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NUMERICAL STUDY OF A MATHEMATICAL MODEL
OF AN AUTOCATALYTIC REACTION WITH DIFFUSION
IN A TUBULAR REACTOR
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The article analyzes analytically and numerically the model of the autocatalytic
reaction with diffusion in the degenerate case on a finite connected directed graph G with
the Showalter — Sidorov condition. The mathematical model of the autocatalytic reaction
with diffusion is based on the system of distributed Brusselator equations. The system of
degenerate equations of a distributed Brusselator whose functions satisfy the conditions of
continuity and flow balance belongs to a wide class of semilinear Sobolev type equations. To
investigate the existence of a solution of this system of equations, the phase space method
which was developed by G. A. Sviridyuk and his students to study the solvability of Sobolev
type equations will be used. We will show the simplicity of the phase space and the existence
of a unique local solution of the given Showalter — Sidorov problem. The theoretical results
of this article served as the basis for developing an algorithm for numerical study of the
model in a Maple environment. The algorithm of numerical investigation is based on the
Galerkin method, which allows us to take into account the phenomenon of degeneracy of
the equation. The article gives several examples illustrating the results of the computational
experiment obtained on the three-ribbed and five-ribbed graphs.

Keywords: Sobolev type equation; Brusselator; Showalter — Sidorov problem; reaction-
diffusion models; local solution.

Introduction

In 1958, A. A. Belousov published a report on an unusual chemical reaction of citric
acid oxidation with potassium bromate in the presence of a catalyst — three- and four-
valence cerium vapor. The unusuality of that reaction was that the reagents, instead of
reacting with the formation of a new substance, created a kind of chemical clock: namely,
the solution with reagents periodically changed color from red to blue and vice versa. The
work of Belousov was continued and developed by A. M. Zhabotinsky, who discovered
the appearance of spiral waves in an initially homogeneous chemical mixture. To date,
many Belousov — Zhabotinsky reactions are known, which usually occur at 25° C in a
reaction mixture consisting of potassium bromate, malonic or bromo-malonic acid and
cerium sulfate or an equivalent substance soluble in citric acid. The research works on the
reactions mechanism resulted in arising of ordered temporal and (or) spatial structures
arise, and after that some mathematical models were obtained in the form of reaction-
diffusion equations

(1)

Here, v = w(s,t) and w = w(s,t) are the functions characterizing the reagent
concentrations; the first summands on the right sides of the equations, according to Fick’s
law, characterize the diffusion of the reagents (a, 8 € R, are the diffusion coefficients),
the vector functions f and ¢ are responsible for the interaction of the reagents.

e10y = alAv + f(v,w),
gowy = AW + g(v, w).
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At the present time, the studies of self-organization phenomena in various
nonequilibrium systems, consisting in the occurrence and evolution of ordered space-time
structures are carried out. An example of the latter can serve are autowaves, which are
formed in excitable media in response to an external disturbance. There are many examples
of excitable media: nerve and muscle tissues, colonies of microorganisms, a number of
chemical solutions and gels, magnetic superconductors with current, and some solid-state
systems [1-4].

System of equations (1) has been studied in various aspects, and in many studies the
case €1 > 0, g5 > 0 is discussed along with the case e; = 0 or 9 = 0 [5]. The necessity of
studying the case €1 = 0 or €5 = 0 is related to the fact that the rate of change of one of
the components significantly exceeds the other. This leads to systems of equations of the

form
{ Ut :aAv+f(v,w), (2)
0= SAw + g(v,w).

Equations (2) in the case when

Flow) = — (5 + Lo + P,
g(v,w) = dv — v?w,

(3)

describe the distributed Lefebvre — Prigogine Brusselator [6], proposed as a model of an
autocatalytic reaction with diffusion |7|

v = alAv+v— (6 + 1)v + vw, (4)
0 = BAw + Jv — v?w.

The parameters 7,0 € R, characterize the concentrations of the initial reagents, which
are assumed to be constant.

