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In the post-quantum era, asymmetric cryptosystems based on linear codes (code
cryptosystems) are considered as an alternative to modern asymmetric cryptosystems.
However, the research of the strength of code McEliece-type cryptosystems shows that
algebraically structured codes do not provide sufficient strength of these cryptosystems.
On the other hand, the use of random codes in such cryptosystems is impossible because
of the high complexity of its decoding. Strengthening of code cryptosystems is currently
conducted, usually, either by using codes for which no attacks are known, or by modifying
the cryptographic protocol. In this paper both of these approaches are used. On the one
hand, it is proposed to use the tensor product C1⊗C2 of the known codes C1 and C2, since
for C1⊗C2 in some cases it is possible to construct an effective decoding algorithm. On the
other hand, instead of a McEliece-type cryptosystem, it is proposed to use its modification,
a Berger – Loidreau cryptosystem. The paper proves a high strength of the constructed code
cryptosystem to attacks on the key even in the case when code cryptosystems on codes C1

and C2 are cracked.
Keywords: the Berger – Loidreau cryptosystem; the tensor product of codes; the attack

on the key.

Introduction
In the basis of many cryptographic protocols which provide the confidentiality and/or

integrity of data in the process of protocol execution lays the use of numerical asymmetric
cryptosystems. For instance GOST P 34.10-2012, RSA, El-Gamal cryptosistem and more.
The security of these cryptosystems is based on the one way trapdoor functions. In
particular, the security of cryptosystems GOST R 34.10-2012 and El-Gamal is based
on the complexity of discrete logarithm in a finite group, and the security of RSA is
related to the complexity of factorization of large integers. According to [1], due to the
constant growth of computing capabilities, to provide acceptable resilience, the size of
the keys used in these cryptosystems should increase every year. However, increasing
the size of the key leads to an increase in the complexity of encryption and decryption.
Moreover, as follows from [2], for cryptoalgorithms based on complexity of factorization
of integers and on the complexity of discrete logarithm, there are theoretically effective
attacks based on quantum computing. In connection with the development of quantum
computing, an alternative to such numerical asymmetric cryptosystems can be asymmetric
code cryptosystems [3], for instance, McEliece-type ones [4]. This assumption can be
justified. In fact, Grover’s quantum algorithm is effective for numerical cryptosystems
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and reinforces the attack on the ciphertext of the McEliece cryptosystem, nevertheless its
complexity depends exponentially on the n is a length of code underlying the McEliece
cryptosystem [5]. It should be noted that cryptosystems based on the McEliece are not
widely used in practice in the connection with the large size of their keys in comparison with
numerical cryptosystems, the strength of which is now considered sufficient. In addition to
high strength to breaking on quantum computers, encryption and decryption operations
of code cryptosystems are faster than similar operations of numerical cryptosystems. In
particular, a comparison of the hardware implementation of the McEliece cryptosystem
on Goppa codes with the hardware implementation of RSA-1024 in [6] showed that the
encryption and decryption operations of the code cryptosystem are faster by 20 and 2.5
times, respectively. Moreover, the encryption and decryption of the code cryptosystem
processes 50 and 30 respectively times more clear text bits than RSA-1024 [6].

Historically, the first code cryptosystem is the McEliece cryptosystem, which he
proposed in 1978 (see [4]). By now, many McEliece-type cryptosystems have been
extensively explored. Also, some weak classes of linear codes are known. It means that
McEliece-type cryptosystems based on such codes are vulnerable to attacks on the key –
structural attacks. In particular, in [8] - [10] effective algorithms of structural attacks are
constructed in the case when cryptosystem is based on Reed – Solomon codes. In [11],
[12] such algorithms are found in the case when cryptosystem is based on Reed – Muller
codes. In a number of works, in order to increase the strength to attacks on the key, it
is proposed to modify the cryptographic protocol (see [13], [14]). In particular, in [13] T.
Berger and P. Loidreau proposed a method of enhancing the strength of McEliece-type
cryptosystem. The main idea of the method is to use randomly selected subcode instead
of error correcting code. The weakness of the Berger – Loidreau system is shown in the
case of Reed – Solomon codes in [10], and in the particular case of Reed – Muller codes in
[15].

The results of [8] - [15] show that not any code may be used in McEliece-type or
Berger – Loidreau-type cryptosystems. Instead of searching for new codes for a McEliece-
type cryptosystem, it is possible to use codes based on known codes. For example, in [16]
it is suggested to use the induced codes in McEliece-type cryptosystems and in [17] it
is suggested to use tensor product of codes, which is a generalization of induced codes.
In these works, the high strength to key attacks on such McEliece-type cryptosystems is
shown. Using of such code constructions is also justified by the fact that there are effective
decoders for them [18], [17]. The present article is a continuation of the [16], [17] and is
devoted to the investigation of the possibility of using the tensor product of codes in code
cryptosystems of the Berger – Loidreau-type.

The definition of the tensor product of codes and the corresponding cryptosystem of
Berger – Loidreau-type are described in the first section.The second section is devoted
to the analysis of the strength of this cryptosystem. A third section is devoted to some
examples.

1. The Berger – Loidreau System Based on the Tensor Product
In this section the McEliece-type and the Berger – Loidreau-type code cryptosystems

are defined, known structural attacks on these cryptosystems are described and new
Berger – Loidreau-type cryptosystem based on the tensor product of codes is constructed.
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We shall use the basic of coding theory (see [7]). Let C be [n, k, d]-code of length n, of
dimension k with code distance d over the Galois field Fq and let G be the generator matrix
of this code. The linear span generated by the rows of the matrix M will be denoted by
L(M); in particular, L(G) = C. We also need the Gaussm′,m algorithm, which uses (m′×m)
matrix Γ of rank s(≤ m′) and finds the (s×m′) matrix Z such that L(ZΓ) = L(Γ). The
Hamming’s weight of vector e will be denoted as wt(e).

