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An existence of solution theorem is obtained for stochastic differential inclusions given
in terms of the so-called current velocities (symmetric mean derivatives, a direct analogs
of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving
information on the diffusion coefficient) on the flat n-dimensional torus. Right-hand sides in
both the current velocity part and the quadratic part are set-valued, lower semi-continuous
but not necessarily have convex images. Instead we suppose that they are decomposable.
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Introduction

The notion of mean derivatives was introduced by Edward Nelson [1-3| for the needs
of stochastic mechanics (a version of quantum mechanics). The equation of motion in
this theory (called the Newton — Nelson equation) was the first example of equations in
mean derivatives. Later it turned out that the equations in mean derivatives arose also
in many other branches of science (mechanics, hydrodynamics, Navier — Stokes vortices,
gauge fields, economics, etc.).

Nelson introduced forward and backward mean derivatives while only their half-sum,
symmetric mean derivative called current velocity, is a direct analog of ordinary velocity
for deterministic processes. In [4] another mean derivative called quadratic, is introduced.
It gives information on the diffusion coefficient of the process and using Nelson’s and
quadratic mean derivatives together, one can in principle recover the process from its
mean derivatives.

Since the current velocities are natural analogs of ordinary velocities of deterministic
processes, investigation of equations and especially inclusions with current velocities is
very much important for applications since there are a lot of models of various physical,
economical etc. processes based on such equations and inclusions.

Here we investigate inclusions with current velocities who’s right hand sides are lower
semi-continuous. Unlike previous publications we do not suppose that the images of points
are convex sets. Instead we suppose that they are decomposable. This property yields
serious modification of all proofs and constructions. We obtain an existence of solution
theorem for such inclusions.

Some words about notation. By S(n) we denote the space of symmetric n x n matrices,
by S (n) the subset of positive defined symmetric matrices, and by S, (n) its closure, the
set of positive semi-definite symmetric matrices.
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1. Preliminaries on the Mean Derivatives

Let £(t) be a stochastic process in T, t € [0, T, that is given on a certain probability
space (§2, F, P) so that £(¢) is L;-random variable for all ¢. The minimal complete o-algebra
that contains the preimages of all Borel sets in 7" with respect to £(¢) : Q@ — T is called
"the present" /\/f. We denote by Ef the conditional expectation with respect to /\/f.

Strictly speaking, almost surely (a.s.) the sample paths of £(¢) are not differentiable for
almost all . Thus its "classical" derivatives exist only in the sense of generalized functions.
To avoid using the generalized functions, following Nelson (see, e.g., [1-3]|) we give

Definition 1. [1,4] (i) Forward mean derivative DE(t) of £(t) at time t is an Ly-random

variable of the form
DE(t) = lim ES (g(HAAtz_f(t)) : (1)

where the limit is supposed to exists in L1(2, F,P) and At — +0 means that At tends to
0 and At > 0.
(i1) Backward mean derivative D,E(t) of £(t) at t is an Li-random variable

Dt - 55 (S0=5=20) o

At—+0 At
where the conditions and the notation are the same as in (i).

From the properties of conditional expectation (see [5]) it follows that DE(t) and D,&(t)
can be represented as compositions of {(¢) and Borel measurable vector fields (regressions)

a(t,x):AmoE(g(HAt ‘f )
a*(t,x)zAmoE(w &t = A1) ‘g ) (3)

on R™. This means that DE(t) = a(t,&(t)) and D*S( ) = a.(t,&(1)).

Definition 2. [1,4] The derivative Dg = 5(D + D,) is called symmetric mean derivative.
The deriwative Dy = %(D — D,) is called anti-symmetric mean derivative.

Consider the vector fields
1
vt @) = (YOt ) + V(7))
and

ué(t,2) = S(V(t,2) = Y2(1,2)).

Definition 3. v¢(t) = v5(t,£(t)) = Ds&(t) is called current velocity of £(t);
us(t) = us(t,&(t)) = DAE(t) is called osmotic velocity of £(t).