We will consider the chemical reactions taking place in a system of narrow long tubes
(multidimensional tubular reactor), along which substances can diffuse, the ends of the
tubes, as well as their walls, are impermeable for reacting substances. The mathematical
model of this tubular reactor, with the specified parameters, is the finite connected oriented
graph G. Each function in the system of equation considered on the graph satisfies
the continuity condition and the flow balance condition [8]. It should be noted that
the reaction-diffusion equations on graphs have been studied poorly, mainly for linear
systems [7].

In suitable constructed function spaces, the system of equations (4), where the
functions satisfy the condition of continuity and balance of flows, is reduced to a semilinear
Sobolev type equation

Li = Mu+ N(u), ker L # {0}. (5)
The classical initial condition for Sobolev type equations is the Cauchy condition
w(0) = . (6)

However, the consideration of condition (6) in the case of the degenerate equation (2) leads
to the nonexistence of the solution for the derived initial values ug. In [9] this phenomenon is
studied in detail and it was shown that it is more natural to consider the initial Showalter —
Sidorov condition for the degenerate equation (5)

L(u(0) = uo) = 0, (7)
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than condition (6), and if the operator L is continuously invertible, then problem (7)
is equivalent to problem (6) for equation (5). Thus, relying on the theory of relatively
bounded operators or relative to sectorial operators, G. A. Sviridyuk, and later his
successors [10,11], found the conditions for the unique solvability of the problem (5), (7).
In the case when the operator M is (L, p) sectorial and the phase space of the equation
(5) is a simple Banach C'*°-manifold problem (5), (7) is uniquely solvable. A Banach C'*°-
manifold is called simple if any of its atlas is equivalent to an atlas containing a single map.
Also, it is worth mentioning about another important concept such as quasistationary
(semi)trajectories passing through the point ug, which pointwise lie in the phase space
9 [12]. Any stationary trajectory of the equation (5) is quasistationary, but the converse
is not true. In particular, if the operator M is (L,0) sectorial, then any solution (5), (7)
is a quasistationary (semi)trajectory. However, the phase space of equation (5) may be
not simple, then the solution of Showalter—Sidorov problem (7) for semilinear Sobolev
type equations (5) is non-unique. It was shown in the papers [13,14] that the Showalter —
Sidorov problem for the Korpusov — Pletner — Sveshnikov equation can have two different
solutions, and for the Plotnikov equation system — three. In addition, it should be noted
that in the degenerate case (i.e. &1 = 0 or g5 = 0) the phase space of the system of
equations (1) contains features such as the assemblies and folds of Whitney [15], therefore,
can have one or more solutions or a solution may not exist.

Since the article besides theoretical studies also contains the results of numerical
experiments, here it is necessary to mention the Galerkin method, which is the basis of
computational experiments. Obtaining an analytical solution for Sobolev type equations
(5) is not always possible, so the construction of algorithms for numerical methods of the
problems being studied is in demand. In the case of degenerate semilinear equations, the
Galerkin method is the most suitable, as it allows us to take into account the degeneracy of
the equations for certain parameters. Using the Galerkin method, approximate solutions of
models are constructed which coefficients satisfy a system of algebra-differential equations
with the corresponding initial conditions [16,17].

We will research the system of equations (4) on a finite connected oriented graph G
with the Showalter — Sidorov condition (7). The simplicity of the phase space and the
existence of a unique local solution of this problem will be shown. To illustrate the results
obtained, examples will be given on the three-ribbed and five-ribbed graphs.

1. Formulation of the Problem

Let G = G(; €) be a finite connected oriented graph, where U = {V;} is set of
vertices, and € = {E};} is the set of arcs. Each arc E; has the length [; > 0 and the area
cross section d; > 0. On the graph G we consider the system of equations distributed of
Brusselator:

{ Vjt = QUjgs + 77 — ((5 + 1)Uj + ’U]ij, (8)
0 = Bwjss + 0v; + viw;,

where each function v; = v;(s,t) and w; = wj(s,t),s € (0,{;) and t € R, satisfies the

A
COMMUIY ORI 03(0,1) = v(0, 1) = Viallims £) = vallns ),
w;(0,t) = wi(0,t) = Wy (I, t) = wy(ly, 1), (9)
E;, Ex € E°(V}),
B, B, € E°(V;),

