MSC 68T10 DOI: 10.14529/jcem180207

AN INVESTIGATION OF INFORMATION INTELLIGENCE
RETRIEVAL MODEL IN LOCAL SEARCHING SYSTEMS

T. Yu. Olenchikova', olenchikovati@susu.ru,

D. L. Maslennikov', et1622mdl80@susu.ru,

A. D. Marchenko', ct1622mad76@susu.ru.

1 South Ural State University, Chelyabinsk, Russian Federation.

The process of building and learning neural networks requires considerable
computational effort. Fortunately, nowadays there are many various systems with high
computing power. Development of systems, algorithms, methods and their applications in
machine learning has become a promising direction in science. The work is devoted to the
investigation of information retrieval problems and the main problems associated with this
task, constructing an overfit-safe neural network model for improving the local searching
system quality on 49% using machine learning algorithms.

Keywords: information retrieval; searching system; machine learning; neural networks;
mathematical modeling; relevance increasing.

Introduction

Every day the amount of information in the world increases. It is impossible to process
large datasets manually, so we can see an increasing amount of data processing algorithms
and new problems, one of which is information retrieval [1]. Often, all available data
cannot be structured, and we have to process heterogeneous data. It is impossible to store
heterogeneous data in traditional databases, so information retrieval problems appear.
One of the main problems of information retrieval is the choice of the relevance criteria.
These criteria are defined by certain function of lots of parameters such as frequency of
occurrence of a word, location of word in document, distance between words and other.
Some relevance function may approximate result well in a certain situation, but in another
situation results may be erroneous. For example, one is searching information in a set of
scientific articles. The relevance function of word location in document can work well since
keywords, header, abstract are located at the beginning of document. But in the situation
with tag searching the order of words in document is not substantial. So this function can
give bad results. Complex searching systems can use comprehensive algorithms and models
connected with different branches of science such as natural language processing, topic
modeling and other. Any searching system is a solution of information retrieval problem,
but another challenge is to improve the output results of this system. Intelligence retrieval
implies the using of machine learning for increasing quality of searching system. We use
a neural network [2] based model. Neural network in substance is one of the ways to
organize associative memory. Network processes input set of parameters into some other
signal. Type of processing inside the network depends on architecture of the network
and strength of connections between elements of the network. Strength of connections is
defined by special optimization algorithms. The process of calculating these connections
is called fitting (training). Neural networks are used in many areas of science when there
arise problems of classification, clusterization, prediction and other. Our model is based on

2018, vol. 5, no. 2 77



T. Yu. Olenchikova, D. L. Maslennikov, A. D. Marchenko

T. Segaran’s approach [3|. His approach has some drawbacks such as ineffective method of
learning, ineffective type of training data building and overfitting predisposition. We try
to construct the model without these drawbacks.

Problem stating: There is a data storage. Each object has a text description and a
key. The description is a list of tags and we call it a document. The key is a path to
document in the storage. There is a searching system for this storage L(Q), where Q is
searching query. The output result of the system is a list of documents and their keys
in order of system’s relevance. The goal is to improve the relevance function using the
information from users of system. Note that the system is collecting all information about
query, results and selections. We need to solve the following problems:

1. Construct the model for increasing relevance.

2. Preparation of training data.
3. Model fitting.

1. Construction of the Model

In construction of searching system indexing of initial data is neaded. The easiest way
to index data is to count frequency of each word in each document.

Let Q be an input query that contains words wy, wy, w3 € W, where W is a dictionary,
received at indexing of documents. Then an input query can be defined as a vector
I = {iy,i2,,in}, where m is a number of words in dictionary, |WW| = m. This vector
consists of units and zeros, moreover iy, = 1 when the k-th word of dictionary is in query.
The same way is used to define the output data of the system. Let O = {0y, 02, , 0, }, where
n is the number of indexed documents, |D| = n, D is a set of documents.