1.1. McEliece-type Cryptosystem

Under the McEliece-type cryptosystem based on [n, k, d]-code C we mean an analogue
of an asymmetric cryptosystem described in [4]. In this cryptosystem the public key kpub

is a pair (G̃, t = ⌊(d− 1)/2⌋), and the secret key ksec is a pair of matrices (S, P ): S is a
random matrix from the set of nonsingular (k×k) matrices GL(k,F), P is a random matrix
from the set of permutational (n× n) matrices MPn, and G̃ = SGP . The encryption rule
for an arbitrary message s(∈ Fk

q) has the form:

z = sG̃+ e, (1)

where wt(e) ≤ t. For decryption z the secret key ksec is used:

s = DecC(zP
−1)S−1, (2)

where DecC : Fn
q → Fk

q – decoder of the code C. Further such cryptosystem will be denoted
by McE(C).

1.2. Berger – Loidreau-type Cryptosystem

Let GL(k′ × k;Fq) be the set of (k′ × k)-matrices of rank k′ over Fq. The public
key kpub in Berger – Loidreau-type cryptosystem based on [n, k, d]-code C is the pair
(G̃, t = ⌊(d− 1)/2⌋), and a secret key ksec is the pair (H,P ), where H is randomly chosen
matrix from GL(k′× k;Fq), P is randomly chosen matrix from MPn, G̃ = HGP . The rule
for encryption of an arbitrary message s(∈ Fk′

q ) has the form (1), and for decryption z the
next rule is used:

s = DecC(zP
−1)H inv, (3)

where H inv is right inverse matrix, i.e. (k×k′)-matrix such that H ·H inv = Ik′ is the identity
matrix of rank k′. Further Berger – Loidreau-type system will be denoted by BLk′(C).

1.3. On the Structural Attacks on Cryptosystems McE(C) and BLk′(C)

Strength of cryptosystems McE(C) and BLk′(C) depends on the underlying code
C. For example, if the C is a Reed – Solomon code, then effective structural attacks on
the corresponding cryptosystems are constructed in [8] and [10]. In the case of using the
Reed – Muller code such attacks are constructed in [12], [15]. Note that in structural
attacks cryptanalyst usually finds not the original secret key, but suitable one as in the
case of McEliece-type cryptosystems. Recall that the automorphism group of the [n, k, d]-
code C with the generator matrix G is the set PAut of permutation (n × n)-matrices P̂
for each of which there is a nonsingular (k × k)-matrix R′ such that [7]

R′G = GP̂ . (4)
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Note that if the automorphism group of the [n, k] – code C is nontrivial and G̃ = HGP is
public key of the Berger – Loidreau-type cryptosystem, then there is more then one pair
of matrices (H ′, P ′) ∈ GL(k′, k,F)×MPn, such that

G̃ = H ′GP ′. (5)

Let
K(C, G̃) = {(H ′, P ′) ∈ GL(k′, k,F)×MPn : G̃ = H ′GP ′}. (6)

Suitable key (H ′, P ′) for decryption is applied in accordance with the rule (3), where
instead of P the matrix P ′ is used, and instead of H matrix H ′ is.

Remark 1. It is known (see [8]) if rank(H) = rank(G), (H,P ) is secret key, and (H ′, P ′)
is suitable secret key, then

PP ′−1 ∈ PAut(C). (7)

It was noted above that the cryptosystem BLk′(C) for some codes was broken [10],
[15]. Further we will assume that there is an algorithm of structural attack AttackCk′
with complexity QC(k′), which can found a suitable secret key (H ′, P ′) for cryptosystem
BLk′(C). Since 1 ≤ k′ ≤ k, then for the family of cryptosystems {BLk′(C)}1≤k′≤k it is
conveniently to consider a family of structural attack algorithms

A(C) = {AttackCk′}1≤k′≤k. (8)

In Section 1.5, a new code Berger – Loidreau-type cryptosystem will be constructed on
the basis of the tensor product of two codes C1 and C2, and in Section 2 we investigate
the strength of this cryptosystem in the strong assumption that there are effective attacks
of (8) type on the Berger – Loidreau-type cryptosystems constructed on the codes C1, C2.

1.4. Tensor Product of Codes

Further (l × m)-matrix A = (ai,j)i=0,...,l−1; j=0,...,m−1 will be written in row form:
A = (ai)

l−1
i=0. Under the tensor product A ⊗ B for (k1 × n1)-matrix A = (ai,j) = (ai)

k1−1
i=0

and (k2 × n2)-matrix B = (bi)
k2−1
i=0 we mean as usual a matrix of the form:

A⊗B =


a0,0B ... a0,n−1B
a1,0B ... a1,n−1B
... ... ...

ak−1,0B ... ak−1,n−1B

 =


a0 ⊗B
a1 ⊗B

...
ak1−1 ⊗B

 . (9)

It is known (see [19]) that one can uniquely define such permutation matrices Pl ∈ MPk1k2

and Pr ∈ MPn1n2 , depending only on dimensions of the matrices A and B, which

A⊗B = Pl(B ⊗ A)Pr. (10)

Let C i be [ni, ki, di]-code, Gi = (gi
j)

ki−1
j=0 is generator matrix of the code C i, i ∈ {1, 2}.

Consider the tensor product of the codes C1 and C2 i.e. the [n1n2, k1k2, d1d2]-code C1⊗C2

with generator matrix G1 ⊗G2 [20]:

G1 ⊗G2 =


g10,0G

2 ... g10,n1−1G
2

g11,0G
2 ... g11,n1−1G

2

... ... ...
g1k1−1,0G

2 ... g1k1−1,n−1G
2

 . (11)
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Codes C1 and C2 will be referred to as multiplier codes. Note that the constructing of
an effective decoding algorithm (with polynomial complexity) for the code C1 ⊗ C2 is a
special independent problem. For example, in the case when C1 and C2 are MLD -codes,
the problem of constructing such algorithms is considered in [17],[18]. It is further assumed
that for the code C1 ⊗ C2 there is an effective decoding algorithm

DecC1⊗C2 : Fn1+n2 → Fk1+k2 .

Note that if A0, ..., An1−1 ∈ PAut(C2) are different, then in the general case

diag(A0, ..., An1−1) ̸∈ PAut(C1 ⊗ C2). (12)

1.5. Cryptosystem BLk′(C
1 ⊗ C2)

Let us define the Berger – Loidreau-type cryptosystem based on the code C1 ⊗
C2. The secret key ksec is a pair of matrices (H,P ), where H is randomly chosen from
GL(k′, k1k2,F), k′ < k1k2, P is randomly chosen from MPn1n2 , and the public key is a pair
(G̃, t = ⌊(d1d2 − 1)/2⌋), where

G̃ = H · (G1 ⊗G2) · P. (13)

The encryption rule for an arbitrary message s(∈ Fk′) has the form:

z = sG̃+ e,wt(e) ≤ t. (14)

The decryption rule is following: s = DecC1⊗C2(zP−1)H inv.

