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An existence of solution theorem is obtained for stochastic differential inclusions given
in terms of the so-called current velocities (symmetric mean derivatives, a direct analogs
of ordinary velocity of deterministic systems) and quadratic mean derivatives (giving
information on the diffusion coefficient) on the flat n-dimensional torus. Right-hand sides in
both the current velocity part and the quadratic part are set-valued, lower semi-continuous
but not necessarily have convex images. Instead we suppose that they are decomposable.
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Introduction
The notion of mean derivatives was introduced by Edward Nelson [1–3] for the needs

of stochastic mechanics (a version of quantum mechanics). The equation of motion in
this theory (called the Newton – Nelson equation) was the first example of equations in
mean derivatives. Later it turned out that the equations in mean derivatives arose also
in many other branches of science (mechanics, hydrodynamics, Navier – Stokes vortices,
gauge fields, economics, etc.).

Nelson introduced forward and backward mean derivatives while only their half-sum,
symmetric mean derivative called current velocity, is a direct analog of ordinary velocity
for deterministic processes. In [4] another mean derivative called quadratic, is introduced.
It gives information on the diffusion coefficient of the process and using Nelson’s and
quadratic mean derivatives together, one can in principle recover the process from its
mean derivatives.

Since the current velocities are natural analogs of ordinary velocities of deterministic
processes, investigation of equations and especially inclusions with current velocities is
very much important for applications since there are a lot of models of various physical,
economical etc. processes based on such equations and inclusions.

Here we investigate inclusions with current velocities who’s right hand sides are lower
semi-continuous. Unlike previous publications we do not suppose that the images of points
are convex sets. Instead we suppose that they are decomposable. This property yields
serious modification of all proofs and constructions. We obtain an existence of solution
theorem for such inclusions.

Some words about notation. By S(n) we denote the space of symmetric n×n matrices,
by S+(n) the subset of positive defined symmetric matrices, and by S̄+(n) its closure, the
set of positive semi-definite symmetric matrices.
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1. Preliminaries on the Mean Derivatives
Let ξ(t) be a stochastic process in T \, t ∈ [0, T ], that is given on a certain probability

space (Ω,F ,P) so that ξ(t) is L1-random variable for all t. The minimal complete σ-algebra
that contains the preimages of all Borel sets in T n with respect to ξ(t) : Ω → T n is called
"the present" N ξ

t . We denote by Eξ
t the conditional expectation with respect to N ξ

t .
Strictly speaking, almost surely (a.s.) the sample paths of ξ(t) are not differentiable for

almost all t. Thus its "classical" derivatives exist only in the sense of generalized functions.
To avoid using the generalized functions, following Nelson (see, e.g., [1–3]) we give

Definition 1. [1,4] (i) Forward mean derivative Dξ(t) of ξ(t) at time t is an L1-random
variable of the form

Dξ(t) = lim
∆t→+0

Eξ
t

(
ξ(t+∆t)− ξ(t)

∆t

)
, (1)

where the limit is supposed to exists in L1(Ω,F ,P) and ∆t → +0 means that ∆t tends to
0 and ∆t > 0.

(ii) Backward mean derivative D∗ξ(t) of ξ(t) at t is an L1-random variable

D∗ξ(t) = lim
∆t→+0

Eξ
t

(
ξ(t)− ξ(t−∆t)

∆t

)
, (2)

where the conditions and the notation are the same as in (i).

From the properties of conditional expectation (see [5]) it follows that Dξ(t) and D∗ξ(t)
can be represented as compositions of ξ(t) and Borel measurable vector fields (regressions)

a(t, x) = lim
∆t→+0

E

(
ξ(t+∆t)− ξ(t)

∆t

∣∣∣∣ ξ(t) = x

)
,

a∗(t, x) = lim
∆t→+0

E

(
ξ(t)− ξ(t−∆t)

∆t

∣∣∣∣ ξ(t) = x

)
(3)

on Rn. This means that Dξ(t) = a(t, ξ(t)) and D∗ξ(t) = a∗(t, ξ(t)).

Definition 2. [1,4] The derivative DS = 1
2
(D +D∗) is called symmetric mean derivative.

The derivative DA = 1
2
(D −D∗) is called anti-symmetric mean derivative.

Consider the vector fields

vξ(t, x) =
1

2
(Y 0(t, x) + Y 0

∗ (t, x))

and
uξ(t, x) =

1

2
(Y 0(t, x)− Y 0

∗ (t, x)).