26 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

and flow balance condition

> diws(0,t) — > dju(ly,t) =0,

EjEEa(‘/’i) EjeEW(‘/i) (10)
> djwis(0,t) — >0 dyw;s(lyt) =0,
E;€E*(V;) E;€E% (V)

where E““)(V}) denotes the set of edges with the beginning (end) at the vertex V;. Based
on the results obtained in [8], we introduce the set Ly(G) = {g = (g1, 92, .- -, gjs--.) 1 g; €

Ly(0,1;)}. The set Lo(G) is a Hilbert space with a scalar product (g, h Z d; /gjhjds.
Ejee 3}
We denote by R the set R = {r = (r1,re,...,75,...) 115 € VV2 (0,1;) and (9) } is satisfied.

The set R is a Banach space with norm |2, = Z d; / )ds.
Ejce
We identify Ly(G) with its conjugate, and denote by R the dual space (-,-) to .

We fix A € Ry and with the formula (Agp, ) = Z d; / ©isthjs + Ap)ds  define the
Ejee
operator A : R — R.

In the paper [18| it was shown that the spectrum of the operator A is real, discrete,
finite-fold and condensed only to +00. We construct the operator B = A — A, then the
operator B € L(R; R), and the spectrum o(B) of the operator B is discrete, finite and is
condensed only to +oo.

For reduction (8) — (10) to equation (5), we construct a Banach space

9 =1{h=(hi,ha,...,hj,...): hj € W(0,l;) and satisfies (9), (10)}

with the norm |h||fJ Z / %s T hjs + h3)ds.

Ejee€
Denote by v, = — g, Where A, k € {0} UN are the eigenvalues of the operator B. We
construct the spaces I = F = Ly(G) X Lo(G) with scalar product

[u, (] = (v, &) + (w,n),
where u = col(v,w),( = col(§,n) and define the operators
I:Lu7<-:| = </U7§>7 /U/’C e u?
[Mu, (] = afvss, §) — Blwss,m), u, ¢ € 9.

Lemma 1. (7] (i) For any o, € R\{0}, the operator L € L(U,F),
ker L = Ly(G) x {0}, and the operator M € Cl(;F), dom M = § x 9.
(ii) For any a, 8 € Ry, the operator M s (L,0)-sectorial.

Remark 1. It should be noted that in the case of (L, 0)-sectoriality of the operator M,
each solution of the problem (8) — (10) is a quasistationary trajectory [12].
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We construct the operator
[N(w),¢] = (v = (8§ + D +v*w, €) + (dv — v*w), n)

and let dom N = Ly(G) x L4(G) = Uy. Denote by U3 the dual space to Uy with respect
to the duality [-,-]. By the Sobolev embedding theorem, there are dense and continuous
embeddings

H = Uy = U — LUy (11)

Lemma 2. For any 7,0 € R, the operator N € C(Uy; Uy ).

Proof. We show first that N € C(Un; Uy ). Indeed, by the Holder’s inequality and the
continuity of the embedding Uy — U, we have

[N (u), ]I < (Cr + Colulluy + Csllul g )11¢ uy» € € U

[ING1s Gl < (Ca+ Csf[ul ) 11C [ Callaty s Gy G € S

where the constants Cy, Cy, C5,Cy,C5 € R do not depend on w, nor on ¢, (1,(, a N},
is the Frechet derivative of the operator N at the point w. Similarly, the continuity of
the second derivative is proved, the remaining ones are equal to zero. Thus, the inclusion
N € C™(Uy; Uy ) is proved.

O
We construct an auxiliary interpolation space [19] 4, = R x $, by (11) we have dense
and continuous embeddings

o Uy > Uy > 8, (12)

then the operator N € C™(iU,; Uy ). So, we reduced problem (8) — (10) to a semilinear
Sobolev type equation (5).

2. Showalter — Sidorov Problem

We now turn to the problem (8) — (10) with Showalter — Sidorov condition (7).
Condition (7) in this particular case will have the following form:

v(0) = . (13)

Thus, we are interested in the solvability of the problem (8) — (10), (13) for any
up = col(vg,wy) € . The operator M is (L,0)-sectorial; hence, in our case all the
solutions of the problem (8) — (10) are quasistationary trajectories passing through the
point ug, i.e. lie pointwise in the phase space

M = {u € H: (Bws + v — v*w),n) = 0}.