2. The Strength of BLk′(C
1 ⊗ C2) to Structural Attacks

Consider the cryptosystem BLk′(C
1 ⊗ C2) with the secret key (H,P ) and the public

key (13) where the generator matrix G1 ⊗ G2 of the code C1 ⊗ C2 has the form (11).
In this section the strength of this cryptosystem to structural attacks is analyzed. It is
naturally to assume that the cryptanalysts knows families A(C1) and A(C2) of effective
attack algorithms (8). Such strong adversary model is also used in [16] and [17]. Note
that in the case when Ci is a Reed – Solomon code, the family A(Ci) of effective attack
algorithms can be constructed in accordance with [10]. For the case when Ci is a Reed –
Muller code, such a family can be constructed, for example, using the results of the paper
[15].

2.1. Analysis of the Public Key Structure

We represent the (k′ × k1k2)-matrix H in the form:

H =
(

Ĥ0 ... Ĥk1−1

)
, (15)

where Ĥi is (k′ × k2)-matrix, consisting of columns of the matrix H with numbers from
ik2 to (i+ 1)k2 − 1. Then from (11) we get:

H · (G1 ⊗G2) =
(
Γ0 ... Γn1−1,

)
,Γi = H̃iG

2, H̃i =

k1−1∑
j=0

Ĥjg
1
j,i. (16)
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It is easy to verify that the following set of permutation (n1n2 × n1n2)-matrices

Θ(n2, n1) = {(M ⊗ In2)diag(D1, ..., Dn1)|M ∈ MPn1 , Di ∈ MPn2 , i = 1, ..., n1} . (17)

is a subgroup of the group MPn1n2 , |Θ(n2, n1)| = (n2!)
n1n1!. For an arbitrary permutation

matrix P from the group MPn1n2 by the symbol Θ(n2, n1)P we denote the coset
{QP : Q ∈ Θ(n2, n1)} of MPn1n2/Θ(n2, n1). Any matrix from Θ(n2, n1)P will be called
the representative of this coset. Let Ωn2,n1 be the set of representatives of all cosets:

Ωn2,n1 = {P1, ..., PNn1,n2
}, Nn1,n2 =

(n1n2)!

(n2!)n1n1!
, (18)

i.e. MPn1n2 = ∪P∈Ωn2,n1
Θ(n2, n1)P and Θ(n2, n1)Pi ∩ Θ(n2, n1)Pj = ∅ for i ̸= j. Note

that for large n1n2 the problem of constructing the set Ωn2,n1 can be computationally
difficult. One of the possible algorithms for constructing representatives of factor classes
is MakeRepresentatives.

Data: MPn1n2 , Θ(n2, n1)
Result: Ωn2,n1 – set of representatives of factor-set classes MPn1n2/Θ(n2, n1)
1. Ωn2,n1 = ∅
2. while |Ωn2,n1 | < Nn1,n2 do

Arbitrary generate a matrix P ′ ∈ MPn1n2

if P ′ ̸∈ Θ(n2, n1) и PQ−1 ̸∈ Θ(n2, n1) ∀Q ∈ Ωn2,n1 then
Ωn2,n1 = Ωn2,n1 ∪ {P ′}

end if
end while
return Ωn2,n1

Algorithm 1: MakeRepresentatives

Using the Stirling formula we get

|Ωn2,n1 | =
(n1n2)!

(n2!)n1n1!
≈

(
e√
2πn2

)n1 √
n2(n

n1
1 )n2−1 ≥

(
1

√
n2

)n1−1

(nn1
1 )n2−1.

Since n2 < 22n2 , then

|Ωn2,n1 | ≥
(

1
√
n2

)n1−1

(nn1
1 )n2−1 ≥ (nn1

1 )n2−1

2n2(n1−1)
. (19)

Let πM be the permutation acting on the set {0, ..., n1 − 1} that corresponds to
the permutation matrix M(∈ MPn1), i.e. πM is a permutation such that for the matrix
X = (x0, ...,xn1−1), where xi – vector-column, the following equality holds:

X ·M = (xπM (0), ...,xπM (n1−1)).

Next we need the following technical lemma.

Lemma 1. Let the matrix G̃ has the form (13), L = V P , V ∈ Θ(n2, n1). Then
1) there are matrices M ∈ MPn1 , Di ∈ MPn2 , i = 1, ..., n1, such that

G̃L−1 =
(
ΓπM (0)D0 ... ΓπM (n1−1)Dn1−1

)
, (20)
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where Γi has the form (16);
2) if (20) satisfied and Pl and Pr are such permutation matrices, that

G1 ⊗G2 = Pl(G
2 ⊗G1)Pr, then there are matrices H̃′

i of rank not exceeding k1 such that

G̃L−1(diag(D−1
0 , ..., D−1

n1−1))P
−1
r =

(
Γ′

0 ... Γ′
n2−1

)
, (21)

where Γ′
i = H̃′

iG
1M .

Proof.
Let us prove the first statement. Since (13) we get

G̃L−1 = G̃P−1V −1 = H · (G1 ⊗G2)V −1. (22)

As V −1 ∈ Θ(n2, n1), then for some M ∈ MPn1 , Di ∈ MPn2 , i = 0, ..., n1 − 1 we have
V −1 = (M ⊗ In2)diag(D0, ..., Dn1−1) due to (17). From (22) we get:

G̃L−1 =

H · (G1 ⊗G2)(M ⊗ In2)diag(D0, ..., Dn1−1)
(a)
= H · (G1M ⊗G2)diag(D0, ..., Dn1−1)

(b)
= (23)

=( ΓπM (0) ... ΓπM (n1−1) )diag(D0, ..., Dn1−1)
(c)
= ( ΓπM (0)D0 ... ΓπM (n1−1)Dn1−1 ), (24)

where the equality (a) follows from the properties of the tensor product of matrices, (b)
follows from (16) and the fact that matrix H · (G1M ⊗G2) differs from H · (G1 ⊗G2) in
that in the first matrix the columns of G1 are permuted in accordance with M , and the
equality (c) follows from the block-diagonal form of the matrix diag(D0, ..., Dn1−1).

