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Computational experiments on model data were performed in order to study the
effectiveness of the algorithms for realization of the least absolute deviations (LAD) method
and the generalized method of the least absolute deviations (GLAD) when estimating the
parameters of multiple linear regression models based on descent through the nodal straight
lines. In addition, a comparative analysis of the algorithms of descent through nodal straight
lines for LAD and GLAD with known exact and approximate methods to solve tasks (2)
and (3) was carried out.
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Introduction

One of the most common tasks in the statistical processing of experimental findings
is to estimate the unknown coefficients of multiple linear regression model [1]:

Vi = a1+ aaTip + azriz + -+ ApTim + &, =110, (1)

where y;,7 = 1, n are observed values of the dependent variable; a;, 7 = 1,m are unknown
coefficients of multiple linear regression; z;;,7 = 1,m,i = 1,n are values of explanatory
(independent) variables; ;,4 = 1, n are random measurement discrepancy (errors).

To create mathematical models using experimental data for example for monitoring
and diagnostic tasks, one has to deal with stochastic heterogeneity. We will point out such
features as: incomplete correspondence of some parts of the observations to the model;
possible presence of outliers in samplings not necessarily due to measurement errors; often
non-experimental, heterogeneous nature of data; use of different groupings and rounding;
possible dependence of the observation results [2].

In this case, the use of classical procedures, based on fulfillment of the basic
prerequisites of mathematical statistics, can lead to gross estimation errors. In this
situation, we use stable (robust and nonparametric) estimation methods based on the
least absolute deviation method (LAD) [3], which for model (1) minimizes the sum of the
modules of the residuals
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where a= (ay, as, ..., an); X = (1,2, ..., Tim),1 = 1,n.

If the outliers are symmetrical, the LAD estimations provide acceptable results.
However, unsymmetrical outliers can lead to estimation errors while the least absolute
deviation method is using. As an alternative, a generalized method of the least absolute
deviations (GLAD) is proposed in [2]. The GLAD estimations for the model (1) are found
as a solution to the task:

n

W(a) = Y p(lyi — (xi,a)]) = minggm, (3)

=1

where a= (ay, as,...,an); Xi = (1, T, ..., Tim), i=1,n.

Computational Experiments and Comparative Analysis

To solve the tasks (2) and (3) in [4] the algorithms based on descent through nodal
straight lines are proposed. Computational experiments on model data were carried out in
the paper in order to study the effectiveness of the proposed algorithms when estimating
the coefficients of multiple linear regression models. In addition, a comparative analysis
of the algorithms of descent through nodal straight lines for GLAD and LAD with known
exact and approximate methods of solving tasks (2) and (3) was carried out.

The results of the comparison of the algorithm of descent through the nodal straight
lines to solve the task (2) with known exact algorithms of solving it (a brute-force search
algorithm and the solving of the equivalent problem of linear programming), are reflected
in Table. 1 and in Fig. 1.

Table 1
The computational complexity of the algorithms to find the exact solution of the task (2)
Algorithm Computational complexity
Brute-force search algorithm|2] My =0(C™ - (m*>+m-n))
Simplex-method (worst case)|5| M,y = O (n?)
Simplex-method (best case)|5] M; = O(n? - Inn)
Descent algorithm through the nodal
straight lines My =O(m*n*+m* - n-lnn+m?-n-In’n)

In addition, by a statistical testing method, a series of control experiments were
conducted to compare the algorithm of descent through the nodal straight lines with
an algorithm based on the solving of an equivalent linear programming problem |[6].
The results of solving the task (2) where the number of tests N = 1000; the number
of parameters of the model m = 5; the random errors € have a distribution in types

Fz) = (1=7) N (0,0%) +7 (% -arctg (£521) + 1), (4)

o=1; ag=0; yy=1; v= 0.1, are shown in Tables 2 and 3.

