-type cryptosystem, then there is more then one pair
of matrices (H', P') € GL(K', k,F) x MP,,, such that

G=HGP. (5)

Let

K(C,G) = {(H',P) € GL(¥,k,F) x MP,, : G = H'GP'}. (6)
Suitable key (H’, P’) for decryption is applied in accordance with the rule (3), where
instead of P the matrix P’ is used, and instead of H matrix H' is.

Remark 1. It is known (see [8]) if rank(H ) = rank(G), (H, P) is secret key, and (H', P’)
is suitable secret key, then
PP'"' € PAut(C). (7)

It was noted above that the cryptosystem BL; (C) for some codes was broken [10],
[15]. Further we will assume that there is an algorithm of structural attack Attackg
with complexity Q¢ (k’), which can found a suitable secret key (H’, P') for cryptosystem
BLi (C). Since 1 < k' < k, then for the family of cryptosystems {BLy (C)}i<p<k it is
conveniently to consider a family of structural attack algorithms

A(C) = {AttaCka/}lgklgk. (8)

In Section 1.5, a new code Berger — Loidreau-type cryptosystem will be constructed on
the basis of the tensor product of two codes C' and C?, and in Section 2 we investigate
the strength of this cryptosystem in the strong assumption that there are effective attacks
of (8) type on the Berger — Loidreau-type cryptosystems constructed on the codes C, C.

1.4. Tensor Product of Codes

Further (I x m)-matrix A = (a;;)i=0,..i-1; j=0...m—1 Will be written in row form:
A = (a;)!Z}. Under the tensor product A ® B for (k; x ni)-matrix A = (a,;) = (a;);"
and (ky x ny)-matrix B = (b;),' we mean as usual a matrix of the form:
aojoB Clo,nle ap & B
A ® B— CLLoB al,nle _ a; B ‘ <9)
ag-10B ... ap_1,1B a,_1®B

It is known (see [19]) that one can uniquely define such permutation matrices P, € MPy y,
and P, € MP,,,,, depending only on dimensions of the matrices A and B, which

A® B=P(B® AP, (10)

Let C? be [ng, ki, di]-code, G* = (g})¥! is generator matrix of the code C', i € {1,2}.
Consider the tensor product of the codes C* and C? i.e. the [ning, k1 ko, dids]-code C' @ C*
with generator matrix G' ® G* [20]:

1 2 1 2
go,oG 90,n171G

Gl ® G2 — g%,OCJ2 g%,n171G2 (11)
gi1—1,0G2 921—1,n—1G2
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Codes C' and C? will be referred to as multiplier codes. Note that the constructing of
an effective decoding algorithm (with polynomial complexity) for the code C' @ C? is a
special independent problem. For example, in the case when C! and C? are MLD -codes,
the problem of constructing such algorithms is considered in [17],[18]. It is further assumed
that for the code C' ® C? there is an effective decoding algorithm

Decoigee : Ftm2 — Fhithe,
Note that if Ay, ..., Ay, —1 € PAut(C?) are different, then in the general case
diag(Ao, ..., Ap,—1) € PAut(C* @ C?). (12)

1.5. Cryptosystem BL; (C' ® C?)

Let us define the Berger — Loidreau-type cryptosystem based on the code C! ®
C?. The secret key K. is a pair of matrices (H, P), where H is randomly chosen from
GL(K', k1ko, F), k' < kyko, P is randomly chosen from MP,, ,,,, and the public key is a pair
(Gt = |(dydy —1)/2]), where

G=H (G'®G? P (13)
The encryption rule for an arbitrary message s(€ F¥') has the form:
z = sG + e, wt(e) < t. (14)

The decryption rule is following: s = Deccigez(zP~1) H™.