Now we prove the second assertion. It is not difficult to derive directly from (20) the
following equality:

G̃L−1(diag((D0)
−1, ..., (Dn1−1)

−1))P−1
r = HPl(G

2 ⊗G1M).

We express the matrix HPl in column form: HPl =
(

Ĥ ′
0 ... Ĥ ′

k2−1

)
. Then

HPl(G
2 ⊗G1M) =

(
Γ′

0 ... Γ′
n2−1

)
,Γ′

i = H̃′
iG

1M, H̃′
i =

k2−1∑
j=0

Ĥ ′
jg

2
j,i.

In each matrix Ĥ ′
j exactly k1 columns, therefore the rank of H̃′

i does not exceed k1.

2

2.2. Finding a Suitable Key

On the basis of the observations made in the previous section we reduce the
cryptanalysis of the system on the tensor product of codes to the cryptanalysis of systems
on the code-multipliers.

2.2.1. Cryptanalysis by Code-multiplier C2

Consider the matrix G̃ of the public key (see (13)). Below we will assume that a
cryptanalyst knows the matrix L from the coset Θ(n2, n1)P , however, the matrix P
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is unknown. Then from lemma 1, there are such matrices M ∈ MPn1 , Di ∈ MPn2 ,
i = 1, ..., n1, that the equality (20) is holds. But like P these matrices are not known too.

We transform the blocks from the right side of this equality (20) in such a way that
we can apply algorithms from the family A(C2) (see (8)). To do this we consider the
matrix Γi = H̃iG

2, i ∈ {0, ..., n1 − 1} (see (16)). As rank(G2) = k2 and in the matrix H̃i

exactly k2 columns, then from these observations we get that rank(Γi) ≤ k2. If we use
the permutation πM acting on the set {0, ..., n1 − 1} and the corresponding permutation
matrix M(∈ MPn1), then we get:

k2,i := rank(ΓπM (i)Di) ≤ k2. (25)

Let us consider (k′ × n2)-matrix ΓπM (i)Di from (20). By the (25), using an algorithm
Gaussk′,n2 (see the begining of section 1.) it is not difficult to construct a (k2,i × k′)-matrix
Xi, that rank(XiΓπM (i)Di) = k2,i. Let be G̃2,i = XiΓπM (i)Di, H2,i = XiH̃i, then

G̃2,i = H2,iG2Di, rank(H2,i) = k2,i. (26)

Let us note that the matrix (26), which is a transformed block from the right side of
equality (20), is a public key of the cryptosystem BLk2,i(C

2). Therefore, an algorithm
AttackC

2

k2,i from the family A(C2) can be applied to the matrix G̃2,i:

(Ĥ2,i, D̂i) = AttackC
2

k2,i(G̃
2,i). (27)

Remark 2. Further, in the case when the matrices M and M ′ of the same rank
m generate the same space, two notations AttackC

2

m (M) and AttackC
2

m (M ′) will be
considered equivalent. For example, we will consider notations AttackC

2

k2,i(G̃
2,i) and

AttackC
2

k2,i(ΓπM (i)Di) as equivalent, since the matrix G̃2,i is obtained from ΓπM (i)Di by
linear combination of rows and the ranks of these matrices coincide.

Lemma 2. Consider the public key matrix G̃ = HGP which has a form (13). Suppose
that the matrix L ∈ Θ(n2, n1)P , for which the representation (20) is satisfied. Then

1) permutation matrices D̂0,...,D̂n1−1 can be found such that

G̃L−1diag(D̂−1
0 , ..., D̂−1

n1−1) =
(
ΓπM (0)A0 ... ΓπM (n1−1)An1−1

)
, (28)

where M and ΓπM (i) – unknown matrices from (20), and Ai = DiD̂
−1
i , i = 0, ..., n1 − 1;

2) for each i = 0, ..., n1 − 1 one can calculate the rank H̃πM (i) from the (16);
3) if for some i the equality rank(H̃πM (i)) = k2 holds, then Ai ∈ PAut(C2).

Proof.
First we prove the first statement. The matrices D̂i we can get as a result of the action

of the attacks (27). To complete the proof of the lemma, it suffices to use the equality (23).
Due to the fact that rank(G2) = k2, rank of the matrix H̃πM (i) is equal to the rank

of the matrix ΓπM (i) = H̃πM (i)G
2. The matrix Ai is, as follows from the first statement of

the lemma, permutation matrix, therefore the ranks of the matrices ΓπM (i) and ΓπM (i)Ai

coincide. So rank(H̃πM (i)) = rank(ΓπM (i)Ai) and this rank can be calculated by applying
to the matrix ΓπM (i)Ai the method of sequential elimination.
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Now we prove the third statement. As rank(H̃i) = k2, then rank(Γi) = k2
and, consequently, for the submatrix ΓπM (i)Di in the presentation of (20) the equality
rank(ΓπM (i)Di) = k2 holds. Therefore from (7) we get that DiD̂

−1
i ∈ PAut(C2), where D̂i

is permutation matrix obtained from the attack AttackC
2

k2
on the matrix ΓπM (i)Di.

2
We note that in the case of cryptanalysis by the multiplier C2, in place of the unknown

matrices D0, ..., Dn1−1, in the general case there are other matrices D̂0, ..., D̂n1−1. However,
these matrices in some cases help to advance in cryptanalysis in two variables. In the
following paragraphs, we will consider situations in which the matrix

diag(A0, ..., An1−1) = diag(D0D̂
−1
0 , ..., Dn1−1D̂

−1
n1−1) (29)

belongs to or does not belong to the group PAut(L(G1M ⊗G2)).

2.2.2. Cryptanalysis by C1 in the Case of diag(A0, ..., An1−1) ∈ PAut(L(G1M⊗G2))

Recall that the cryptanalyst knows the matrix L ∈ Θ(n2, n1)P , for which (20) is
satisfied. In the previous section, the goal of cryptanalysis with respect to the multiplier
C2 was to obtain information about unknown matrices D0, ..., Dn1−1. Now let’s try to use
cryptanalysis by C1 in the particular case and get information about the matrix M , and
then get suitable key (H ′, P ′).