In new terms we can define problem of increasing the relevance. Let I be a set of query
vectors, O be a set of documents, y* be an objective function y* : I — O. The values of
y* are known only on finite number of pairs (I;, 0;) (I; € I,0; € O). The set of these
pairs forms the training data. Notation y*(Ix) = Oy means that the input vector I is
related to a document vector Oy. Build a model with generalizing ability. It means that
the model must approximate objective function not only on training data but on a whole
set of 1 (f C I). Build the model as a neural network. The i-th value of the output vector
will be interpreted as a probability of relation to the i-th document of D, then we can
define the loss function as a categorical cross entropy

Hy'(y) = —Z?Ji In(y;) (1)

and the error of neural network is equal to

1 ) ()
_EZZOJ' In(O;™), (2)

meS j=1

where 0* is a required output, o is an actual network output, S is training data set, |S| is
amount of training samples. Minimization of this function (neural network fitting) will be
held using the method of stochastic optimization ADAM [4].

Now define architecture of out neural network. It will be three layer forward
propagation neural network. The input layer has |W| + 1 parameters (we add one

78 Journal of Computational and Engineering Mathematics



SHORT NOTES

parameter for calculating bias, it is very handy because all actions are calculated in a
matrix form). The output layer has | D| parameters. The hidden layer has /(|W| * |D|)+1

parameters.

Fig. 1. Neural network architecture

For the input and hidden layers we use activation function ReLU(x) = maz(0,z),
because it disregards problem of vanishing gradient and is simple for calculation. The
output activation function is a softmax function, that transforms the signal to a vector
which sum of components is equal to 1. So at the output we get a vector describing
probabilities query of relations to certain documents. For disregarding problem of
overfitting we use L2 regularization |5] and Dropout(p) |6]. Regularization defines error
penalty, and Dropout(p) uses parameter p and "switches off" the neuron of current-trained
layer with probability equal to p. Using dropout leads to more careful error processing on
other neurons.

2. Training Sample

The method of construction of training sample described in [3] is as follows. A specific
coded query generates an output vector with only one document. It means that the
user chooses a specific document. For our model we will make not only one document
for a specific query. We suppose that the user chooses several documents in one search
session. The selection of these documents has equal probability. So the distribution of
these documents selection out of the statistics will tend to normal distribution by the
central limit theorem. Ideally the training set is data, formed by experts using searching
system L(Q). In our case we will model the users actions in searching system. Searching
system gives ranking of documents. Suppose that the expert defines some documents to be
relevant, but these documents are not top-ranked by the system. Name those documents
as "exceptions". There are cases when the expert agrees with system and chooses top-
ranked documents. These documents are named "regular". We need also some noise data
and define these documents (erroneous clicks) as "ejection". We can define ratios for these
types of documents. The ratio of "exceptions" and "regular" defines conditional quality of
searching system (number of cases, when the expert disagrees and agrees with the system).
Let ratio of "ejections", "exceptions" and "regulars" be as 9:20:1. We generate a query
of random words and random length using normal distribution. Probability density graph
shows distribution of words length (with expectation equal to 3 and variance equal to 1).

Generate an input query @) and get a list of documents L(Q). Now for @) generate
30 outputs using scheme defined above. For the "regular" cases we generate output with

2018, vol. 5, no. 2 79



T. Yu. Olenchikova, D. L. Maslennikov, A. D. Marchenko

TﬁQ
w

Fig. 2. Generating of words length

several top documents (most relevant by searching system). For "exception" take random
documents from non-top results, and in a random way take one document for "ejection".
Thereby we can model behavior of experts and generate a lot of training data.

