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ON THE ACCURACY AND CONVERGENCE
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The article is focused on the filtering problem for chaotic signals. The original discrete
signal is generated by a one-dimensional chaotic system, and the measured signal is
corrupted by additive errors. The goal is to estimate the unknown system states from
measurements. The minimax filtering algorithm is developed in the context of guaranteed
state estimation that is based on a set-membership description of uncertainty. It assumes
that the unknown variables (system states and measurement errors) are bounded by
intervals (sets of possible values). The proposed algorithm is a recursive procedure based
on interval analysis. It computes interval estimates that are guaranteed to contain the true
states of the system (true values of the original signal). The computation of the interval
estimate consist of three steps (prediction, measurement, and correction) that are similar to
the computation of the information set for linear dynamical systems. The point estimates
are obtained by an algorithm that is similar to the Kalman filter. This paper studies the
accuracy and convergence properties of the minimax filter. The aims of this study are the
following: to confirm the effectiveness of the proposed algorithm for computation of the
point estimates, to compare the results of the minimax filter and the unscented Kalman
filter, and to derive the sufficient conditions for obtaining the exact value of the state. The
computational scheme of the minimax filter and numerical simulations are given for the
logistic map.
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Introduction

The foundation of modern filtering theory is related to the state estimation problem
for linear systems. Based on the probabilistic description of the unknown variables,
the Kalman filter (KF) has become the most important and widely used technique
in signal processing [1]. Various modifications of the KF have been proposed for
nonlinear systems |2, 3]. State estimation problem has also become a starting point
for the development of guaranteed approach, which is based on a set-membership
description of uncertainty [4,5]. As a result, an increasing interest has been devoted to
guaranteed state estimation using different kinds of set representation, such as ellipsoids [6],
parallelotopes [7], boxes [8], and zonotopes [9].

This article is focused on the filtering problem for chaotic signals [10-12|. The
considered problem is an important one in chaos-based communications and signal
processing [13-15]. It is also a useful tool in the development of the parameter estimation
techniques (for example, see the approach proposed in [16]).

Consider a one-dimensional chaotic system described by

T = f(Tp_1, M), (1)

where f is the chaotic map (see definition in [17]), xj is the system state, A is the map
parameter, and k is the number of time step. System (1) generates the original discrete
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signal. The measured signal is given by
yk:xk+vkak:172a"'7N7 (2)

where 1y, is the measurement, v, is the additive error, and N is the number of
measurements.

The filtering problem is to estimate the states of the system (1) from measurements
(2). The most common approach is to use modifications of the KF for nonlinear systems,
such as the extended KF [10], the unscented KF [11], and the cubature KF [12]|. Recently
in [18], the minimax filter (MF) was developed in the context of guaranteed estimation.
This article studies the accuracy and convergence properties of the MF.

1. The Algorithm of the Minimax Filter

The MF assumes that the initial state xg and measurement errors vy, k = 1,2,..., N
are bounded by intervals:

ro€Xo=1[2y,T0], s €Vie=]uv,, Tk], k=1,2,...,N. (3)

The result of the MF at time step k is the interval estimate X, of the state x; and the
point estimate &) € Xj. If the restrictions (3) are correct, it is guaranteed that the found
interval X}, contains the true value zj of the state zy;:

IZEsz[gk,fk]

Computation of the interval estimates. The interval estimates X, £ = 1,2,.... N
are defined recursively. The computation consist of three steps: prediction, measurement,
and correction. This algorithm is similar to the computation of the information set for
linear dynamical systems [5].