Suppose that diag(A0, ..., An1−1) ∈ PAut(L(G1M ⊗G2)). This is done for example in
the case when

∀i, j : i ̸= j DiD̂
−1
i = DjD̂

−1
j , DiD̂

−1
i ∈ PAut(C2).

By (4) for diag(A0, ..., An1−1) there is a (k1k2 × k1k2)-matrix R, that

H(G1M ⊗G2)diag(A0, ..., An1−1) = HR(G1M ⊗G2). (30)

We note that in (30) matrices H, M and diag(A0, ..., An1−1) are unknown. If one can find
such a matrix M̂ , that MM̂−1 ∈ PAut(C1), then, as will be shown below in the proof
of Theorem 1, matrix HR(G1M ⊗G2)(M̂−1 ⊗ In2) will be the generator matrix for some
subcode of the code C1⊗C2. Therefore in this case a matrix H ′ can be found from equation

H ′(G1 ⊗G2) = HR(G1M ⊗G2)(M̂−1 ⊗ In2).

Below we show how to find the matrix M̂ . From (30) and (10) we get:

H(G1M ⊗G2)diag(A0, ..., An1−1)P
−1
r = HRPl(G

2 ⊗G1M).

Represent HRPl as a concatenation (Ĥ ′′
0 |...|Ĥ ′′

k2−1) (see (15)), then

H(G1M ⊗G2)diag(A0, ..., An1−1)P
−1
r = HRPl(G

2 ⊗G1M) =
(
Γ′′

0 ... Γ′′
n2−1

)
, (31)

where by analogy with (16): Γ′′
i = H̃′′

iG
1M , H̃′′

i =
∑k2−1

j=0 Ĥ ′′
j g

2
j,i.

Let k1,i = rank(Γ′′
i ), i = 0, ..., n2 − 1. By analogy with the way it was done in

Section 2.2.1 in preparation for the use of cryptoalgorithm AttackC
2

k2,i , we will construct
(k1,i × k′)-matrix Yi, such that rank(YiΓ

′′
i ) = k1,i, and denote G̃1,i = YiΓ

′′
i , H1,i = YiH̃

′′
i .

Then
G̃1,i = H1,iG1M, rank(H1,i) = k1,i (32)
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(cf (26)). Note that the matrix (32) is a public key of the cryptosystem BLk1,i(C
1).

Therefore, an algorithm AttackC
1

k1,i(∈ A(C1)) can be applied to this matrix (see remark 2):

(Ĥ1,i, M̂) = AttackC
1

k1,i(G̃
1,i) = AttackC

1

k1,i(Γ
′′
i ).

Remark 3. If in (31) there is no submatrix Γ′′
i with rank k1, then some permutation

matrix M̂ can be found using an algorithm from the family A(C1). However, for this
matrix condition MM̂−1 ∈ PAut(C2) as a equality (a) in (33) may not be fulfilled.

In the particular case when the matrix diag(A0, ..., An1−1) belongs to the automorphism
group of a code with a generator matrix G1M ⊗ G2, to find a suitable secret key we
construct an algorithm SimpleAttackTensorBL. The input of this algorithm is the public
key G̃ and a set representatives of coset classes Ωn2,n1 , constructed using an algorithm
MakeRepresentatives. It is assumed that the algorithm MakeRepresentatives is performed
by the cryptanalyst in advance. If the input of the algorithm AttackCk′ is a matrix that
can not be represented in the form (5), then the output of the algorithm will be an error
message ⊥. The output of the algorithm SimpleAttackTensorBL is the pair (H ′, P ′), which,
as proved below, is a suitable secret key of BLk′(C

1 ⊗ C2) with a public key (G̃, t).

Theorem 1. Let C i is [ni, ki, di]-code, i = 1, 2, G̃ is public key of the form (13)
for BLk′(C

1 ⊗ C2), Ωn2,n1 is set of representatives of the factor set MPn1n2/Θ(n2, n1),
diag(A0, ..., An1−1) ∈ PAut(L(G1M ⊗ G2)) and in the form (31) there is at least
one submatrix Γ′′

i with rank k1. Then: 1) in the set Ωn2,n1 there exists a unique
matrix L, for which the conditions of the lemma 1 are satisfied; 2) if for the
matrix L(∈ Ωn2,n1) the conditions of the lemma 1 are satisfied, then the algorithm
SimpleAttackTensorBL(G̃,Ωn2,n1) finds the suitable secret key and the complexity of the
algorithm SimpleAttackTensorBL is O

(
(n1n2)!

(n2!)n1n1!

)
.

Proof.
The existence of the matrix L for which condition (20) is satisfied follows from the

definition of Ωn2,n1 . Let us prove uniqueness. Suppose that there exists a L̃ ̸= L from Ωn2,n1 ,
that condition (20) holds, i.e there are such matrices M̃ ∈ MPn1 , D̃0, ..., D̃n1 ∈ MPn2 , that

G̃L̃−1 =
(

Γπ
M̃

(0)D̃0 ... Γπ
M̃

(n1−1)D̃n1−1

)
.

From the proof of the first statement of the lemma 1 we get that the matrices L and L̃
belong to the same coset of MPn1n2/Θ(n2, n1), which contradicts the definition of Ωn2,n1 .