Following [4, 6] we introduce the differential operator D, that differentiates an L;
random process £(t), t € [0,T] according to the rule

((E(t + A1) — W)€+ At) — 5(0)*)

Dyé(t) = lim Ef

At—+0

(4)
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where ({(t+ At) —£(t)) is considered as a column vector (vector in R™), (&(t+ At) —&(t))*
is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L(92, F,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix so that D.£(t) is a symmetric positive semi-definite matrix function
on [0,7] x R™. We call D, the quadratic mean derivative.

Let v(t,m) be a vector field and a(t,m) be a symmetric positive semi-definite (2,0)-
tensor field on 7. The system

{Dgf(t) = u(t, (1)), (5)
Dyé(t) = a(t,&(t))

is called the first order differential equation with current velocities.

Definition 4. We say that (5) on T™ has a solution on [0,T] with initial condition
£(0) = & if there exists a probability space (Q, F,P) and a process £(t) given on (2, F,P)
and taking values in T" such that £(0) = & and for almost all t € [0,T] equation (5) is
satisfied P-a.s. by &(t).

Theorem 1. (7| Let v : [0,7] x R® — R™ be smooth and o : [0,T] x R" — Si(n) be
smooth. Let them also satisfy the estimates

[ot, z)|| < K1+ [l]), (6)
tra(t,z) < K(1+||2]) (7)
and for all indices ij let the elements of matriz a(x) satisfy the inequality

Oa'

5 &)

< K1+ |z|) (8)

for some K > 0. Let & be a random element with values in R™ whose probability density po
is smooth and nowhere equal to zero. Then for the initial condition £(0) = & equation (5)
has a solution that is well posed on the entire interval t € [0, T]| and unique as a diffusion
process.

Corollary 1. Let v : [0,T] x T" — R"™ be smooth and o : [0,T] x T" — S, (n) be
smooth. Let & be a random element with values in T\ whose probability density py on T",
is smooth and nowhere equal to zero. Then for the initial condition £(0) = &y equation (5)
has a solution that is well posed on the entire interval t € [0, T] and unique as a diffusion
process.

Indeed, the boundedness estimates (6), (7) and (8) follow from the fact that v, o and
(x)| are smooth ant 7™ is compact.
Consider a sequence of equations

Ds&(t) = wi(t,€(1)),
{Dzﬁ(t) = ai(t,&(1)) (9)

on 7™ of (5) type such that they all have solutions with the same initial condition. Denote
by p. the measure on (CY([0,7],7"),C) generated by the solution of the k-th equation
from (9).

dal
OxJ
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Below we will use the following result:

Lemma 1. (8] Let all vy and oy, be uniformly bounded on T™ by the same upper bound.
Then the set of measures {pux} on (C°([0,T],T™),C) is weakly compact.

2. The Main Result

If the values of a lower semi-continuous set-valued mapping (generally speaking) are
not convex, it may not have continuous selectors. Then the following construction is often
very much useful.

Definition 5. Let E be a separable Banach space. A non-empty set M C L'([0,1]; E) is
called decomposable if f - xom + g - Xjo,p\m € M for all f,g € M and for every measurable
subset M in [0,1] where x is the characteristic function of the corresponding set.

The reader can find more details about decomposable sets in [9] and [10].

Theorem 2. (Bressan-Colombo Theorem) Let (§2,d) be a separable metric space, X be a
Banach space and (J, A, ) be a measurable space with a o-algebra A and a non-atomic
measure p such that pi(J) = 1. Consider the space Y = L (J, A, 1) of integrable mappings
from (J, A, 1) into X. If a set-valued mapping F : Q — Y is lower semicontinuous and
has close decomposable values, F' has a continuous selector.

The assertion of Theorem 2 is proved, e.g., as Lemma 9.2 in [9].

Recall some facts and notions involved in further considerations. Specify [ > 0. In
what follows we denote by A the normalized Lebesgue measure on [0,[], i.e., such that

A([0,1]) = 1.

Lemma 2. Let (Z,d) be a separable metric space, X be a Banach space. Consider the
space Y = LY([0,1],B,)\), X)) of integrable maps from [0,1] into X. If a set-valued
map G : = —Y s lower semicontinuous and has closed decomposable images, it has a
continuous selector.