Lemma 3. For~,d € R and ((Bwss —viw),n) # 0, then for any vector v € i, there exists
a unique vector w € W2(G) such that u = col(v,w) € M.

Proof. We construct an auxiliary operator (D(w),n) = (fwss — v*w),n), w,n € WZ(Q),
dom D = WZ(Q), a (-,-) is the scalar product in Ly(G).
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Because the |[(D(w),n)| < (C1+Col|wl|wz@))lnl|r.(q), Where the constants Cy, Cy €
R, depends on (3,9, A and does not depend on w, 7.

Note that the operator D : W3(G) — Ly(G) is linear and by the hypothesis of the
lemma ker D = {0}, hence, the inverse operator D™': Ly(G) — WZ(Q) exists. Therefore,
for any v € {l,, there exists a unique vector w € WZ(G) such that u = col(v,w) € M.

O
Theorem 1. Let 7,6 € Ry and ((Bfwss — viw),n) # 0. Then the phase the space of the

equation (8) is a simple Banach C*-manifold 9.

Hence, by Theorem 1, Cauchy Theorem [20], and the classical result obtained in the
paper [21], it follows that

Theorem 2. Let the point ug = (vg,wo) € M, where ((fwss — vaw),n) # 0 for all
w,h € H\ {0}. Then there exists a unique local solution of the problem (8) — (10), (13).

3. Numerical Experiment

Algorithm to found the approximate solution of the Showalter — Sidorov problem
(8) = (10), (13) based on the modified Galerkin method was developed for illustrate the
results of theoretical research.

We denote by o(A) the spectrum of the operator A, constructed in Section 1. We
recall that the spectrum o(A) is nonnegative, discrete, finite-fold, and condensed only to
oo. Following the Galerkin method, we seek an approximate solution @ = (0,w) of the
problem (8) — (10) in the form of sums

n

Bi(s,t) = 3 o ()ai(s), Zw —1,.m,

=1

where ;(s) are the eigenfunctions of the operator A on the I-th edge of the graph.

To find the unknowns v!(t), substitute the Galerkin sums in the equation (5), and then
multiply the resulting equation scalarly in Ly(G) by the eigenfunctions ¢,(s), we obtain a
system of algebra-differential equations

(L, 1) + (M, @) = (N(a), ), I =1,...n (14)

with the conditions of Showalter — Sidorov

(v(0) —vo, 1) = 0. (15)

Based on this algorithm, a program for the numerical solution of the (8) — (10),
(13) problem in the Maple programming language was developed and implemented in
the Maple 17.0 for Windows environment. The developed program functions as follows:

1. The numerical solution of the Showalter — Sidorov problem for the distributed
brusselator (by default the Runge — Kutta method of 4 or 5 order is used) is found from
the given coefficients on the basis of Galerkin’s method.

2. A graphic representation of this approximate solution at the initial and final point
in time is obtained.

The result of the program is shown in the examples.

2018, vol. 5, no. 3 29



O. V. Gavrilova

Example 1. It is required to find a numerical solution of the problem (8) — (10), (13) for
given coefficients y =1, a=1,=1,0 = i and m = 3 on the graph G (Fig. 1) consisting
of three edges and four vertices d; = 1,l; = m,i =

Q O 1,...,3, T =1, and initial functions
vo1($) Z (cos () + cos (%) + cos (&),
vo2(s) = — \/:—1—1) (sm( )+sm( )+sm (%)),

vos(s) = sin () +sin (%) +sin (£) .

The results of a numerical solution of a system of
algebraic differential equations with initial conditions
O taken into account are presented in Table 1 (with an

Fig. 1. Graph G accuracy of 1077).