Let us prove the second assertion. Since for L(∈ Ωn2,n1) the condition of the lemma
1 is satisfied, then the matrix G̃′ in algorithm SimpleAttackTensorBL has the form (20).
Therefore, by lemma 2 such permutation matrices D̂0, ..., D̂n1−1 can be found, that for
G̃′diag(D̂−1

0 , ..., D̂−1
n1−1) = G̃L−1diag(D̂−1

0 , ..., D̂−1
n1−1) the representation (28) holds. Since

diag(A0, ..., An1−1) ∈ PAut(L(G1M⊗G2)) then there exists such nonsingular (k1k2×k1k2)-
matrix R, that the equality (30) holds. Therefore, the matrix G̃′′ = ( G′

0 ... G′
n2−1 ) in

the algorithm SimpleAttackTensorBL has the form (31), i.e. G′
i = Γ′′

i . Note that the blocks
G′

i = H̃′′
iG

1M for different i can have a different rank. By the hypothesis of the theorem
there is a block G′

r of rank k1 in the form (31). Therefore the permutation matrix M̂ from
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Data: G̃, Ωn2,n1

Result: (H ′, P ′) – suitable secret key
k′
sec = ⊥ //suitable secret key

for each L ∈ Ωn2,n1 do
present the matrix G̃′ = G̃L−1 in the form of concatenation of n1 submatrices
of size (k′ × n2) each:

G̃′ =
(
G0 ... Gn1−1

)
, k′

2,i = rank(Gi), i ∈ {0, ..., n1 − 1}

if AttackC
2

k′2,i
(Gi) ̸= ⊥ for all i ∈ {0, ..., n1 − 1} then

(Ĥ2,i, D̂i) = AttackC
2

k′2,i
(Gi), i ∈ {0, ..., n1 − 1}

G̃′′ = G̃′diag(D̂−1
0 , ..., D̂−1

n1−1)P
−1
r

Matrix G̃′′ represent as a concatenation of n2 submatrices of size (k′ × n1)
each:

G̃′′ =
(
G′

0 ... G′
n2−1

)
, k′

1,j = rank(G′
j), j ∈ {0, ..., n2 − 1}

if AttackC
1

k′1,j
(G′

j) ̸= ⊥ for all j ∈ {0, ..., n2 − 1} then
if There is a r ∈ {0, ..., n2 − 1}, that k′

1,r = k1 then
(Ĥ1,r, M̂) = AttackC

1

k′1,r
(G′

r)

P ′ = (M̂ ⊗ In2)diag(D̂0, ..., D̂n1−1)L

if the equation H ′(G1 ⊗G2) = G̃P ′−1 has a solution then
From equation H ′(G1 ⊗G2) = G̃P ′−1 find H ′

k′
sec = (H ′, P ′)

Exit the cycle
end if

end if
end if

end if
end for
return k′

sec
Algorithm 2: SimpleAttackTensorBL

the output of AttackC
1

k′1,r
(G′

r) is such that MM̂−1 ∈ PAut(C1) (see (7)). The latter means

that such a nonsingular (k1 × k1)-matrix K can be found, that KG1 = G1MM̂−1. Let
P ′ = (M̂ ⊗ In2)diag(D

′
0, ..., D

′
n1−1)L. Then the following chain of equalities holds:

G̃P ′−1
= G̃L−1diag(D′−1

0 , ..., D′−1
n1−1)(M̂

−1 ⊗ In2)

= H(G1 ⊗G2)(M ⊗ In2)diag(D0, ..., Dn1−1)diag(D
′−1
0 , ..., D′−1

n1−1)(M̂
−1 ⊗ In2)

= H(G1M ⊗G2)diag(A0, ..., An1)(M̂
−1 ⊗ In2)

= HR(G1M ⊗G2)(M̂−1 ⊗ In2) = HR(G1MM̂−1 ⊗G2)

(a)
= HR(KG1 ⊗G2)

(b)
= HR(K ⊗ Ik2)(G

1 ⊗G2). (33)
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From (b) it follows that equation H ′(G1 ⊗ G2) = G̃P ′−1 with unknown H ′ (see
SimpleAttackTensorBL) has a solution. Then (H ′, P ′) is suitable secret key.

The complexity of the algorithm SimpleAttackTensorBL follows from the fact that it
enumerates the elements of the set Ωn2,n1 , and at each iteration, effective (polynomial)
algorithms are performed.

2

Remark 4. It follows from the theorem that even with the onerous condition that the
matrix diag(A0, ..., An1−1) belongs to the automorphism group of a code with a generator
matrix G1M⊗G2, the complexity of the cryptanalytical algorithm SimpleAttackTensorBL
nonpolynomially depends on the length of the code C1 ⊗ C2.

Remark 5. If there is not a single submatrix in the (31) form Γ′′
i of rank k1, then some

permutation matrix M̂can be found, for example, using an algorithm from the family
A(C1). However, for this matrix the condition MM̂−l ∈ PAut(C2) may not be fulfilled,
therefore the equality (a) in (33) in this case will be not fulfilled.

2.2.3. Cryptanalysis over C1 in the Case of diag(A0, ..., An1−1) ̸∈PAut(L(G1M⊗G2))

The assumption made in the theorem 1 concerning the membership of the matrix
diag(A0, ..., An1−1) to the automorphism group of the code with the generator matrix
G1M ⊗G2, is pretty strong. In the general case

diag(A0, ..., An1−1) ̸∈ PAut(L(G1M ⊗G2)) (34)

(see (12)), i.e there may not exist a matrix R such that (30) holds. Therefore, in order to
find the unknown component M the matrix diag(A0, ..., An1−1) will have to be searched,
for example, by a brute force. However, then, as in the algorithm SimpleAttackTensorBL
it is necessary to scour through the set Ωn2,n1 (or Ωn1,n2 , see (10)), since before using
cryptanalysis, it is necessary to find a matrix satisfying the condition 1) of the lemma 1.
The scan through the set of representatives has complexity O (min {|Ωn1,n2 |; |Ωn2,n1 |}) with
rough estimate

O
(
min

{
(nn1

1 )n2−1

2n2(n1−1)
;
(nn2

2 )n1−1

2n1(n2−1)

})
, (35)

(see (19)). The estimate (35) does not depend on k′, so for the system BLk′(C
1 ⊗C2) the

search for multiple representatives is similar to the search performed in the cryptoalgorithm
from [17] for the system McE(C1 ⊗ C2). The difference is manifested only in the
implementation of each iteration in the enumeration cycle: for McE(C1⊗C2) an algorithm
for breaking McE(Ci) is used, but for BLk′(C

1 ⊗ C2) no less sophisticated algorithm for
BLk′i

(Ci) is used. Therefore, the Berger – Loidreau-type cryptosystem BLk′(C
1 ⊗C2) has

no less strength to structural attacks than McE(C1 ⊗ C2).
In conclusion, we note the Theorem 1 proposes conditions under which the complexity

of finding a suitable secret key is O
(

(n1n2)!
(n2!)n1n1!