2. The Strength of BL;/(C' ® C?) to Structural Attacks

Consider the cryptosystem BLy (C' ® C?) with the secret key (H, P) and the public
key (13) where the generator matrix G' ® G? of the code C' ® C? has the form (11).
In this section the strength of this cryptosystem to structural attacks is analyzed. It is
naturally to assume that the cryptanalysts knows families A(C') and A(C?) of effective
attack algorithms (8). Such strong adversary model is also used in [16] and [17]. Note
that in the case when C" is a Reed — Solomon code, the family A(C") of effective attack
algorithms can be constructed in accordance with [10]. For the case when C" is a Reed —
Muller code, such a family can be constructed, for example, using the results of the paper

[15].
2.1. Analysis of the Public Key Structure
We represent the (k' x kiky)-matrix H in the form:

H= ( Ho || Biy ) , (15)

where H; is (k" X ko)-matrix, consisting of columns of the matrix H with numbers from
iko to (i + 1)ko — 1. Then from (11) we get:

ki—1
H-(G'®G*) =(Ty| .|, ) Di=HG, Hi=)Y Hg, (16)
j=0
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It is easy to verify that the following set of permutation (ning X niny)-matrices
(")(TLQ, Tll) = {(M X InQ)diag(Dl, e Dnl)’M € MPn17 D, € MPnz,i =1,.., nl} . (17)

is a subgroup of the group MP,, ,.,, |©(na, n1)| = (na!)"'ny!. For an arbitrary permutation
matrix P from the group MP, ,, by the symbol O(ny,ni)P we denote the coset
{QP : Q € ©(na,ny)} of MP,,1,,/O(n2,n1). Any matrix from ©O(ng,n1)P will be called
the representative of this coset. Let €2, ,, be the set of representatives of all cosets:

(nlng)!
an,m = {Pla "'7PNn1,n2}> an,TLQ = W? (18>
i.e. MPy, ., = Upeq,, ., ©(n2,n1)P and O(ng,n1)P; N O(ng,n)P; = & for i # j. Note
that for large miny the problem of constructing the set €2,,,, can be computationally
difficult. One of the possible algorithms for constructing representatives of factor classes
is MakeRepresentatives.

Data: MP,,,,,,, ©(na,n;)
Result: 2, ,, — set of representatives of factor-set classes MP,, ., /©(n2, ny)
1. Quyn, =9
2. while |Q,, »,| < Ny, n, do

Arbitrary generate a matrix P’ € MP,,,,,,

if P' ¢ O(na,n1) u PQ™ ' & O(ng,ny) VQ € Qp, , then

‘ Qg = gy U {r'}

end if

end while

return Q,, ,,
Algorithm 1: MakeRepresentatives

Using the Stirling formula we get

(n1ng)! e \" o 1\ 1
Qn | = ~ / ni\n2 > ni\nz .
’ 2,11 ‘ (ng!)"1n1! 27Tn2 nQ(nl ) — \/n—2 (nl )

Since ny < 22"2, then

nl)ng—l

ny—1
’Q ‘ > 1 (nm)ng—l > (nl )
n2,n1l — \/TL_Q 1 = 2n2(n1*1)

Let my be the permutation acting on the set {0,...,m; — 1} that corresponds to
the permutation matrix M (€ MP,,), i.e. my; is a permutation such that for the matrix
X = (xY,...,x"m71), where x — vector-column, the following equality holds:

(19)

X M= (x”M(O), ...,x”M("lfl)).
Next we need the following technical lemma.

Lemma 1. Let the matriz G has the form (13), L =V P,V € ©(ny,ny). Then
1) there are matrices M € MP,,,, D; € MP,,,,i = 1,...,ny, such that

GL™' = ( I‘WM(O)DO ‘ ‘ FﬂM(nl—l)Dmfl ) ) (20)
2018, vol. 5, no. 2 21
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where I'; has the form (16);
2) if (20) satisfied and P, and P. are such permutation matrices, that
G' ® G* = B(G* ® G")P,, then there are matrices H, of rank not exceeding ki such that

GL M (diag(Dy, ..., DyL )P = (D) | o | Doy ) (21)
where T, = H,G' M.
Proof.
Let us prove the first statement. Since (13) we get
GL'=GP 'V '=H - (G'oGHV . (22)