This is a particular case of Bressan-Colombo Theorem 2.
Let v(t, m) be a set-valued vector field and a(t, m) be a set-valued symmetric positive
semi-definite (2, 0)-tensor field on 7. The system of the form

Dsé(t) € v(t,&(1)),
{ D;E(t) € af(t,&(t)) (10)

is called a first order differential inclusion with current velocities.
The definition of solution of inclusion (10) is quite analogous to Definition 4.

Theorem 3. Let the set-valued fields v and a on T™ be lower semicontinuous, uniformly
bounded and have closed decompisable images of points.

Consider a random element & with values in T" that has the density po smooth and
nowhere equal to zero. Then for the initial condition £(0) = &y inclusion (10) has a solution
well-posed on the entire interval t € [0,T].
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Proof.

By Lemma 2 set-valued fields v and « have continuous selectors v and «, respectively.
Construct a sequence of theie smooth approximations v, and oy that converge to v and
«a with respect to the supremum norm. In addition, it is possible to construct a; to
be symmetric and positive definite since we deal with approximations in the space of
symmetric matrices and any positive semi-definite matrix is a limit point of the space of
positive definite matrices.

Consider the sequence of equations of (5) type:

{Dsfk(t) = wp(&(1)),
Do&i(t) = ar(8k(t)).

For all those equations we consider the same initial condition &.

The approximations v, and «ay are uniformly bounded by the same constant by the
construction. Thus, all the above equations satisfy the conditions of Theorem 1, i.e., for
every equation there exists a solution &j.

Introduce on the Banach manifold C°([0,7],7") of continuous curves in 7" the o
algebra C generated by cylinder sets and denote by j the measure on (C°([0,7T],7™),C),
generated by the solution & (t). Introduce also the family of complete o-sub-algebras Py,
generated by cylinder sets with bases over [0,t], ¢t € [0, 7], and the family of complete o-
sub-algebras N;, generated by primages of Borel sets in 7" under the mapping x(-) — z(t).
It is clear that N is a o-sub-algebra in P, and that P; is the "past" while N, is the "present"
for the coordinate process on (C°([0,T],T"),C, ux).

By Theorem 1 the set {u} of measures on (C°([0,T],7™),C) is weakly compact.
Hence, we can select a subsequence that weakly converges to some measure p. Without
loss of generality we can suppose that the sequence u; weakly converges to p. Consider
the coordinate process £(t) on the probability space (C°([0,T], T"), C,u), i.e., for any
elementary ivent z(-) € C°([0, T],T") by definition £(¢, z(-)) = m(t). Recall that P; is the
"past" for £(t), and N is the "present" for this coordinate process.

Be the construction of & (t), its quadratic derivative equals ay (&g (t)). This means that
for any bounded continuous real function f on C°([0,T], 7™), measurable with respect to
N, for all k the equality

/ [(m(t + AL) — m(t)(m(t + At) — m(t))"
At

lim -
At—0
co([o,1),7™)

—ag(m(t) | f(m(:))dpx =0 (11)

holds. Since ay(t,m) converge uniformly to «a(t,m) as k — oo, we derive that ay(t, m(t))
tends to «(t, m(t)) uniformly for all py including pu.

The field a(m(t)) is continuous on some set of complete measure in C°([0, 7], 7™) since
a(m) is continuous on T™".

Since we have uniform convergence (see above) for all k, we derive from boundedness
of f(m(-)) that for k large enough we get

/ aw(m(t)) — a(m(t))] Fim())du| <6

Co([0,T],T™)
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Since f(m(-)) is bounded, there exists a certain number = > 0 such that |f(m(:))] < =
m(-). Recall that all ax(m) and «(m) are uniformly bounded, i.e., their norms are not
greater than a certain ) > 0. Then

/ low(m(®)) — a(m(t))] £ (m(-))dpu| < 26Q=

co([o,T],7™)

for all k large enough. Since § is an arbitrary positive number,

k—o0
Co([0,1),7™)

lim / law(m(t)) — a(m(£))] f(m(-))dpuy = 0.