)
. However, in the general case of (34)

additional conditions that greatly facilitate cryptanalysis are not found. So a suitable
secret key can be found by a complete search of the permutation matrices, that is, the
complexity of finding a suitable secret key is O ((n1n2)!).
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3. Examples of Evaluating the Strength of a System BLk′(C
1 ⊗C2)

In this section, we will evaluate the strength of a cryptosystem BLk′(C
1 ⊗ C2) in

the case when C1, C2 are binary Reed – Muller codes (see [7]). We will assume that the
cryptanalyst is strong and he succeeds in using the conditions of Theorem 1. Specifically,
it is assumed that the cryptanalyst has a set Ωn2,n1 (or Ωn1,n2), diag(A0, ..., An1−1)(∈
PAut(L(G1M ⊗G2))) has the form (29) and there is at least one submatrix Γ′′

i of rank k1
in the presentation (31). In other words, the cryptanalyst is placed in the most favorable
conditions for cryptanalysis of the system BLk′(C

1⊗C2), found in this paper. Suppose, for
example, C1 = C2 is binary Reed – Muller code of order m, length n = 2m, m ∈ N. From
(35) we get, that scour through the set Ωn,n has a complexity of at least O(2(m−1)(22m−2m)).
At present, according to [1], it is considered computationally not applicable to search
through a key set of power 2128 and more. Therefore, for all m such that (m−1)(22m−2m) ≥
128, corresponding cryptosystem BLk′(C

1⊗C2) will have high strength. In particular, high
strength is provided for m ≥ 4.

Besides high strength to structural attacks public-key cryptosystems must have high
strength to attacks on the ciphertext. For McEliece code cryptosystems typical attacks on
the ciphertext are based on decoding by information sets, including attacks on a repeated
message. To ensure high strength to such attacks, a popular method of adding «padding» to
the encrypted block is used (see [16], [21],[22]). In [22] proved, that such cryptosystems are
semantically secure. In [21] for an arbitrary finite field Fq general formulas for estimating
the probability of success of attacks based on decoding by information sets are found.
In particular, in Theorem 3 from [21] the probability p evaluation formula is obtained
for successful illegitimate decryption of the message on two ciphertexts in the case, when
the padding method is applied. We note that the formulas in [21] do not depend on the
structure of the public key, but depend only on its size, the number of errors corrected
by the error code and the length of the encrypted information block. Therefore, these
formulas are applicable to BLk′(C

1 ⊗ C2).
Let’s consider an example when C1 is [128, 29, 32]-Reed – Muller code, C2 is

[256, 93, 32]-Reed – Muller code, and C1 ⊗ C2 is [32768, 2697, 1024]–code. In this case,
n1 = 2m1 , n2 = 2m2 , where m1 = 7, m2 = 8, therefore for a cryptosystem BLk′(C

1 ⊗ C2)
provides high strength to the above-mentioned attacks on the key, since mi > 4. In [21]
it is shown, that the cryptosystem McE(C1 ⊗ C2) in the case where in the encrypted
block of length 2697 bits the first 1348 bits are allocated for the information message,
and the remaining 1349 bits are selected randomly (padding) provides high strength to
attack on a repeated message: probability p of successful illegitimate decryption of the
message on two ciphertexts using the method of decoding on information sets does not
exceed 1.7 · 10−18 (see [21], table 3, row 3). However, similar calculations performed for
a cryptosystem BLk′(C

1 ⊗ C2) show that its strength to attacks on the ciphertext is less
than that of the system McE(C1 ⊗ C2). The table 1 contains the results of calculating p
for BLk′(C

1 ⊗C2). As one can see, p increases with decreasing k′, since with decreasing k′

increases probability of choosing coordinates in the ciphertext, which are not spoiled by
the error vector added during encryption (see (1)). We also note that with decreasing k′,
the coding rate R also decreases.

The authors are sincerely grateful to O. Turchenko for assistance in preparing
the manuscript.
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Table

Probability p of success of attack on two ciphertexts
of the Berger – Loidreau cryptosystem

k′ ⌊k′/2⌋ R p
2497 1248 0, 03811 2.92 · 10−18

2297 1148 0, 03506 7.86 · 10−17

2097 1048 0, 03201 2.09 · 10−15

1897 948 0, 02896 5.52 · 10−14

1697 848 0, 02590 1.43 · 10−12

1497 748 0, 02285 3.71 · 10−11

1297 648 0, 01980 9.48 · 10−10

1097 548 0, 01675 2.39 · 10−8

897 448 0, 01370 5.99 · 10−7

697 348 0, 01065 1.48 · 10−5

497 248 0, 00759 3.63 · 10−4

297 148 0, 00454 8.81 · 10−3
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УДК 517.9 DOI: 10.14529/jcem180202

О КОДОВОЙ КРИПТОСИСТЕМЕ БЕРГЕРА – ЛОЭДРЕ
НА ОСНОВЕ ТЕНЗОРНОГО ПРОИЗВЕДЕНИЯ КОДОВ

В. М. Деундяк, Ю. В. Косолапов

В постквантовую эпоху асимметричные криптосистемы на основе линейных кодов
(кодовые криптосистемы) рассматриваются как альтернатива современным асиммет-
ричным криптосистемам. Однако результаты исследования стойкости кодовых крип-
тосистем типа Мак-Элиса показывают, что алгебраически структурированные коды не
обеспечивают достаточную стойкость этих криптосистем. С другой стороны, исполь-
зование случайных кодов в таких криптосистемах невозможно из-за высокой сложно-
сти декодирования таких кодов. Усиление кодовых криптосистем в настоящее время
ведется, обычно, либо путем использования кодов, для которых не известны атаки, ли-
бо путем модификации криптографического протокола. В настоящей работе строится
кодовая криптосистема, где используются оба этих подхода. С одной стороны, предла-
гается применять тензорное произведение C1 ⊗ C2 известных кодов C1 и C2, так как
для C1⊗C2 в ряде случаев удается построить эффективный алгоритм декодирования.
С другой стороны, вместо криптосистемы типа Мак-Элиса предлагается использовать
ее модификацию – криптосистему типа Бергера – Лоэдре. В работе показана высокая
стойкость построенной кодовой криптосистемы к атакам на ключ даже в случае, когда
кодовые криптосистемы на кодах C1 и C2 взломаны.