Step 1 (prediction). The predicted state set X}, /51 is defined by the interval estimate
Xj._1 found at the previous time step:

Xk/k—l = {u ‘ U = f(l’, /\),I S Xk—l} . (4)
Step 2 (measurement). The consistent state set Y} is defined by the measurement v,

and the interval estimate V}, of the measurement error vy:

Yi={z|z=y—v,v eV} =
={z |y —T <z <yp v} = (5)

=y — Uk, Yp — v |-

Step 3 (correction). The interval estimate X, of the state zy is the intersection of the
predicted state set X} ,_1 (4) and the consistent state set Y;, (5):

Xi = X1 N Yy, (6)

Computation of the point estimates. An important problem in guaranteed estimation
is how to derive point estimates from the interval estimates [4]. Usually a point estimate
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1 of the unknown vector u € U C R” is obtained by the minimization of the worst-case
error [5]:
i — U 7
min max |[u —al, (7)
where U is the set of possible values of the vector u. In the one-dimensional case, the
solution of the minimax problem (7) is the middle point of the interval. However, numerical
simulations show that the true value z} of the state zj is often close to the bounds of the
interval estimate Xj. Thus, the choice of the middle point

. Ty + T
By = S (8)

as a point estimate may not be effective. Recently in [18], an algorithm that is similar to
the KF was proposed to obtain the point estimates.

Suppose that g € Xy is the prior estimate for & = 0. The point estimates
Ty, k = 1,2,..., N are defined recursively by the following steps.

Step 1. Computation of the predicted state estimate:
Tkt = f(Zrsp—1, ), 9)

Step 2. Computation of the gain coefficient:

AXp
I = k/k—1 7 (10)
AXy -1 + AV,
where A denotes the length of the interval.
Step 3. Correction of the state estimate:
Ty = Ty + e(Yk — Tiyr—1)- (11)

Step 4. Verification of the state estimate. If Z; ¢ Xy, then the point estimate &y is
defined as the closest bound of the interval Xj:
f’m j‘k € Xk?
Tp =19 Ty, Tk <y, (12)

Tk, Ty > Tk

2. Numerical Simulations

The chaotic signal is generated by the logistic map
T — )\ﬂfk_l(l — ZBk_l) (13)

with the initial state zp = 0.2 and parameter A = 3.7 (Fig. 1). The measured signal
is shown in Fig. 2. The number of measurements is N = 20. The measurement errors
are pseudo-random numbers with normal distribution, zero mean and standard deviation
o, = 0.05 (Fig. 3). The values of v, are generated by the function randn of Matlab.
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Fig. 3. Measurement errors (dashed lines denote the bounds of the interval estimate)
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In this example, the signal-to-noise ratio is

SNR = 201g 7% = 12 dB,

Oy

where o, = 0.1976 is the sample standard deviation of the chaotic signal. The maximum
absolute value of the measurement error is max |v;| = 0.1259.
The prior estimates are taken as follows:

#0=025, Xo=[0,05], Vi=--=Vy=[-30,, 30, ] =[—0.15, 0.15].

The computation of the predicted state set Xj /1 = [gk/k_l s Th/k—1 } (4) for the
logistic map (13) can be represented by the following “if-then” rules (Fig. 4):

1. If fk—l S then lk/kfl = /\gkfl(l — gkfl), fk/k—l = )\fk_l(l — fk_l).
2. Iy >4 then )y = ATp1 (1 = Tpr), Tapror = Az g (1 — zy).

3. Itz <5 and 71 > % then:

N | —

32 If gk_l Z 1 _Ek—l then gk/k:—l = )\fk_l(l —fk_l), Ek/k—l = %

The complexity of the MF implementation depends on the certain equation of the
chaotic map. In general, the development of a computational scheme is based on interval
analysis [8].

Consider the computation of the interval estimates X; and X5 by the algorithm (4)—(6).
According to the above scheme, the predicted state set X /o is defined as

X1/0 = [ )\@0(1 — go) s /\To(l — To) ] = [ 0 s 09250 ] .