Table 1
The numerical solution of the problem

t U1 (t) UQ(t) Ud(t) w1 (t) ’LUQ(t) wg(t)

0 5,2554618 | 10,5109236 | 15,7663854 | —0,0008576 | 0,0001728 | 0,0084892
0,1 | 3,0166314 | 2,7163826 | 1,2252387 | 0,0232671 | 0,0063418 | 0,0001835
0,2 | 1,7103189 | 0,6975324 | 0,0937483 0,0320726 | 0,0038489 | 0,0000780
0,3 | 0,9584756 | 0,1776861 | 0,0054537 | 0,0234993 | 0,0014607 | 0,0000127
0,4 | 0,5314025 | 0,0450486 | —0,0013787 | 0,0141977 | 0,0004237 | —0,0000070
0,5 | 0,2903006 | 0,0114000 | —0,0019023 | 0,0079701 | 0,0001119 | —0,0000095
0,6 | 0,1544920 | 0,0028831 | —0,0019420 | 0,0042772 | 0,0000286 | —0,0000098
0,7 | 0,0780490 | 0,0007290 | —0,0019449 | 0,0021661 | 0,0000072 | —0,0000099
0,8 | 0,0350308 | 0,0001843 | —0,0019451 | 0,0009729 | 0,0000018 | —0,0000099
0,9 | 0,0108238 | 0,0000466 | —0,0019451 | 0,0003006 | 0,0000004 | —0,0000099
1,0 | —0,0027975 | 0,0000117 | —0,0019451 | —0,0000777 | 0,0000001 | —0,0000099

Figs. 2, 3 illustrate the behavior of the model functions v(s,t) and w(s,t) on the first
and the second edges of the graph at the initial and at the final time.

204 =
104 Do N i
. . 1
! - N N 0003 1

:
/\ . '_ . ]
0 " . - — I
-

—0.005 4

—nosod

Fig. 2. v(s,0) and v(s, 1) of the first and the second edges of the graph G
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04

Fig. 3. w(s,0) and w(s, 1) of the first and the second edges of the graph G

Figs. 4, 5 illustrate of the behavior of the model functions v(s,t) and w(s,t) on the
first and the third edges of the graph at the initial and at the final point in time.
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Fig. 4. v(s,0) and v(s, 1) of the first and the third edges of the graph G
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Fig. 5. w(s,0) and w(s, 1) of the first and the third edges of the graph G
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Example 2. It is required to find a numerical solution of the problem (8) — (10), (13) for
set coefficients y =1, a =2, f =4, 0 = }1 and m = 3 on the graph G (Fig. 6) consisting
of five consecutively connected edges and six vertices d; = 1,[; = m,o =1,...,5, T =1,
and initial functions

vo1(s) = \/g (cos (%) + cos (g) + 1)) 7
vo2(s) = \/g (cos (2 +2) 4 cos (£ +Z)+1),
vo3(8) = \/527T (— sin (25—5 + 31’—8) + cos (g + %’r) 1) ’
0B ottt 511
vos(s) = \/g (cos (% + &) +cos (£ +322) + 1)
\ e O

Fig. 6. Graph G

The result of the numerical solution of the system of algebraic differential equations
with allowance for the initial conditions is presented in Table 2 (with an accuracy of 1077);
in Fig. 7 we illustrate the behavior of the model function v(s,t) on each edge of the graph
at the beginning and at the end of time, Fig. 8 shows an illustration of the behavior of
the model function w(s,t) on each edge of the graph at the initial and at the final instant
of time.

Table 2
The numerical solution of the problem

t U1 (t) Ug(t) Ug(t) w1 (t) U}Q(t) wg(t)

0 2 3 4 0,1253301 | —0,0551093 | 0,2458884
0,1 | 2,0763675 | 2,6940882 | 3,4927618 | 0,2581374 | —0,1060352 | 0,1703706
0,2 | 2,1454677 | 2,4203842 | 3,0536960 | 0,4250503 | —0,1703084 | 0,0677417
0,3 | 2,2079922 | 2,1756744 | 2,6752924 | 0,5899671 | —0,2314321 | —0,0371085
0,4 | 2,2645667 | 1,9568104 | 2,3493521 | 0,7174804 | —0,2735610 | —0,1187750
0,5 | 2,3157574 | 1,7608072 | 2,0676155 | 0,7958981 | —0,2921211 | —0,1677739
0,6 | 2,3620766 | 1,5849967 | 1,8227596 | 0,8337800 | —0,2918655 | —0,1889439
0,7 | 2,4039880 | 1,4270819 | 1,6088404 | 0,8454240 | —0,2799346 | —0,1916727
0,8 | 2,4419110 | 1,2851002 | 1,4211853 | 0,8425436 | —0,2620205 | —0,1839739
0,9 | 2,4762252 | 1,1573600 | 1,2560966 | 0,8326644 | —0,2417243 | —0,1711564
1,0 | 2,5072739 | 1,0423845 | 1,1105816 | 0,8200689 | —0,2210712 | —0,1563395
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Fig. 7. v(s,0) and v(s, 1) sequentially on each edge of the graph G