Definition 3. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called current velocity of ξ(t);
uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called osmotic velocity of ξ(t).

Following [4, 6] we introduce the differential operator D2 that differentiates an L1

random process ξ(t), t ∈ [0, T ] according to the rule

D2ξ(t) = lim
△t→+0

Eξ
t

(
(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t

)
, (4)
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where (ξ(t+△t)−ξ(t)) is considered as a column vector (vector in Rn), (ξ(t+△t)−ξ(t))∗

is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L1(Ω,F ,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix so that D2ξ(t) is a symmetric positive semi-definite matrix function
on [0, T ]× Rn. We call D2 the quadratic mean derivative.

Let v(t,m) be a vector field and α(t,m) be a symmetric positive semi-definite (2, 0)-
tensor field on T n. The system {

DSξ(t) = v(t, ξ(t)),
D2ξ(t) = α(t, ξ(t))

(5)

is called the first order differential equation with current velocities.

Definition 4. We say that (5) on T n has a solution on [0, T ] with initial condition
ξ(0) = ξ0 if there exists a probability space (Ω,F ,P) and a process ξ(t) given on (Ω,F ,P)
and taking values in T n such that ξ(0) = ξ0 and for almost all t ∈ [0, T ] equation (5) is
satisfied P-a.s. by ξ(t).

Theorem 1. [7] Let v : [0, T ] × Rn → Rn be smooth and α : [0, T ] × Rn → S+(n) be
smooth. Let them also satisfy the estimates

∥v(t, x)∥ < K(1 + ∥x∥), (6)

tr α(t, x) < K(1 + ∥x∥2) (7)

and for all indices ij let the elements of matrix α(x) satisfy the inequality∣∣∣∣∂aij∂xj
(x)

∣∣∣∣ < K(1 + ∥x∥) (8)

for some K > 0. Let ξ0 be a random element with values in Rn whose probability density ρ0
is smooth and nowhere equal to zero. Then for the initial condition ξ(0) = ξ0 equation (5)
has a solution that is well posed on the entire interval t ∈ [0, T ] and unique as a diffusion
process.

Corollary 1. Let v : [0, T ] × T n → Rn be smooth and α : [0, T ] × T n → S+(n) be
smooth. Let ξ0 be a random element with values in T \ whose probability density ρ0 on T n,
is smooth and nowhere equal to zero. Then for the initial condition ξ(0) = ξ0 equation (5)
has a solution that is well posed on the entire interval t ∈ [0, T ] and unique as a diffusion
process.

Indeed, the boundedness estimates (6), (7) and (8) follow from the fact that v, α and
|∂aij
∂xj (x)| are smooth ant T n is compact.

Consider a sequence of equations{
DSξ(t) = vk(t, ξ(t)),
D2ξ(t) = αk(t, ξ(t))

(9)

on T n of (5) type such that they all have solutions with the same initial condition. Denote
by µk the measure on (C0([0, T ], T n), C) generated by the solution of the k-th equation
from (9).
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Below we will use the following result:

Lemma 1. [8] Let all vk and αk be uniformly bounded on T n by the same upper bound.
Then the set of measures {µk} on (C0([0, T ], T n), C) is weakly compact.

2. The Main Result
If the values of a lower semi-continuous set-valued mapping (generally speaking) are

not convex, it may not have continuous selectors. Then the following construction is often
very much useful.

Definition 5. Let E be a separable Banach space. A non-empty set M ⊂ L1([0, l];E) is
called decomposable if f · χM + g · χ[0,l]\M ∈ M for all f, g ∈ M and for every measurable
subset M in [0, l] where χ is the characteristic function of the corresponding set.

The reader can find more details about decomposable sets in [9] and [10].

Theorem 2. (Bressan-Colombo Theorem) Let (Ω, d) be a separable metric space, X be a
Banach space and (J,A, µ) be a measurable space with a σ-algebra A and a non-atomic
measure µ such that µ(J) = 1. Consider the space Y = L1

X(J,A, µ) of integrable mappings
from (J,A, µ) into X. If a set-valued mapping F : Ω ( Y is lower semicontinuous and
has close decomposable values, F has a continuous selector.

The assertion of Theorem 2 is proved, e.g., as Lemma 9.2 in [9].

Recall some facts and notions involved in further considerations. Specify l > 0. In
what follows we denote by λ the normalized Lebesgue measure on [0, l], i.e., such that
λ([0, l]) = 1.