In Tables 2 and 3, M is the number of computational operations, M is the
average number of computational operations. All confidence intervals for the number of
computational operations of the algorithm of descent through the nodal straight lines lie
lefter than the intervals for the simplex algorithm. In addition, the simplex algorithm does
not always find the exact solution of task (2).
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Fig. 1. Computational complexity of the algorithms to find the exact solution of problem (2),
m =25

Table 2
The results of solutions of the task (2) with the help of the simplex algorithm

n Average 99% confidence | lgM 99%-confidence The number of
iteration | interval for interval for discrepancies
number the number of lgM from the exact

iterations solution %
Left Right Left Right
border | border border border

32 20.72 20.25 21.18 4.390 4.380 4.399 5.5

64 40.26 39.45 41.05 5.250 5.241 5.258 7.9

128 | 75.67 74.18 77.15 6.110 6.101 6.118 8.4

256 | 143.34 140.65 | 146.02 | 6.981 6.973 6.989 9.0

512 | 343.14 326.40 | 359.00 | 7.958 7.937 7.978 10.1

A comparative analysis of the accuracy and performance of the algorithm of descent
through nodal straight lines was carried out with approximate algorithms based on the
method of iteratively reweighted least squares (Weiszfeld’s algorithm) [7] and zero-order
iterative optimization methods [8]. The results of statistical tests for model (1) are given
in Table. 4, where the random errors have the distribution (4); N = 1000 is the number
of tests; m = 5; Ay = Ay=---=A,, = 1 is the initial values of steps by coordinate
directions; ;1 = 107° is the number to stop the algorithm; A= 1.5 is the accelerating factor;
a= 2 is the step reduction coefficient; 7= 1.618 is the expansion coefficient; 5 = 0.618 is
the compression ratio; M., = 4m is the maximum number of failed tests at the current
iteration, ¢ty = 1 is the initial step size, T'= 107% is the minimum step size.

Table 4 reflects s,(n, m), sy(n,m) and s,(n,m) are the standard quadratic deviation
of the vector a,, a, and a, respectively, which are sample estimates of the coefficients of
the multiple linear regression model relative to the vector a* of the exact solution of the
problem (2), for the Weiszfeld’s algorithm; pattern search and adaptive random search
methods. t,(n, m) is the average computation time for the Weiszfeld’s algorithm, t,,(n, m)
is the average computation time for the algorithm of descent through nodal straight lines.
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Table 3

The results of the solutions of problem (2) with the help of the algorithm of descent

through the nodal straight lines

n Average 99%- lgM 99%- The number of
number confidence confidence discrepancies
of  node | interval for interval for from the exact
locus node locus lgM solution %
considered | considered

Left Right Left Right
border | border border border

32 134.74 131.70 | 137.78 | 4.334 4.324 4.343 0

64 241.00 235.70 | 246.26 | 4.887 4.877 4.897 0

128 | 431.86 422.00 | 441.73 | 5.442 5.431 5.451 0

256 | 784.07 765.48 | 802.65 | 6.002 5.991 6.012 0

512 | 1858.45 1766.14 | 1951.92| 6.677 6.655 6.699 0

Table 4

The standard quadratic deviation of the sample estimates of the parameters of model (1),
found by the approximate method, with respect to the exact solution of problem (2),

m=2>5
Variationally-weighted quadratic Methods of searching for an
approximations’ algorithms for n = 64 unconditional zero-order
extremum
n Configuration | Adaptive
Method random
search
method
d—computational | s,(n,m) | t(n,m) = ZEZZ; sp(n,m) sp(n,m)
accuracy
1071 0.632 0.30 32 41.32 38.27
102 0.352 0.72 64 | 44.00 41.21
1073 0.192 1.56 128 | 46.91 42.89
10~* 0.127 3.0 256 | 47.96 44.57
107° 0.064 4.4 512 | 51.38 48.36
107° 0.041 5.6 1024 | 53.11 50.22

The computational efficiencies of the proposed algorithm of descent through nodal
straight lines and the known exact method (a brute-force search algorithm) of solving the
task (3) were compared. The results of the comparison are shown in Table 5 and Fig. 2.