As V71 € ©(ny, ny), then for some M € MP,,, D; € MP,,,, i = 0,...,n; — 1 we have
V-l = (M ® I,,,)diag(Dy, ..., D, _1) due to (17). From (22) we get:

GL™' =
H-(G'® G*)(M ® I,)diag(Do, ... Duy—1) & H - (G'M @ G*)diag(Dy, .., Dy 1) 2 (23)

: (©
=(Try0) \ \ Lrima—1) )diag(Do, ..., Dy, —1) = ( Try 00 Do \ \ Crrr—1)Dnio1 ), (24)

where the equality (a) follows from the properties of the tensor product of matrices, (b)
follows from (16) and the fact that matrix H - (G*M ® G?) differs from H - (G' ® G?) in
that in the first matrix the columns of G' are permuted in accordance with M, and the
equality (c) follows from the block-diagonal form of the matrix diag(Dy, ..., Dp,—1).

Now we prove the second assertion. It is not difficult to derive directly from (20) the
following equality:

GL M (diag((Do)™", ..., (Dp,—1) ")) P7' = HR(G? © G'M).

We express the matrix H P, in column form: HP, = ( ﬁ(’) ‘ ‘ ﬁ,’crl ) . Then
HP(G*®G'M) = (Ty| .|}, , ) T)=HGM H,= Y Hg,
§=0

In each matrix H  exactly ky columns, therefore the rank of ﬁ; does not exceed k.

2.2. Finding a Suitable Key

On the basis of the observations made in the previous section we reduce the
cryptanalysis of the system on the tensor product of codes to the cryptanalysis of systems
on the code-multipliers.

2.2.1. Cryptanalysis by Code-multiplier C?

Consider the matrix G of the public key (see (13)). Below we will assume that a
cryptanalyst knows the matrix L from the coset ©O(ng,ni)P, however, the matrix P
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is unknown. Then from lemma 1, there are such matrices M € MP,,, D, € MP,,,
i =1,...,nq, that the equality (20) is holds. But like P these matrices are not known too.

We transform the blocks from the right side of this equality (20) in such a way that
we can apply algorithms from the family A(C?) (see (8)). To do this we consider the
matrix T'; = H;G2, i € {0,...,ny — 1} (see (16)). As rank(G?) = k, and in the matrix H;
exactly ks columns, then from these observations we get that rank(I';) < ko. If we use
the permutation 7, acting on the set {0,...,n; — 1} and the corresponding permutation
matrix M (€ MP,,), then we get:

k> = rank(T'y,, iy D;) < ko. (25)

Let us consider (k" x ng)-matrix I';, ;)D; from (20). By the (25), using an algorithm
Gaussy ,, (see the begining of section 1) it is not difficult to construct a (k** x k’)-matrix

X;, that rank(X;Ty,, o D;) = k% Let be G = X,T'y,,(y Dy, H> = X;H;, then
G = H¥G2D;, rank(H>') = k>, (26)

Let us note that the matrix (26), which is a transformed block from the right side of
equality (20), is a public key of the cryptosystem BL;z:(C?). Therefore, an algorithm
Attack$; from the family A(C2) can be applied to the matrix G4

(H*', D;) = AttackS (G>Y). (27)

Remark 2. Further, in the case when the matrices M and M’ of the same rank
m generate the same space, two notations Attack® (M) and Attackcz(M’) will be
considered equivalent. For example, we will consider notations Attackkgl(GQ’i) and
Attackkg,i(l"ﬂM(z)Di) as equivalent, since the matrix G2 is obtained from Lr oD by
linear combination of rows and the ranks of these matrices coincide.

Lemma 2. Consider the public key matriz G = HGP which has a form (13). Suppose
that the matriz L € ©(ng,n1)P, for which the representation (20) is satisfied. Then
1) permutation matrices Dy,...,Dy,_1 can be found such that

GL 'diag(Dy, ..., Dyl )) = ( Ty Ao | | Trygma—1yAna—1 ) (28)

where M and T — unknown matrices from (20), and A = D;D7Y i=0,..,ny —1;
2) for each i = O, ...,n1 — 1 one can calculate the rank HWM from the (16)
3) if for some i the equality rank(Hy,, ;) = ko holds, then A; € PAut(C?).

