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The non-stationary linearized Hoff equation is considered in the article. For this
equation, a solution is obtained both on the domain and on the geometric graph. For the
five-edged graph, the Sturm — Liouville problem is solved to obtain a numerical solution of
the non-stationary linearized Hoff equation on the graph. A numerical method for solving
this equation on a graph is described. The graphics for obtained numerical solution are
constructed at different instants of time for given values of the equation parameters and
functions. The article besides the introduction and the bibliography contains four parts.
The first part contains information on abstract non-stationary Sobolev type equations, and
solutions for the non-stationary linearized Hoff equation on the domain are constructed.
In the second one we consider the Sturm — Liouville problem on a graph and construct
necessary spaces and operators on graphs. In the third one we study the solvability of the
non-stationary linearized Hoff equation on the five-edged graph, and finally, in the last part
we describe the numerical solution of the equation on the graph and the graphics of these
solutions at different instants of time.

Keywords: Sobolev type equation; relatively bounded operator; Sturm - Liouville
problem; Laplace operator on graph.

Introduction

Let Q2 C R™ is a bounded domain in R™ with boundary 0f2 of C'° class. A semilinear

Hoff equation
(A — Ay = au + u? (1)

describes buckling of an I-beam under constant load. Here a is a real number, which
is characterized material properties of the I-beam; the number A € R, corresponds to
the load on the beam [1]. If A € o(A) then the left part of equation (1) becomes zero.
Equations, that are unsolved with respect to the highest time-derivative, are referred to
the Sobolev type equations [2]

Li = Mu+ N(u), kerL # {0},

where operators L and M are linear bounded operators acting from the Banach space 4
into the Banach space §, and the operator N is a nonlinear smooth operator acting in the
same spaces. Even in the first papers devoted to these equations, their feature was noted
in the fact that for them the Cauchy problem

u(0) = ug

is fundamentally insolvable for arbitrary initial data ug, even from dense set in 4. In order
for solutions of the Sobolev type equation to exist, it is necessary that the initial data
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belong to some set of admissible initial values (phase space) for these equations. In order
not to check this condition, we shall use the Showalter — Sidorov condition

L(u(0) — ug) = 0.

This condition coincides with the Cauchy condition, in the case of a nondegenerate operator
L, and in the case of a degenerate operator L, it eliminates the need for matching the
initial data. At present, the theory of Sobolev type equations is rapidly developing in
various direction. For example, applying the methods of this theory [3,4] to reconstruct a
dynamically distorted sensor signal [5] served as the basis for creating a theory of optimal
dynamical measurements (6, 7].

For the first time, the methods of the Sobolev type equations theory [2] were used to
study the equation (1) in [8]. Later, within the framework of this theory, the Hoff equation
(1) was investigated in various aspects (see, for example, [9-14]). In this paper we consider
the non-stationary linearized Hoff equation of the form

(A= A)uy = a(t)u + g(t) (2)

on a finite connected oriented graph G, where the vector function g : R — § characterizes
the external action on the system, and the scalar function a:[0,7] — R, characterizes the
time variation of the parameters of this equation. Non-stationary Sobolev type equations
were first considered in [15] and the proposed methods were applied to investigate various
problems, for example, in [16-18].

The Sobolev type equations on graphs were first considered in the paper [19] and the
proposed methods were applied to various models on graphs (see, for example, [10,11,13,
20-25]), including the Hoff model [10,11,13,23,24]. The Hoff equation, which is defined
on a finite connected oriented graph G, models the dynamics of the structure consisting
of I-beams.

The main goal of this paper is to construct a numerical solution of the non-stationary
linearized Hoff equation (2), considered on a five-edged connected oriented graph. For this,
the methods proposed in [10] was applied, and in constructing the numerical solution we
used the methods from [23-25].

1. The Solvability of the Non-Stationary Linearized Hoff Equation
on the Domain

1.1. Solutions of the Abstract Non-Stationary Sobolev Type Equations

We recall the basic concepts of the theory of Sobolev type equations, which can be
found, for example, in [2].

Let 4 and § are Banach spaces, operators L, M € L(;F) (linear bounded operators
acting from  into §) and ker L # {0}. Sets p“(M) = {u € C: (uL — M)™' € L(F; )}
and o%(M) = C\ p*(M) are called L-resolvent set and L-spectrum of operator M
correspondingly.

For complex value 1 € C we define operator-valued functions of forms (uL — M)~}
RY(M) = (uL—M)™'L and L);,(M) = L(pL— M)~" with domain p*(M). These functions
we call L-resolvent, right and left L-resolvent of operator M correspondingly.