Table 5

Computational complexity of algorithms to find the exact solution of the task (3)

Brute-force search algorithm

Descent algorithm through nodal lines for GLAD

M; =0 (C™ - (m3+m-n))

My =0 (n*-m?-lnn +C™ - (m*>+m-n))
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Fig. 2. Graphs of the function of computational complexity of algorithms to find the exact
solution of the problem (3)

The results of statistical tests showed that with the increased amount of sampling, the
value of the optimal « decreases inversely proportional. And in the case where the errors
have a distribution of the form (4) a = 45/ n.

A comparison was also conducted between the algorithm of descent through nodal lines
for GLAD and the algorithm of modified GLAD (the algorithm of finding the approximate
solution of problem (3)) [9].

The results of statistical tests, where the errors have a distribution of the form (4);
q = 2 is the number of subsamples; m = 4 is the dimension of model; n= 100 is the amount
of sampling; N= 1000 is the number of tests, are given in Table 6.

Table 6

The results of comparison of the algorithms of modified GLAD and the algorithm
of descent through the nodal straight lines for GLAD

gl p (n,m) t(n,m)/t'(n,m) p (n,m) t(n,m)/t"(n,m)
0.05 100 19.3 223 20.6

0.1 100 19.3 22 20.6

0.2 99.9 19.3 215 20.6

Where p'(n,m) is the percentage of matching of the vector of sample estimates of the
coefficients of the multiple linear regression model with the exact solution vector of the
problem (3) for the algorithm of descent through the nodal straight lines and p”(n, m) is the
same for the modified GLAD, t'(n,m) and " (n, m) are the average computation time for
the algorithm of descent through the nodal straight lines and the modified GLAD algorithm
respectively, t(n,m) is the computation time for the brute-force search algorithm.

Conclusion

Based on the results of the analysis it was concluded that the developed new
computational algorithms based on descent through the nodal straight lines for realization
of the least absolute deviations (LAD) method and the generalized method of the least
absolute deviations (GLAD) when estimating the parameters of multiple linear regression
models, in terms of computational complexity and accuracy, greatly benefit from known
exact and approximate methods and can be effectively used in practice.
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NCCJIEJOBAHUE AJITOPUTMOB YCTOYMBOTI'O
OLEHUBAHUA KO®PUIIMEHTOB JIMHENMHBIX
MHOTI'OMEPHBLIX PETPECCUOHHEIX MOJAEJIEI

A. A. Azapsan

IIpoBeeHbl BLIYUCIUTEILHbIE SKCIEPUMEHTEI HA MOJIEILHBIX JAHHBIX C IeJIbI0 HCCIIe-
JIoBaHusA 3P PEKTUBHOCTH AJTOPUTMOB CILyCKa 0 Y3JI0BLIM IPAMBIM JJIs OIEHUBAHUST KO-
PUIIEHTOB MHOIOMEPHBIX JTHHEHHBIX PErPECCHOHHBIX MOJEICH Ha OCHOBE METOIA HANMEHD-
mmx mogyseit (MHM) u o606mientoro meroma nanmenbiiux moysteit (OMHM). ITposenen
CPaBHUTEIbHDLIA aHAJIN3 JAHHBIX AJTOPUTMOB C M3BECTHBIMU TOYHBIMU U IMPUOINKEHHBIME
MerogamMu peanusaruu MHM n OMHM.

Karouesvle cro06a: Aunetinga pezpecCuoOnHHai MOOEAb; Memo0 HAUMENWUL MOOYell;

0506’&467—“11)(,17,; B UCAUMENOHAA CAOHCHOCTD, cpaeﬂume,/wnbm aHaAAU3.
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