Proof.

First we prove the first statement. The matrices D; we can get as a result of the action
of the attacks (27). To complete the proof of the lemma, it suffices to use the equality (23).
Due to the fact that rank(G?) = ko, rank of the matrix ﬁﬂM(i) is equal to the rank
of the matrix 'z, ;) = ﬁﬂM(i)Gz. The matrix A; is, as follows from the first statement of
the lemma, permutation matrix, therefore the ranks of the matrices I';,; and 'z, ;) 4;

coincide. So rank(ﬁwM( y) = rank(I'z, ;yA;) and this rank can be calculated by applylng
to the matrix I';,, ;) 4; the method of sequential elimination.

71'1%

77]\1 771\4

7T]M
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Now we prove the third statement. As rank(H;) = ko, then rank(T;) = ko
and, consequently, for the submatrix I';,,;D; in the presentation of (20) the equality
rank(I'z,, ) D;) = k2 holds. Therefore from (7) we get that D; D' € PAut(C?), where D,

is permutation matrix obtained from the attack Attackg; on the matrix I'x,, ;) D;.
O

We note that in the case of cryptanalysis by the multiplier C?, in place of the unknown
matrices Dy, ..., D,, 1, in the general case there are other matrices DO, e Enl_l. However,
these matrices in some cases help to advance in cryptanalysis in two variables. In the
following paragraphs, we will consider situations in which the matrix

diag(Ay, ..., An,_1) = diag(DoD7?, ..., Dp, 1 D71 ) (29)

ni—1

belongs to or does not belong to the group PAut(L(G*M @ G?)).

2.2.2. Cryptanalysis by C! in the Case of diag(Ay, ..., A,,_1) € PAut(L(G'M @ G?))

Recall that the cryptanalyst knows the matrix L € ©(ng,ny)P, for which (20) is
satisfied. In the previous section, the goal of cryptanalysis with respect to the multiplier
C? was to obtain information about unknown matrices Dy, ..., D,,, _1. Now let’s try to use
cryptanalysis by C* in the particular case and get information about the matrix M, and
then get suitable key (H', P’).

Suppose that diag(Ay, ..., An,—1) € PAut(L(G*M ® G?)). This is done for example in
the case when
Vi,j:i#j D:D7'=D;D;', D;D;' € PAut(C?).
By (4) for diag(Ay, ..., An,—1) there is a (k1ks X kiks)-matrix R, that
H(G'M ® G*)diag(Ao, ..., An,_1) = HR(G'M ® G?). (30)

We note that in (30) matrices H, M and diag(Ay, ..., An,—1) are unknown. If one can find
such a matrix M, that MM~ € PAut(C?), then, as will be shown below in the proof
of Theorem 1, matrix HR(G'M ® G?)(M~' ® I,,,) will be the generator matrix for some
subcode of the code C'®C?. Therefore in this case a matrix H’ can be found from equation

H'(G'®G?) = HR(G'M @ G*)(M ' ® I,,,).
Below we show how to find the matrix M. From (30) and (10) we get:
H(G'M @ G*)diag(Ay, ..., An,_1) P~ = HRP(G* @ G*M).

Represent HRP, as a concatenation (ﬁ(’)’\...]ﬁ,’é_l) (see (15)), then

H(G'M ® G*)diag(Aq, ..., An,—1) P, = HRP(G* @ G'M) = ( Ty | ... | T, ), (31)

na—1

where by analogy with (16): T = H/G'M, H/ = Zfi_ol f[]”gfl
Let k% = rank(T/), ¢ = 0,...,ny — 1. By analogy with the way it was done in
Section 2.2.1 in preparation for the use of cryptoalgorithm Attackkczi, we will construct
(k% x K')-matrix Y;, such that rank(V;I'¥) = k%, and denote G = Y;I'/, H = Y;H.
Then
GY = HYG'M, rank(H") = k' (32)
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(cf (26)). Note that the matrix (32) is a public key of the cryptosystem BLju:i(C?).
Therefore, an algorithm Attack$.: (€ A(C?)) can be applied to this matrix (see remark 2):

(H", M) = Attack$y, (GY) = Attack$: (TY).