The operator M is called spectrally bounded with respect to the operator L (or, shortly,
(L,o)-bounded), if Ir >0 VYueC (lu| >r)= (ue p(M)).
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For the (L, o)-bounded operator M we choose in complex plane C the closed circuit
of form v = {u € C: |u| = R > r}. Then next integrals

P= i/Rﬁ(M)du, Q= i/Lﬁ(M)du

Y

21 271

make sense, as the integrals of analytic functions on a closed circuit. Moreover, operators
P:4d— Yand Q:§F — F are projectors [2]. Denote

W =ker P, F=kerQ, U =imP, F =imQ.

And so we get that U= U, F=F &g
By L, M, we denote the restrictions of operators L, M on the subspace 4%, k =0, 1.

Theorem 1. |2]| Let the operator M be (L, o)-bounded. Then
(i) Ly, My, € LU FF), k=0,1;
(ii) there exist operators L' € L(F;UY), Myt € L(F°;U0).

If the operator M is a (L, o)-bounded, then by virtue of Theorem 1 there are exist
operators H = My 'Ly € L(U°) and S = L7'M,; € L(UY).

Definition 1. (L, o)-bounded operator M is called
(i) (L,0)-bounded, if H = O
(ii) (L, p)-bounded, if H? # O and HP*' = O for some p € N;
(iii) (L, 00)-bounded, if H? # O for all p € N.

Here and below we set that p € Ny, where Ny = {0} U N. Consider the solution of
Showalter — Sidorov problem

P(u(0) —up) =0, ug € U (3)
for non-stationary equation
Lu(t) = a(t)Mu(t) + g(1), (4)

where a : [0,7] — Ry is a scalar function, that characterizes the time variation of the
interaction parameters of the system under study, and the vector function g : [0,7] — §
describes the external action.

Definition 2. A vector function u € C*(R;4l) is called a solution of equation (4), if it
satisfies this equation on R. The solution of equation (4) is called a solution of Showalter —
Sidorov problem (3), (4), if in addition it satisfies (3).

Construct the solution of the problem (3) for equation (4).

Theorem 2. (17| Let the operator M be (L, p)-bounded (p € Ny) and a € CPTL([0, T|; R,).
Then for arbitrary uy € $h and g € CPTY([0,T);§) there exists the unique solution u €
CH([0,T]; 8) of Showalter — Sidorov problem (3) for equation (4), and it has the form

Pup+ [ " LQq(s)ds — Y MG (I - @)(AD) Ag(1),
9 k=0
where (Ah)(t) = a='(t)h(t) u (Dh)(t) = 2 (t).

dt

t
S [a(3)d3
u(t) =-e !
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1.2. Solutions of the Non-Stationary Linearized Hoff Equation

Let 2 C R" is a bounded domain in R"™ with boundary 092 of C* class. In cylinder
) X R we consider Dirichlet problem

u(z,t) =0, (z,t) €00 xR (5)
for Hoff equation of the form
(A = A)up = a(t)u +g(t) (6)
with Showalter — Sidorov condition
(A = A)(u(0) —uy) = 0. (7)

Here the vector function g(t) characterizes external action on the described system.
Reduce problem (5)—(7) to problem (3), (4). In order we get the spaces

U={ueW Q) ux) =0, z €}, F=wr(Q), (8)

where W (€2) are Sobolev spaces with 2 < ¢ < oo and m =0, 1,.... Operators L and M
we define by the next formulas

L=XA—A, M= (9)

By o(A) we denote a spectrum of homogeneous Dirichlet problem on the domain
Q2 for the Laplace operator A. The spectrum of o(A) is negative, discrete, finite and
condensed only to —oo. By {A\;} we denote the set of eigenvalues, which numbered
by nonincreasing order with their multiplicity. And by {v¢x} we define the family of
corresponding eigenfunctions orthonormal with respect to the inner product (-, -) in space

Ls(Q), dp € C®, ke N.

Lemma 1. (8] Let spaces 4 and § be from (8), and operators L and M be from (9). Then
for arbitrary A € R\{0} the operator M is a (L,0)-bounded one.

If A € o(A) has multiplicity » € N, we put ker L = span{ty, s, ..., 1, }, where 9
are the eigenfunctions of the Laplace operator A corresponding to the eigenvalue A, and
they can be chosen orthogonal in the sense of the inner product (-,-) B Lo(£2). Then
imL={geF:(g,n)=0,1=1,2,...1}.

It is clear that if A # 0 then the L-spectrum of operator M can be represent as

1

L _ T
g (M)—{MGC-Mk—)\_/\k

Ak # AL
If A = 0 then the L-spectrum of operator M is such that o%(M) = C, so everywhere else
we take A # 0. Since the points of the spectrum of the Laplace operator {\;} are real,
discrete, had finite multiplicity and condensed only to —oo, then the relative spectrum of
ol(M) is obviously bounded.

Construct projectors P and Q. If A€o (A) then the projector P =1, and if A€ o(A)

then P:]I—Z(-, )1y The projector @ has the same form, but is defined on the space §.