The measured value y; = 0.6032, and the interval estimate of the error wv; is
Vi = [ —=0.15, 0.15 ]. Thus, according to (5) the consistent state set is

Yi=[ypn—T1, y1—v, | =[0.4532, 0.7532 ].
Therefore, at time step k = 1 the interval estimate X of the state x; is
Xi=X10NnY1 =10, 09250 ]N[0.4532, 0.7532 | = [ 0.4532, 0.7532 ].
Since z; < %, T > %, and z; > 1 — 7, the predicted state set Xy, is defined as
Xop = [ Az1(1 —71), A/4]=10.6877, 0.9250 |.

The measured value yo = 0.9663, and the interval estimate of the error vy is
Vo = [ —=0.15, 0.15 ]. Thus, according to (5) the consistent state set is

Yo=[y2 =72, y2—1v, ] =[0.8163 , 1.1163 |.
Therefore, at time step k = 2 the interval estimate X, of the state x, is

Xo= X571 NYy =[0.6877, 0.9250 | N[ 0.8163 , 1.1163 | = [ 0.8163 , 0.9250 ].
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Fig. 4. Computation of the predicted state set for the logistic map

The results of the MF are presented in Fig. 5. As already noticed, the true value zj
of the state x; is often close to the bounds of the interval estimate Xj. Fig. 6 shows
the comparison of the estimation error d; and the maximum possible error puy, which are
defined as follows:

o = |zj, — 2,

= *
e = max | —ul.

2018, vol. 5, no. 2 49



A. S. Sheludko

0.737

0.5

0.25-

* True values * Point estimates Interval estimates

Fig. 5. State estimates computed by the MF
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Fig. 6. Estimation errors of the MF

In order to confirm the effectiveness of the proposed algorithm (9)-(12) for
computation of the point estimates, the results are averaged over n = 10* runs with
different initial condition zy € ( 0, 0.5 ) and parameter A € [ 3.6 , 4 |. The values of z,
and A are generated by the function rand of Matlab. In each simulation, the prior estimates
are as in the above example. Fig. 7 shows the comparison of the relative error

B
e = — x 100%
M

for the proposed algorithm and in the case when the point estimate is defined as the middle
point of the interval (8).
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Fig. 7. Comparison of the relative errors for the versions of the MF (the results are averaged
over n = 10* runs)

3. Application of the Unscented Kalman Filter

One of the most common KF modifications for chaotic systems is the unscented
Kalman filter (UKF) [3,11]. The KF approach is based on the following assumptions:
1. The initial state xg is a random variable, normally distributed with mean z, and
variance pg:

E [xo] = &0, E [(x0 — Z0)?] = po-

2. The measurement errors vg, & = 1,2,..., N are white Gaussian noise with zero
mean and standard deviation o,:

Elv] =0, E[v;] =0,

v*

The result of the UKF at time step k is the state estimate z; and the error variance
pr. that provides the confidence interval:

Sk:[ik—:’)\/p_k,ﬁ?k—i—?)\/p—k]. (14)

The UKF equations for model (1), (2) are given as follows:

. 1 . .
Th/k-1= 5 (f(Ze—1 + VPr—1, A) + f(Zro1 — VD1, N)) (15)
1 . N
Prjk—1 = 1 (f(fk—1 + /DPk—-1, /\) - f(wk—l — V/Pk-1, )\))2 ) (16)
I, = Pr/k—1
Pi/k—1 + 02

Tp = T + e(Ye — Tijp—1),

Pk = (1 — ) Dryi—1,
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where 7/, is the predicted state estimate, py/x—; is the predicted error variance, and [y,
is the Kalman gain. Since for the logistic map (13)

f(@r—1 + vPo—1,A) = A (Zp—1(1 — Tp—1) + (1 — 284-1)/Dk—1 — Pr—1)
F(@r—1 — V/Pi—1, A) = XN (@p—1(1 — Tp—1) — (1 — 22p—1)\/Ph—1 — Pr-1) ,

equations (15), (16) can be expressed as follows:
o1 = A1 (1 — Tp—1) — APr—1,

Prk—1 = A (1 — 285_1)°pr—1.