Remark 3. If in (31) there is no submatrix I'} with rank k;, then some permutation
matrix M can be found using an algorithm from the family A(C"). However, for this
matrix condition MM~ € PAut(C?) as a equality (a) in (33) may not be fulfilled.

In the particular case when the matrix diag(Ao, ..., A,,—1) belongs to the automorphism
group of a code with a generator matrix G'M ® G?, to find a suitable secret key we
construct an algorithm SimpleAttackTensorBL. The input of this algorithm is the public
key G and a set representatives of coset classes (1, ,,, constructed using an algorithm
MakeRepresentatives. It is assumed that the algorithm MakeRepresentatives is performed
by the cryptanalyst in advance. If the input of the algorithm Attackg, is a matrix that
can not be represented in the form (5), then the output of the algorithm will be an error
message L. The output of the algorithm SimpleAttackTensorBL is the pair (H’, P"), which,
as proved below, is a suitable secret key of BLy (C* @ C2) with a public key (G, ).

Theorem 1. Let C' is [n;, ki, d;]-code, i = 1,2, G is public key of the form (13)
for BLp (C' @ C?), Quyn, is set of representatives of the factor set MP,,,,/O(na, ny),
diag(Ag, ..., Ay, 1) € PAut(L(G'M ® G?)) and in the form (31) there is at least
one submatriz I'! with rank ki. Then: 1) in the set Q,,,, there exists a unique
matriz L, for which the conditions of the lemma 1 are satisfied; 2) if for the
matriz L(€ Qy,,,) the conditions of the lemma 1 are satisfied, then the algorithm

SimpleAttackTensorBL(é Qyyny) finds the suitable secret key and the complexity of the
algorithm SimpleAttackTensorBL is O ( (n1na2)! )

(n2!)"iny!

Proof.

The existence of the matrix L for which condition (20) is satisfied follows from the
definition of €2,,, ,,, . Let us prove uniqueness. Suppose that there exists a L 7é L from Q,, ,,
that condition (20) holds, i.e there are such matrices M e MP,,, Dy, .. Dn1 € MP,,,, that

éfi*l — ( I‘7r~ DO ‘ ‘ o (ni— 1)15”1,1 ) .

From the proof of the first statement of the lemma 1 we get that the matrices L and L
belong to the same coset of MP,,, ,,,/O(n2,n;), which contradicts the definition of €, ,,.
Let us prove the second assertion. Since for L(€ €2, ,,) the condition of the lemma
1 is satisfied, then the matrix G’ in algorithm SimpleAttackTensorBL has the form (20).
Therefore, by lemma 2 such permutation matrices Do, ...,ﬁnl_l can be found, that for
é’diag(f)o_l, .. Dm1 ) = éLildiag(ﬁo_l, . Dml 1) the representation (28) holds. Since
diag(Ay, ..., Ay, 1) € PAut(L(G' M ®G?)) then there exists such nonsingular (ko X ky k‘g)
matrix R, that the equality (30) holds. Therefore, the matrix G” = ( G}, || Gl
the algorithm SimpleAttackTensorBL has the form (31), i.e. G, = I'/. Note that the blocks
G! = H/G'M for different i can have a different rank. By the hypothesis of the theorem
there is a block G/, of rank k; in the form (31). Therefore the permutation matrix M from
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Data: G, Qi na
Result: (H', P") — suitable secret key
k!.. = L //suitable secret key

sec

for each L € 2, ,, do

present the matrix G’ = GL7! in the form of concatenation of ny submatrices
of size (k' x ny) each:

G = (Gol|...| Gui1 ), Ky, =rank(Gy), i € {0,...,ny — 1}

if Attackf, (Gi)# L for alli € {0,...,ny — 1} then

(%, D;) = Attackf] (Gy), i € {0, ...m — 1}

G" = G'diag(Dy?, ..., Dyt )Pt

Matrix G” represent as a concatenation of ny submatrices of size (k' x ny)
each:

G = (G| .| Ghr ), K, = rank(GY), j € {0,...,n — 1}

no—1

if Attackkcxll_(Gg-) # L forall j € {0,...,ny — 1} then

if Thereis are {0,...,np — 1}, that ky, = k; then

(Y7, M) = Attackf, (G.)