The function a(m(t)) is u a.s. continuous and bounded on C° ([0, 7], T") (as it is shown
above). Since the measures u; weakly converge to i, by Lemma [11, Section VI.1]

lim / a(m(t))f(m())duw, = / a(m(t))f(m(:))dpu.

k—o00
co([0,1],7™) co([0,1],7™)

Evidently — lim / [(m(t + At) — m(t)(m(t + At) — m(t)]f (m(-))dpy =

k—o0

Co([0,T],T™)

= / [(m(t + At) —m(t))(m(t + At) —m(t))"]f (m(-))dp.

co([o,1),7™)

Thus,  lim / (m(t + At) — m(t)(m(t + At) — m(t))
At—0 At
co([o,T],7™)

—a(m(t)| f(m(-))dp = 0. (12)

Since f(m(+)) is an arbitrary bounded continuous function that is measurable with respect
to NV, this means that Dy&(t) = a(£(t)). But by construction a(£(t)) € a(&(t)) p-a.s.
Now let us turn to the current velocity of solution.
By construction Dg&(t) = vg(t, &k(t)) for all k. This means that for any real bounded
continuous function f on C°([0,T], 7™), measurable with respect AV;, for any k the equality

lim
At—0

/ m(t + At)A_tm(t —At) (@] Fm())die —0.

co([o,11,7™)

holds.
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Specify an arbitrary € > 0. Since py weakly converges to p, there exists K(g) such
that for & > K (e)

/ (it + A8 — m(t — ALY F(m())dps, —

co(o,1,7™)
= [ e a0 = mit - a0) Fn()da| < e
co([o,71,7™)
and [ rmOptm@dn -~ [ smyume)dn] <=
co(o,11,7™) co(o,1],7™)

By analogous arguments, as above, we can show that

k—o00
co([0,17,7™)

fim [ (oulm(e) ~ o(m(0) () =

and that v is continuous. Recall that v is bounded since it is a selector of the bounded
set-valued mapping.
Then by Lemma [11, Section VI.1] we obtain that

k—o00
co([0,11,7™) co([0,11,7™)

lim / o(m()) f(m(-))dp, = / v(m(t)) f(m(-))dp.

It is obvious that

i [ (e A0 — m(e = A0)FOn () =

kHOOCO([OvT]’T”)
= [ e+ 50— (e~ 0] ()
co([0,11,7™)
Thus, Jim / (m(t + &) N =AY o)) Fom()du =o.

co([0,1),7™)
Since f(m(-)) is an arbitrary bounded function, measurable with respect to N, this
means that Dgé&(t) = v(£(t)). But by construction v(£(t)) € v(£(t)) p-a.s.

O
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CTOXACTNYECKUNE BKJIOYEHVA C TEKYIIVIMU
CKOPOCTAMUN, NMEIOIINE PA3J/IO2KUMBIE ITPABBIE
HYACTU

IO. E. I'hukaux, A. B. Maxaposa

[Monyuena Teopema CymecTBOBAHUS JIJIsi CTOXACTUIECKUX TUMMEPEHITNATBHBIX BKJTIO-
YeHuil, 33JJAHHBIX B TEDMUHAX TAK HA3bIBAEMbBIX TEKYIIUX CKOPOCTEll (CUMMETPUYECKUX 1IPO-
U3BOJHBIX B CPEJHEM, IIPSIMBIX AHAJIOIOB OBBIYHBIX CKOPOCTEll JIeTePMIUHUPOBAHHBIX CHCTEM)
U KBaJ[PATUIHBIX IPOM3BOJHBIX B cpenHeM (maronmx uHbopMmanuio o koadhuimenre aud-
dysun) Ha mwrockoMm n-mepHom Tope. IIpaBble 4acTu U ¢ TEKyIIEil CKOPOCTHIO, U ¢ KBaJIpa-
TUYHOW TPOU3BOIHON MHOTO3HAYHBI, TOJYHEIIPEPBIBHBI CHU3Y, HO HE 00I3aTeIbHO MMEIOT
BBIMTYKJIbIe 00pa3bl. BMECTO 9TOT0 MBI MIPEJOIaraeM, YTo OHU Pa3JIOKUMBI.

Kamouesvie caosa: npoussoonvie 6 cpedHem; Mmexyuue cKopocmu; padioncumvle MHO20-
BHAYHBIE 0MOoOPascenusn; JUPHEPEHUUANDHBIE BKANOUEHUS.
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