Lemma 2. Let (Ξ, d) be a separable metric space, X be a Banach space. Consider the
space Y = L1(([0, l],B, λ), X)) of integrable maps from [0, l] into X. If a set-valued
map G : Ξ → Y is lower semicontinuous and has closed decomposable images, it has a
continuous selector.

This is a particular case of Bressan-Colombo Theorem 2.
Let v(t,m) be a set-valued vector field and α(t,m) be a set-valued symmetric positive

semi-definite (2, 0)-tensor field on T n. The system of the form{
DSξ(t) ∈ v(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t))

(10)

is called a first order differential inclusion with current velocities.
The definition of solution of inclusion (10) is quite analogous to Definition 4.

Theorem 3. Let the set-valued fields v and α on T n be lower semicontinuous, uniformly
bounded and have closed decompisable images of points.

Consider a random element ξ0 with values in T n that has the density ρ0 smooth and
nowhere equal to zero. Then for the initial condition ξ(0) = ξ0 inclusion (10) has a solution
well-posed on the entire interval t ∈ [0, T ].
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Proof.
By Lemma 2 set-valued fields v and α have continuous selectors v and α, respectively.

Construct a sequence of theie smooth approximations vk and αk that converge to v and
α with respect to the supremum norm. In addition, it is possible to construct αk to
be symmetric and positive definite since we deal with approximations in the space of
symmetric matrices and any positive semi-definite matrix is a limit point of the space of
positive definite matrices.

Consider the sequence of equations of (5) type:{
DSξk(t) = vk(ξk(t)),
D2ξk(t) = αk(ξk(t)).

For all those equations we consider the same initial condition ξ0.
The approximations vk and αk are uniformly bounded by the same constant by the

construction. Thus, all the above equations satisfy the conditions of Theorem 1, i.e., for
every equation there exists a solution ξk.

Introduce on the Banach manifold C0([0, T ], T n) of continuous curves in T n the σ–
algebra C generated by cylinder sets and denote by µk the measure on (C0([0, T ], T n), C),
generated by the solution ξk(t). Introduce also the family of complete σ-sub-algebras Pt,
generated by cylinder sets with bases over [0, t], t ∈ [0, T ], and the family of complete σ-
sub-algebras Nt, generated by primages of Borel sets in T n under the mapping x(·) 7→ x(t).
It is clear that Nt is a σ-sub-algebra in Pt and that Pt is the "past" while Nt is the "present"
for the coordinate process on (C0([0, T ], T n), C, µk).

By Theorem 1 the set {µk} of measures on (C0([0, T ], T n), C) is weakly compact.
Hence, we can select a subsequence that weakly converges to some measure µ. Without
loss of generality we can suppose that the sequence µk weakly converges to µ. Consider
the coordinate process ξ(t) on the probability space (C0([0, T ], T n), C, µ), i.e., for any
elementary ivent x(·) ∈ C0([0, T ], T n) by definition ξ(t, x(·)) = m(t). Recall that Pt is the
"past" for ξ(t), and Nt is the "present" for this coordinate process.

Be the construction of ξk(t), its quadratic derivative equals αk(ξk(t)). This means that
for any bounded continuous real function f on C0([0, T ], T n), measurable with respect to
Nt, for all k the equality

lim
∆t→0

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t))(m(t+∆t)−m(t))∗

∆t
−

− αk(m(t))

]
f(m(·))dµk = 0 (11)

holds. Since αk(t,m) converge uniformly to α(t,m) as k → ∞, we derive that αk(t,m(t))
tends to α(t,m(t)) uniformly for all µk including µ.

The field α(m(t)) is continuous on some set of complete measure in C0([0, T ], T n) since
α(m) is continuous on T n.

Since we have uniform convergence (see above) for all k, we derive from boundedness
of f(m(·)) that for k large enough we get∥∥∥∥∥∥∥

∫
C0([0,T ],T n)

[αk(m(t))− α(m(t))] f(m(·))dµk

∥∥∥∥∥∥∥ < δ.
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Since f(m(·)) is bounded, there exists a certain number Ξ > 0 such that |f(m(·))| < Ξ
m(·). Recall that all αk(m) and α(m) are uniformly bounded, i.e., their norms are not
greater than a certain Q > 0. Then∥∥∥∥∥∥∥

∫
C0([0,T ],T n)

[αk(m(t))− α(m(t))] f(m(·))dµk

∥∥∥∥∥∥∥ < 2δQΞ

for all k large enough. Since δ is an arbitrary positive number,

lim
k→∞

∫
C0([0,T ],T n)

[αk(m(t))− α(m(t))]f(m(·))dµk = 0.