P' = (M ® I,,,)diag(Dsy, ..., Dy, 1)L

if the equation H'(G* © G%) = GP'™" has a solution then
From equation H'(G* ® G?) = GP'™" find H’

k;ec = (Hl, P,)
Exit the cycle
end if
end if
end if
end if
end for
return k/

sec

Algorithm 2: SimpleAttackTensorBL

the output of Attacl«:kcll1 (G') is such that MM~' € PAut(C") (see (7)). The latter means
that such a nonsingular (k1 x k;)-matrix K can be found, that KG' = G'MM". Let
P'= (M ® I,,)diag(Dy, ..., D'y, —1) L. Then the following chain of equalities holds:

GP'™' = GL ' diag(Dy Y, .., D) (M @ 1)
= H(G' @ G*)(M @ I,,,)diag(D, ..., Dn,_1)diag(Dy ", .., D', (M7 @ 1,,,)
= H(G'M ® G*)diag(Ay, ..., Ap) ) (Mt @ 1,,,)
= HR(G'M @ G (M@ 1I,,) = HR(G*'MM ™' ® G?)

WHRKG © )Y HR(K ® I,)(G* © G?). (33)
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From (b) it follows that equation H'(G' ® G2) = GP'~' with unknown H’ (see
SimpleAttackTensorBL) has a solution. Then (H’, P’) is suitable secret key.

The complexity of the algorithm SimpleAttackTensorBL follows from the fact that it
enumerates the elements of the set €2, ,,, and at each iteration, effective (polynomial)
algorithms are performed.

O

Remark 4. It follows from the theorem that even with the onerous condition that the
matrix diag(Ay, ..., A,, 1) belongs to the automorphism group of a code with a generator
matrix G'M ® G2, the complexity of the cryptanalytical algorithm SimpleAttackTensorBL
nonpolynomially depends on the length of the code C! @ C?.

Remark 5. If there is not a single submatrix in the (31) form I'/ of rank Ay, then some
permutation matrix Mcan be found, for example, using an algorithm from the family
A(C"). However, for this matrix the condition MM~' € PAut(C?) may not be fulfilled,
therefore the equality (a) in (33) in this case will be not fulfilled.

2.2.3. Cryptanalysis over C'! in the Case of diag(Ay, ..., A,, 1) € PAut(L(G' M®G?))

The assumption made in the theorem 1 concerning the membership of the matrix
diag(Ay, ..., An,—1) to the automorphism group of the code with the generator matrix
G'M ® G?, is pretty strong. In the general case

diag(Ag, ..., Ap, 1) € PAUt(L(G*M @ G?)) (34)

(see (12)), i.e there may not exist a matrix R such that (30) holds. Therefore, in order to
find the unknown component M the matrix diag(Ao, ..., A,,—1) will have to be searched,
for example, by a brute force. However, then, as in the algorithm SimpleAttackTensorBL
it is necessary to scour through the set €,,,, (or Q,, .,, see (10)), since before using
cryptanalysis, it is necessary to find a matrix satisfying the condition 1) of the lemma 1.
The scan through the set of representatives has complexity O (min {|€2,, 1, |5 |2nyn, | }) With

rough estimate
L e o
@) (mm{ ra(ni=1) 3 i (ma=T) : (35)

(see (19)). The estimate (35) does not depend on %', so for the system BL; (C* ® C?) the
search for multiple representatives is similar to the search performed in the cryptoalgorithm
from [17] for the system McE(C! @ C?). The difference is manifested only in the
implementation of each iteration in the enumeration cycle: for McE(C!'®C?) an algorithm
for breaking McE(C?) is used, but for BLy (C* ® C?) no less sophisticated algorithm for
BLk;(C") is used. Therefore, the Berger — Loidreau-type cryptosystem BLy (C! @ C?) has
no less strength to structural attacks than McE(C! @ C?).