3. Estimation Quality of the Model

Having a dictionary with 3000 words and the document set cardinality equal to 30000,
amount of 107 training samples was generated. Split training data into two parts 80% and
20%. The first part (80%) was used for fitting the model. From the second part we take only
"exception" samples and use them for testing. The error of model using (2) equals to 51%),
the accuracy is 49%. We can interpret this as each 2nd case when expert disagrees with the
system is taken into account. We also try to generate samples according to approach in [3].
The accuracy in this case is equal to 32% and the time of fitting is more than 1.5 times
larger because we generate more training samples. Note that we get 19% of improving
compared to approach in [3]. For clarity we can take subset of 10 words (and 68 related
documents). Generate a training set for light version of our model. Consider the output
vector of light model on histogram. The horizontal axis correspondes to the indexes of
documents, vertical axis shows probability of relation to document:

0.30 4

0.25 4

0.20 4
0.15 4
0.10 4
0.05
o0 ————"r 7T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

L s s S S N S A S A A S T T T T T
12345678 910111213141516171819202122232425262728293031323334353637 3839404142434445464748495051525354 555657 5859606162636465666768

Fig. 3. Light neural network output

The output of this model is interpret as a recommendation system. For a specific query
we get a probability distribution of relation to documents. Most of documents have zero
values, but we also have non-zero values which mean than these documents were used
by expert for this specific query. In terms of initial problem the trained neural network

80 Journal of Computational and Engineering Mathematics



SHORT NOTES

predicts probabilities of using documents for specific input query. This model can be used
for increasing the relevance of searching system by training on statistics, gathered from
experts and improving the quality of current system. The drawbacks of the model are:

— the model works only for local searching systems with limited size of dictionary. In

case of large dictionary ( the larger dictionary means the larger document set) fitting
time will be huge and neural network will not work in real-time;

— new gathered data is needed for re-training the model;

— insensitivity to the words order, in case of searching with natural language (not with
tags as in our case) is substantial.

Conclusion

The model that increases relevance of local searching system to 49% using forward
propagation neural network was constructed. We change the type of building dataset,
activation functions, use regularizer and dropout to guarantee non-overfitting and improve
similar models.

References

1. Manning C.D., Raghavan P., Schiitze H. Introduction to Information Retrieval.
Cambridge, Cambridge University Press, 2008. doi: 10.1017/S1351324909005129.

2. Rashid T. Make Your Own Neural Network. CreateSpace Independent Publishing
Platform, 2016.

3. Segaran T. Programming Collective Intelligence: Building Smart Web 2.0 Applications.
O’Reilly Media, 2007.

4. Kingma D.P., Ba J.L. Adam: A Method for Stochastic Optimization, available at:
www.arxiv.org/pdf/1412.6980v9.pdf.

5. Krogh A., Hertz J.A. A Simple Weight Decay Can Improve Generalization. Proceedings
of the 4th International Conference on Neural Information Processing Systems. San
Francisco, Morgan Kaufmann, 1991, pp. 950-957.

6. Srivastava N., Hinton G., Krizhevsky A.,Sutskever I., Salakhutdinov R. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine
Learning Research, 2015, vol. 15, issue 1, pp. 1929-1958.

Tatyana Yu. Olenchikova, PhD (Techn), Department of Applied Mathematics
and Programming, South Ural State University (Chelyabinsk, Russian Federation),
olenchikovati@susu.ru.

Dmitrii L. Maslennikov, Student, Department of Applied Mathematics and
Programming, South Ural State University (Chelyabinsk, Russian Federation),
et1622mdl80Q@susu.ru.

Anton D. Marchenko, Student, Department of Applied Mathematics and Programming,
South Ural State University (Chelyabinsk, Russian Federation), et1622mad76@susu.ru.