Consider the example from section 2. The initial state estimate is 2o = 0.25 and

variance py = (%)2 = 0.0069. With this values, the confidence interval Sy (14) is equal

to the prior interval estimate Xo: Sy = Xo = [0, 0.5 ]. Fig. 8 shows the state estimates
computed by the UKF.

0.75 [ | l ]
S e Y S i A N S T I o

A I L I ........................... L

l |
0.25 -  — l R R

——

0 .
0 5 10 15 20k

* True values * Point estimates —— Confidence intervals

Fig. 8. State estimates computed by the UKF

In order to compare the accuracy of the MF and UKF, the results are averaged over
n = 10? runs with different initial condition zy € ( 0, 0.5 ) and parameter A € [ 3.6 , 4 ].
The values of ¢y and A are generated by the function rand of Matlab. In each simulation,
the initial data are as in the above example. Fig. 9 shows the comparison of estimation
errors.

4. Convergence Analysis of the Algorithm

This section presents the sufficient conditions under which the MF computes the true
state of the system. For simplicity, it is assumed that the interval estimates of measurement
errors are fixed:

Vi=...=Vy=|v, 7]
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Fig. 9. Comparison of the estimation errors (the results are averaged over n = 10* runs)

Theorem 1. Suppose that f is monotone increasing in the predicted state set Xj p_1,
and the measurement errors at time steps k and k + 1 are equal to the upper and lower
bounds of the interval of possible values, respectively:

Vg = U, Vpy1 = V.

Then the interval estimate Xyy1 consists of a single point, which is the true value xj ., of
the state xjq:

Xy = {7}

Proof.
Since vy, = U, vgy1 = v, the corresponding measured values are

* — *
Yk = Tk + Uk = T + U, Y1 = Tt1 + Vg1 = Tpyq + 2.

Thus, according to (5), the consistent state set has the following structure at time steps k
and £+ 1:

Yier = [Uhs1 =0, Yh1 —v ] = [QUZH"‘Q_@a xZH"‘Q_Q] = [ﬁﬂ*’ﬂ_ﬁa $Z+1}‘
Consider the computation of the interval estimate Xy (6):
Xk = X1 NYy = [&k/k_1  Taer | N ah, sp+T—v]=[2;, al,

where a = min {Ek/k_l, Tp+ 70— y}. Thus, at time step k the true value z} of the state
is the lower bound of the interval estimate Xj: z; = z}.

Since f is monotone increasing in interval Xj 1, it follows that f is also monotone
increasing in interval X C Xj,_1. Therefore, at time step k + 1 the true value zj_, of
the state x4, is the lower bound of the predicted state set Xjq/;:

Xk+1/k: [f($27)‘)’ f(a’)‘) ] = [xl:+1 ) f<a7)‘) }
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On the other hand, the true value zj_ , is the upper bound of the consistent state set Yy 1.
Therefore, the interval estimate Xj; consists of a single point which is the true value z;_,
of the state zj1:

Xjr1 = Xip1yi N Ye = {2f 1}

Conclusion

This paper has studied the accuracy and convergence properties of the MF for chaotic
signals. Numerical simulations have confirmed that the proposed algorithm provides more
accurate point estimates than usual approach (choice of the middle point of the interval).
The MF has also shown a better performance in comparison with the UKF. In addition,
one of the key features of the MF is that the prior information about the measurement
errors is presented only as intervals of possible values. It is not necessary to know the model
of errors or its probabilistic distribution. Thus, the MF is a very promising technique when
the measurement errors are biased and non-Gaussian.