In conclusion, we note the Theorem 1 proposes conditions under which the complexity

(nin2)!
(nz!)"l ni!

additional conditions that greatly facilitate cryptanalysis are not found. So a suitable
secret key can be found by a complete search of the permutation matrices, that is, the
complexity of finding a suitable secret key is O ((nins)!).

of finding a suitable secret key is (9( > However, in the general case of (34)
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3. Examples of Evaluating the Strength of a System BLy (C! @ C?)

In this section, we will evaluate the strength of a cryptosystem BLy (C! @ C?) in
the case when C', C? are binary Reed — Muller codes (see [7]). We will assume that the
cryptanalyst is strong and he succeeds in using the conditions of Theorem 1. Specifically,
it is assumed that the cryptanalyst has a set €, ,, (or ,, .,), diag(Ao, ..., An,—1)(€
PAut(L(G'M ® G?))) has the form (29) and there is at least one submatrix I'/ of rank k;
in the presentation (31). In other words, the cryptanalyst is placed in the most favorable
conditions for cryptanalysis of the system BLy (C' ® C?), found in this paper. Suppose, for
example, C! = C? is binary Reed — Muller code of order m, length n = 2™, m € N. From
(35) we get, that scour through the set Q,,,, has a complexity of at least O (207D =27y,
At present, according to [1], it is considered computationally not applicable to search
through a key set of power 2!2® and more. Therefore, for all m such that (m—1)(22m—2™) >
128, corresponding cryptosystem BLy (C?®@(C?) will have high strength. In particular, high
strength is provided for m > 4.

Besides high strength to structural attacks public-key cryptosystems must have high
strength to attacks on the ciphertext. For McEliece code cryptosystems typical attacks on
the ciphertext are based on decoding by information sets, including attacks on a repeated
message. To ensure high strength to such attacks, a popular method of adding «padding» to
the encrypted block is used (see [16], [21],[22]). In [22] proved, that such cryptosystems are
semantically secure. In [21] for an arbitrary finite field F, general formulas for estimating
the probability of success of attacks based on decoding by information sets are found.
In particular, in Theorem 3 from [21]| the probability p evaluation formula is obtained
for successful illegitimate decryption of the message on two ciphertexts in the case, when
the padding method is applied. We note that the formulas in [21] do not depend on the
structure of the public key, but depend only on its size, the number of errors corrected
by the error code and the length of the encrypted information block. Therefore, these
formulas are applicable to BL; (C* @ C?).

Let’s consider an example when C! is [128,29,32]-Reed — Muller code, C? is
256, 93, 32]-Reed — Muller code, and C' @ C? is [32768,2697,1024]-code. In this case,
ny = 2™ ny = 2™ where m; = 7, my = 8, therefore for a cryptosystem BLy (C! @ C?)
provides high strength to the above-mentioned attacks on the key, since m; > 4. In [21]
it is shown, that the cryptosystem McE(C' ® C?) in the case where in the encrypted
block of length 2697 bits the first 1348 bits are allocated for the information message,
and the remaining 1349 bits are selected randomly (padding) provides high strength to
attack on a repeated message: probability p of successful illegitimate decryption of the
message on two ciphertexts using the method of decoding on information sets does not
exceed 1.7 - 10718 (see [21], table 3, row 3). However, similar calculations performed for
a cryptosystem BLy (C! @ C?) show that its strength to attacks on the ciphertext is less
than that of the system McE(C' @ C?). The table 1 contains the results of calculating p
for BLy/ (C' ® C?). As one can see, p increases with decreasing k', since with decreasing k'’
increases probability of choosing coordinates in the ciphertext, which are not spoiled by
the error vector added during encryption (see (1)). We also note that with decreasing &',
the coding rate R also decreases.