The function α(m(t)) is µ a.s. continuous and bounded on C0 ([0, T ], T n) (as it is shown
above). Since the measures µk weakly converge to µ, by Lemma [11, Section VI.1]

lim
k→∞

∫
C0([0,T ],T n)

α(m(t))f(m(·))dµk =

∫
C0([0,T ],T n)

α(m(t))f(m(·))dµ.

Evidently lim
k→∞

∫
C0([0,T ],T n)

[(m(t+∆t)−m(t))(m(t+∆t)−m(t))∗]f(m(·))dµk =

=

∫
C0([0,T ],T n)

[(m(t+∆t)−m(t))(m(t+∆t)−m(t))∗]f(m(·))dµ.

Thus, lim
∆t→0

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t))(m(t+∆t)−m(t))∗

∆t
−

− α(m(t))

]
f(m(·))dµ = 0. (12)

Since f(m(·)) is an arbitrary bounded continuous function that is measurable with respect
to Nt, this means that D2ξ(t) = α(ξ(t)). But by construction α(ξ(t)) ∈ α(ξ(t)) µ-a.s.

Now let us turn to the current velocity of solution.
By construction DSξk(t) = vk(t, ξk(t)) for all k. This means that for any real bounded

continuous function f on C0([0, T ], T n), measurable with respect Nt, for any k the equality

lim
∆t→0

∫
C0([0,T ],T n)

[
m(t+∆t)−m(t−∆t)

∆t
− vk(m(t))

]
f(m(·))dµk = 0.

holds.
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Specify an arbitrary ε > 0. Since µk weakly converges to µ, there exists K(ε) such
that for k > K(ε)∥∥∥∥∥∥∥

∫
C0([0,T ],T n)

[m(t+∆t)−m(t−∆t)] f(m(·))dµk −

−
∫

C0([0,T ],T n)

[m(t+∆t)−m(t−∆t)] f(m(·))dµ

∥∥∥∥∥∥∥ < ε

and

∥∥∥∥∥∥∥
∫

C0([0,T ],T n)

f(m(·))v(m(t))dµk −
∫

C0([0,T ],T n)

f(m(·))v(m(t))dµ

∥∥∥∥∥∥∥ < ε.

By analogous arguments, as above, we can show that

lim
k→∞

∫
C0([0,T ],T n)

[vk(m(t))− v(m(t))]f(m(·))dµk = 0.

and that v is continuous. Recall that v is bounded since it is a selector of the bounded
set-valued mapping.

Then by Lemma [11, Section VI.1] we obtain that

lim
k→∞

∫
C0([0,T ],T n)

v(m(t))f(m(·))dµk =

∫
C0([0,T ],T n)

v(m(t))f(m(·))dµ.

It is obvious that

lim
k→∞

∫
C0([0,T ],T n)

[(m(t+∆t)−m(t−∆t))]f(m(·))dµk =

=

∫
C0([0,T ],T n)

[(m(t+∆t)−m(t−∆t))]f(m(·))dµ.

Thus, lim
∆t→0

∫
C0([0,T ],T n)

[
(m(t+∆t)−m(t−∆t)

∆t
− v(m(t))

]
f(m(·))dµ = 0.

Since f(m(·)) is an arbitrary bounded function, measurable with respect to Nt, this
means that DSξ(t) = v(ξ(t)). But by construction v(ξ(t)) ∈ v(ξ(t)) µ-a.s.
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СТОХАСТИЧЕСКИЕ ВКЛЮЧЕНИЯ С ТЕКУЩИМИ
СКОРОСТЯМИ, ИМЕЮЩИЕ РАЗЛОЖИМЫЕ ПРАВЫЕ
ЧАСТИ

Ю. Е. Гликлих, А. В. Макарова

Получена теорема существования для стохастических дифференциальных вклю-
чений, заданных в терминах так называемых текущих скоростей (симметрических про-
изводных в среднем, прямых аналогов обычных скоростей детерминированных систем)
и квадратичных производных в среднем (дающих информацию о коэффициенте диф-
фузии) на плоском n-мерном торе. Правые части и с текущей скоростью, и с квадра-
тичной производной многозначны, полунепрерывны снизу, но не обязательно имеют
выпуклые образы. Вместо этого мы предполагаем, что они разложимы.

Ключевые слова: производные в среднем; текущие скорости; разложимые много-
значные отображения; дифференциальные включения.
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