Ключевые слова: криптосистема Бергера – Лоэдре; тензорное произведение ко-
дов; атака на ключ.

Литература
1. Lenstra, A.K. Selecting Cryptographic Key Sizes / A.K. Lenstra, E.R. Verheul //

Journal of Cryptology. – 2001. – V. 14. – P. 255–293.

2. Bernstein, D.J. Post-Quantum Cryptography / D.J. Bernstein, J. Buchmann,
E. Dahmen. – Berlin: Springer, 2009.

3. Sendrier, N. Code-Based Cryptography: New Security Solutions Against a Quantum
Adversary / N. Sendrier, J.P. Tillich. – url: https://hal.archives-ouvertes.fr/hal-
01410068/document (запрос 4 июня 2018 г.).

4. McEliece, R.J. A Public-Key Cryptosystem Based on Algebraic Coding Theory /
R.J. McEliece // JPL Deep Space Network Progress Report. – 1978. – № 42. –
P. 114–116.

5. Bernstein, D.J. Grover vs. McEliece / D.J. Bernstein // Lecture Notes in Computer
Science. – 2010. – V. 6061. – P. 73–80.

6. Eisenbarth, T. MicroEliece: McEliece for Embedded Devices / T. Eisenbarth,
T. Guneysu, S. Heyse, C. Paar // Proceedings of the 11th International Workshop on
Cryptographic Hardware and Embedded Systems. – 2009. – P. 49–64.

7. Сидельников, В.М. Теория кодирования / В.М. Сидельников. – М.: ФИЗМАТ-
ЛИТ, 2008.

2018, vol. 5, no. 2 31



V. M. Deundyak, Yu. V. Kosolapov

8. Sidel’nikov, V.M. On an Encoding System Constructed on the Basis of Generalized
Reed – Solomon Codes / V.M. Sidel’nikov, S.O. Shestakov // Discrete Mathematics
and Applications. – 1992. – V. 2, № 4. – P. 439–444.

9. Деундяк, В.М. Модификация криптоаналитического алгоритма Сидельникова-
Шестакова для обобщенных кодов Рида – Соломона и ее программная реали-
зация / В.М. Деундяк, М.А. Дружинина, Ю.В. Косолапов // Известия выс-
ших учебных заведений. Северо-Кавказский регион. Технические науки. – 2006. –
№ 4. – С. 15–19.

10. Wieschebrink, C. Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS
Subcodes / C. Wieschebrink // Third International Workshop, PQCrypto. – Berlin:
Springer, 2010. – P. 61–72.

11. Minder, L. Cryptanalysis of the Sidelnikov Cryptosystem / L. Minder,
A. Shokrollahi // Lecture Notes in Computer Science. – 2007. – V. 4515. – P. 347–360.

12. Бородин, М.А. Эффективная атака на криптосистему Мак-Элиса, построенную
на основе кодов Рида – Маллера / И.В. Чижов, М.А. Бородин // Дискретная
математика. – 2014. – T. 26, № 1. – С. 10–20.

13. Berger, T. How to Mask the Structure of Codes for a Cryptographic Use / T. Berger,
P. Loidreau // Designs, Codes and Cryptography. – 2005. – V. 35, № 1. – P. 63–79.

14. Baldi, M. Enhanced Public Key Security for the McEliece Cryptosystem / M. Baldi,
M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani // Journal of Cryptology. –
2016. – V. 29, № 1. – P. 1–27.

15. Чижов, И.В. Криптоанализ криптосистемы Мак-Элиса, построенной на (k − 1)-
подкодах кода Рида – Маллера / И.В. Чижов, М.А. Бородин // ПДМ. Приложе-
ние. – 2016. – № 9. – C. 73–75.

16. Деундяк, В.М. Криптосистема на индуцированных групповых кодах / В.М. Де-
ундяк, Ю.В. Косолапов // Модел. и анализ информ. систем. – 2016. – Т. 23, № 2. –
С. 137–152.

17. Деундяк, В.М. Декодирование тензорного произведения MLD-кодов и приложе-
ния к кодовым криптосистемам / В.М. Деундяк, Ю.В. Косолапов, Е.А. Лелюк //
Модел. и анализ информ. систем. – 2017. – Т. 24, № 2. – С. 239–252.

18. Деундяк, В.М. Алгоритмы для мажоритарного декодирования групповых кодов /
В.М. Деундяк, Ю.В. Косолапов // Модел. и анализ информ. систем. – 2015. –
Т. 22, № 4. – С. 464–482.

19. Henderson, H.V. The Vec-Permutation Matrix, the Vec Operator and Kronecker
Products: A Review / H.V. Henderson, S.R. Searle // Linear and Multilinear
Algebra. – 1981. – № 9. – P. 271–288.

20. Morelos-Zaragoza, R.H. The Art of Error Correcting Coding / R.H. Morelos-
Zaragoza. – Chichester: John Wiley & Sons, 2006.

32 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

21. Деундяк, В.М. Использование тензорного произведения кодов Рида – Маллера в
асимметричной криптосистеме типа Мак-Элиса и анализ ее стойкости к атакам
на шифрограмму / В.М. Деундяк, Ю.В. Косолапов // Вычислительные техноло-
гии. – 2017. – Т. 22, № 4. – С. 43–60.

22. Nojima, R. Semantic Security for the McEliece Cryptosystem without Random
Oracles / R. Nojima, H. Imai, K. Kobara, K. Morozov // Designs, Codes and
Cryptography. – 2008. – V. 49, № 1-3. – P. 289–305.

Деундяк Владимир Михайлович, кандидат физико-математических наук, до-
цент, Институт математики, механики и компьютерных наук им. И.И. Во-
ровича, Южный федеральный университет; ФГНУ НИИ ≪Спецвузавтомати-
ка≫ (г. Ростов-на-Дону, Российская Федерация), vl.deundyak@gmail.com.

Косолапов Юрий Владимирович, кандидат технических наук, Институт мате-
матики, механики и компьютерных наук им. И.И. Воровича, Южный федеральный
университет (г. Ростов-на-Дону, Российская Федерация), itaim@mail.ru.

Поступила в редакцию 25 мая 2018 г.

2018, vol. 5, no. 2 33