The authors are sincerely grateful to O. Turchenko for assistance in preparing
the manuscript.
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Table

Probability p of success of attack on two ciphertexts
of the Berger — Loidreau cryptosystem

K |k /2] R D
2497 1248 0,03811 2.92-10°1%
2297 1148 0, 03506 7.86- 10717
2097 1048 0,03201 2.09 - 1071
1897 948 0, 02896 5.52- 1071
1697 848 0, 02590 1.43-10712
1497 748 0, 02285 3.71-1071
1297 648 0,01980 9.48 - 10710
1097 548 0,01675 2.39-1078
897 448 0,01370 5.99 - 1077
697 348 0,01065 1.48-107°
497 248 0,00759 3.63-107%
297 148 0,00454 8.81-1073
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YAK 517.9 DOI: 10.14529/jcem180202

O KOJOBON KPUIITOCUCTEME BEPT'EPA — JIOSPE
HA OCHOBE TEH3OPHOI'O IIPO3BE/JIEHNA KOJI0OB

B. M. /leynosx, FO. B. Kocoaanos

B nocTkBaHTOBYIO 310Xy aCUMMETPUYHbIE KPUIITOCUCTEMBI Ha, OCHOBE JIMHEMHBIX KOJOB
(KOZIOBbIE KPUIITOCUCTEMbI) PACCMATPUBAIOTCS KAK AJbTEPHATHBA COBPEMEHHBIM aCUMMET-
puuHbiM KpunirocucteMaMm. OIHAKO PE3yIbTATHI MCCJIEIOBAHNSA CTONKOCTHA KOJIOBBIX KDHII-
rocucreM Tuiia Mak-Diica MOKa3bIBaIOT, YTO airebpandecKu CTPYKTYPUPOBAHHBIE KOJIBI He
00€eCIIeInBAIOT JIOCTATOYHYIO CTOMKOCTH 9TuX KpunrocucrteM. C Ipyroii CTOPOHBI, UCIIOTb-
30BaHME CJIy4YailHbIX KOJOB B TAKMX KPHUIITOCHCTEMAX HEBO3MOXKHO M3-38 BBICOKON CJIOXKHO-
CTH JEKOJUPOBAHUS TAKUX KOJIOB. YCHJIEHWE KOJIOBBIX KPHUIITOCHCTEM B HACTOSIIEE BPEMs
BEJIeTCsl, OOBITHO, JIMOO Iy TEM UCIIOJIb30BAHNS KOJIOB, JJIsi KOTOPBIX HE U3BECTHBI ATAKH, JIH-
60 myTeM MOAU(MUKANNE KPUITOrpahUIecKoro mpoToKoa. B HacTosmmeir paboTe CTpOnUTCst
KOJIOBasl KPUIITOCUCTEMA, TJI€ UCIOIL3YIOTCs 00a 3TuX 1moaxona. C oIHON CTOPOHBI, ITpeJia-
raercs IPUMEHATH TeH3opHoe mnpoussenerne C' ® C? uzpectrrx xomos C' u C?, Tak Kak
s Ct @ C? B page cIydaes yaaeTcs IOCTPOUTE 3DPEKTHBHEI aJIrOPHTM JeKOINPOBAHNI.
C apyroii cTOPOHBI, BMECTO KPHUIITOCACTEMBI THIa Mak-Diinca mpejiaraeTcs uCrioab30BaTh
ee Momudukanuo — Kpunrocucremy tuma beprepa — Jlosape. B pabore moka3zaHna BbICOKas
CTOWKOCTD MMOCTPOEHHOI KOJIOBOM KPUIITOCUCTEMBI K aTaKaM Ha, KJII0Y JIazKe B CJIydae, KOTJIa
KOJIOBbIe KpurtocucreMbl Ha Kogax O u C? B3jioMaHbL.

Karouesne caosa: kpunmocucmema Bepeepa — Jloadpe; menzoproe npousdsederue ko-

aOS,' amaxa Ha KA.
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