The work was supported by Act 211 Government of the Russian Federation, contract
Ne 02.A05.21.0011.
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O TOHYHOCTHN 1N CXOAVMMOCTU AJITOPUTMA
MUIHIMAKCHON ®NJIBTPAIIN /IS XAOTUYECKOI'O
CUT'HAJIA

A. C. Ileaydvko

PaccmarpuBaercsa 3amada dbuabTpanuu st JUCKPETHOIO CUTHAJA, KOTOPBIA SBJISIET-
csl peasm3aleil OJHOMEPHOTO XAOTHIECKOr0 OTOOparKeHus. 3a1ada (DUILTPAIUN COCTOUT
B HAXOXKJIEHUU OIEHOK MEPEMEHHON COCTOSIHUSI Xa0THIECKOI'O OTOOPAYKEHUSI 110 3AIILY MJIEH-
HBIM U3MEPeHUsM. B paMKax rapaHTUPOBAHHOTO IOXO0/Ia K PEIIeHHIO 33/1a9 OIeHUBAHS
paspaboTaH aJIrOPUTM MUHUMAKCHOI (bubrparuu. ['apaHTHPOBAHHBIN II0X0/ OCHOBAH HA
MHOKECTBEHHOM IIPEJICTABJIEHAN HEOMPEIEJTeHHOCTH O HEM3BECTHBIX NEPEMEHHBIX B MOJIE-
sm. Ilpemnosaraercs:, 9To anpuopHas HHMOPMAIHA O HAYAJBHOM COCTOSHUM W OITHOKAX
u3MepeHuil IpejicTaBieHa B BHUJE MHOXKECTB (MHTEPBAJIOB) BO3MOXKHBIX 3HadeHuil. [Tpes-
JIOKEHHBIN aJITOPUTM OCHOBAH HA WHTEPBAJBLHOM AHAJIM3€ W IPEJICTABISET COOOI peKyp-
PEHTHYO IIPOIEeIy Py BBIUUC/IEHUs] MHOYKECTBEHHBIX 1 TOYEUHBIX OIIEHOK IIePEMEHHOI COCTO-
SIHUsT XA0TUIECKOro orobparkenusi. [locTrpoeHne MHOXKECTBEHHOI OIEHKHM COCTOUT U3 TPEX
mraroB (IPOrHO3, U3MEPEHUEe U KOPPEKIWs ), aHaJIOMMYHBIX ITallaM [OoCTPpoeHust nH(bOpMa-
[IHOHHOTO MHOYKECTBA JIJIsl IMHEWHOW JIMHAMUYIECKO cucTeMbl. JIjis HaXOXKIeHUsT TOYeIHBIX
OIIEHOK MCIIOJIb3YeTCsI AJITOPUTM, OCHOBAHHBIN Ha aHAJIOTUH € ypaBHeHUAMU DuabTpa Kas-
MaHa. B jaHHOIT pabore mcciemyercss TOYHOCTb M CXOAUMOCTh AJITOPUTMa MUHUMAKCHOM
dubrparn. OCHOBHBIE €U UCCJIEI0OBAHMIA: TOATBEPINTH 3(DPEKTUBHOCTD TIPEIOKEHHO-
IO aJrOPUTMa HAXOXKJIEHUsI TOYECYHBIX OIEHOK, CPABHUTH TOYHOCTH PE3YJITATOB AJITOPUT-
Ma MuHuMakcHol dbusbrpaiun u agropurma UKFE (Mmomudukanun duisrpa Kaavmana ms
HEJIMHEHBIX MOgiesiefi), IpeJCTaBUTh JOCTATOYHbIE YCJIOBUS HAXOXKJEHUSI TOYHBIX OIEHOK
[IEPEMEHHOI COCTOsIHUsI. Bbraucmre/ibHas cxeMa aJIrOPUTMa MUHUMAKCHON (DUIBTPAIUU U
YUCJIEHHBIE SKCIIEPUMEHTHI IPUBOSITCS JJIsl KBAJIPATUIHOIO OTOOPaYKEHUSI.

Karouesvie caosa: xaomuueckutd cuenan; 3a0a46 Gusbmpayuy; 2apaHmuposartoe oue-
HUBAHUE; UHMEPBAALHAA OUEHKE.
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