Fig. 8. w(s,0) and w(s, 1) sequentially on each edge of the graph G

The work was supported by Act 211 Government of the Russian Federation, contract
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YN CJIEHHOE UCCJIEAJOBAHUE OJTHOI
MATEMATUNYECKOI MOJEJINN ABTOKATAJIUYECKO
PEAKIIUUN C IJUODPY3UNEN B TPYBYUATOM PEAKTOPE

O. B. I'aspuaosa

B crarbe mpoBouTCS aHAJIATHYIECKOE W YHUCJIEHHOE UCCJIEIOBAHME MOJEJN aBTOKATA-
JIMIecKoi peakiuu ¢ auddysneli B BHIPOKIEHHOM CJIy9Yae Ha KOHEYHOM CBSI3HOM OPUEH-
tupoBanHoM rpade G ¢ ycaosuem Illoyonrepa — CumopoBa. B ocHoBe MaremaTmaeckoii
MOJIESIN ABTOKATAJINYIECKON peakiuu ¢ auddysueit JIeXKUT CUCTEMa YpaBHEHUI pacipejie-
JieHHOTO bproccesisitopa. CucreMa BBIPOXKIEHHBIX YPABHEHUI pacIpeie/leHHOro Oprocce)isi-
TOpa, PYHKIUA KOTOPOH YJIOBJETBOPSIOT YCJIOBUSIM HEIPEPBIBHOCTH U OAJIAHCA TTOTOKA,
OTHOCHTCsI K IIIHPOKOMY KJIACCY TOJIYJINHEHHBIX ypaBHEHU cobosleBcKoro Tura. st ncce-
JIOBAHUS CyIIECTBOBAHUS PEIIEHUs JTAHHONW CHCTEMBI YPaBHEHUI OyIeT MCIOJb30BAH METO]
¢a30BOro MPOCTPAHCTBA, KOTOPHIN ObLI paspadborad I. A. CBUPUIIOKOM M €r0 yYeHUKAMU
JIJIsT WUCCJIEIOBAHUS PA3PEIMMOCTH YpaBHEHHU cobosieBckoro tuma. Hamu Oyzer mokasaHa
pocToTa (ha30BOro MPOCTPAHCTBA U CYIIECTBOBAHUE €IUHCTBEHHOI'O JIOKAJBHOIO PEIeHMSs
manHoit 3amaqdn [loyosrepa — Cumoposa. Teopernueckue pe3yabTaThl TaHHONW CTATHU ITPO-
WLTIOCTPUPOBAHBI C MTOMOIIBIO YUCIEHHOIO UCCIEIOBAHUS MOJEJH, IIPOBEIEHHOTO B CPee
Maple. B ocHOBe anropuTMa IHCIAEHHOTO UCCIEIOBAHNS JIEXKUT MEeTO I, [ 'amepKuHa, KOTOPHIit
ITIO3BOJIAET y4IeCThb d)eHOlVIeH BBIPDO2K/IECHHOCTU ypaBHEHNA. B CcTaTbe IIPUBOJATCA HECKOJIBKO
[IPUMEPOB UJLIIOCTPUPYIONINX PE3YAbTATHI BBIYUCJIUTETLHOTO IKCIEPUMEHTA, I0JIyIYEeHHBIE
Ha TpexpebepHOM U IsiTupebepHOM Trpadax.

Karouesnvie caosa: ypasrenus coboaesckozo muna; o6procceasmop; ycaosuem Lloyoame-

pa — Cudoposa; ypasHnerus peakyuu-ouddyauu; A0KaADHOE PEUEHUE.
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