Received May 7, 2018

2018, vol. 5, no. 2 81



T. Yu. Olenchikova, D. L. Maslennikov, A. D. Marchenko

YK 004.93 DOI: 10.14529/jcem180207

NCCJIEAOBAHUWUE MOJAEJIN NTHTEJIJIEKTYAJIBHOI'O
ITONCKA B JIOKAJIBHBIX ITOMUCKOBBIX CUCTEMAX

T. IO. Oaenvuxosa, /1. JI. Macaennuxos, A. /I. Mapuenro

IIporiecc mocTpoenust m 00yUeHUsT HEHPOHHBIX ceTel TpeOyeT HeMAaJIbIX BBIMHCIUTEh-
HBIX TPYI0B. K cyacThio, B HACTOsIIIIEe BpEMsI CYIIIECTBYET OOMIINE PA3INIHBIX BBIYUC/IUTE b
HBIX CHCTEM, 00JIaTaI0NNX JOCTATOYHO BHICOKON BBIUNCINTEILHOM MOIITHOCTHIO. PazpaboTka
CHCTEM, aJITOPUTMOB M METOJIOB, UX MMPUMEHEHNE C NCIOJIb30BAHNEM MAITUHHOTO 00y IeHNsI,
cTajia IMepCIeKTUBHBIM HAIPaBIeHNEM B HayKe. PaboTa MOCBSINEHA MCCIeIOBAHIIO 33 TaN
MHOOPMAITMOHHOTO TIONCKA W OCHOBHBIX ITPOOJIEM, CBSI3AHHBIX C 3TOH 3ajadeii, pa3pabor-
Ka 3aIUIIEHHON OT IepeobydeHusi HefipoceTeBoil MOIesn JIjisi TIOBBIIIEHUs] PEJIEBAHTHOCTH
MOMCKOBOI cucTeMbl Ha 49%, NCIIONBb3ys aJTOPUTMBI MAIIUHHOTO OOy IeHUSI.

Karueswvie caosa: UH@OPMG’L;UOHH?JL'LUL nouckK, noucrKkoeas Cucmema;, MauuHHoe 06y’%€-
Hue; Hel‘lpOHHbLe CEMU; MAMEMATNUHECKOE MO()G/LUPOGG,HUB; NoBLIWEHUE PENEBAHTIHOCTIIU.

JImreparypa

1. Manning, C.D. Introduction to Information Retrieval / C.D. Manning, P. Raghavan,
H. Schiitze. — Cambridge: Cambridge University Press, 2008.

2. Rashid, T. Make Your Own Neural Network / T. Rashid. — CreateSpace Independent
Publishing Platform, 2016.

3. Segaran, T. Programming Collective Intelligence Building Smart Web 2.0
Applications / T. Segaran. — O’Reilly Media, 2008.

4. Kingma, D.J. Adam: A Method for Stochastic Optimization / D.J Kingma, J.L. Ba
[DsexTponnsrit pecype|. — url: www.arxiv.org/pdf/1412.6980v9.pdf.

5. Krogh, A. A Simple Weight Decay Can Improve Generalization / A. Krogh,
J.A. Hertz // Proceedings of the 4th International Conference on Neural Information
Processing Systems. — 1991. — P. 950-957.

6. Srivastava, N. Dropout: A Simple Way to Prevent Neural Networks from Overfitting /
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov //
The Journal of Machine Learning Research. — 2015. — V. 15, issue 1. — P. 1929-1958.

Onenvuxosa Tamvana Opvesna, xandudam mexnuveckuxr Hayk, xagpedpa npur.aad-
HOT MaMeEMaAMuKy u npozpammuposarus, FOoxcro-Yparvexut 2ocydapemeernnuiill yrusep-
cumem (2. Yeanbunck, Poccutickan Pedepayus), olenchikovati@susu.ru.

Macaennuros Jmumpud Jleonudosuw, cmydenm, xapedpa npursadnoti Mamemamu-
Ku u npoepammuposarus, FOorcno-Yparvckuts 2ocydapemeennoid ynusepcumem (2. Yeas-
ounck, Poccutickaa Dedepayus), et1622mdl80Qsusu.ru.

Mapuenrxo Anmon JImumpuesuy, cmydenm, xapedpa npursadHoti MAMEMAMUKY U
npozpammuposanus, FOocro-Yparvcrkui eocydapemeennoid ynusepcumem (2. Yeasbumck,
Poccutickan @edepayun), et1622mad76@susu.ru.

Hocmynuna 6 pedarxyuro 7 mas 2018 r.

82 Journal of Computational and Engineering Mathematics