1=1
By Theorem 2 and Lemma 1, the following theorem is true.
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Theorem 3. Let the conditions of Lemma 1 be fulfilled, X € R\{0}, a € C*([0,T];R,),
g € CY[0,T);F) and

(i) A € a(A). Then for arbitrary ug € 3 there exists the unique solution (5)—(7), which
has the form

ult) = i €<A1>\k Oja(v)d7> (g, Yr) Uy + i /t €<>\1>‘k ja(f)dr> Mds;

A — Ak
k=1 k=11

(ii) A € o(A). Then for arbitrary uy € U there exists the unique solution (5)—(7), which
has the form

a(r)dr
) (o, Yr)Yr+

i~g
—~
~
SN—
Il
|
—
Q
—
»
:_/
pS
~—
A
+
8
)
-~
T
o=
o
o

2

a(t)
leN:N\j=A EeEN\{l:\;=\}
P (2 o) gg(s), v
A=Ay e 1 (g(s), Yr )by
L o
keN\{l:\;=\} 0

2. The Sturm — Liouville Problem for Laplace Operator Defined
on a Graph

Let G = G(%; €) is a finite connected oriented graph, where U = {V}} is a set
of vertices, and € = {E;} is a set of edges. Each edge is characterized by two numbers
l;, di € Ry, denoting the length and the cross-sectional area of the edge Ej respectively.
On the graph G consider the Sturm — Liouville problem in a next formulation. We set
equations

Ujze = bu; forall z € (0,1;), t € R, (10)

for which in each vertex of graph we set conditions

Z dej(ZL‘)ij(O, t) — Z dmcm(f)umx(lma t) = Oa (11)

Eje Ba(Vi) Eme E*(Vi)

w(0,t) = ug(0,t) = (I, t) = wp(ln, ), (12)

where E;, E; € E*(V}.), B, E, € E“(V4), t € R. Here by E*“)(V}) is denoted the set
of edges with begin (end) in vertex Vj. Condition (11) indicates that the flow through
each vertex must be equal to zero, and condition (12) indicates that the solution u =
(w1, ug, ..., uj,...) at each vertex must be continuous. In particular, when the graph G
consists of one edge and two vertices, the condition (12) disappears, and the condition
(11) becomes a homogeneous Neumann condition.

Consider the Hilbert space

Ly(G) ={9= (91,92, ---,9j,---) 1 gj € L2(0,1;)}

lj

with inner product (g, h) = Z d; /gj(a:)hj(x)dx,

Ejee 0
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and the Hilbert space

U= {u=(u1,u, ..., uj,...) : u; € W,(0,l;) and Condition (12) is satisfied }
I

with inner product [u, v] Z d; / UjzVje + U5 )T
Ejee

By the Sobolev embedding theorems, the space Wy (0,1;) (up to measure zero) consists of
absolutely continuous functions, and hence the space i is correctly defined. Moreover, this
space is densely and compactly embedded in Ly(G). We identify Ls(G) with its conjugate
and denote by § the space conjugate to 4l with respect to the duality of (-,-) in Ly(G).
Obviously, § is a Banach space with norm ||f||z = sup [(f,u)|/||ul|y, and the embedding

uei{0}
llully — |||z is compact.

Definition 3. Vector finction u = (uy,ua, ..., u;, ...) such that u; € C%(0,1;) (" C*[0,1] is
called a solution of Sturm — Liouville problem (10)—(12), if it satisfies the equations (10)
and boundary conditions (11), (12).

Definition 4. The function v = (uy,ug, ..., uj, ...), which is not identically zero, is called
the eigenfunction of the problem (10)—(12) for the operator A = (A;, A, ..., Aj,...), A; =
d?/dx? if there exists a number b such that u is a solution of this problem. The number b
is called the eigenvalue corresponding to the eigenfunction wu.

Let an operator B : { — § has the form (Bu,v) Z d; /ujxvjx+bujvj)d:c.
Ejee )

Since the inequality ¢ ||u]lf < (Bu,u) < esf|ul| holds for all b € R, u € 4 and some
c1,co € Ry, it follows that the linear operator B : il — § is bijective and continuous.
Hence by the Banach theorem there is the operator B~! : § — 4. Since the embedding
i — § is compact, the operator B™1 € L(F;4) is compact, and hence the spectrum of B
is discrete, real, finite, and condensed only to +00. We fix b € R and obtain the operator
A = B — bl, for which the following theorem is true.

Theorem 4. [19] The operator A € L(4;F), and the spectrum o(A) of the operator A is
discrete, finite, non-negative and condensed only to +o0.

Note that the first elgenvalue of the operator A is zero, and this value is single-valued.

Indeed, (Au,u) = > d; fu dr > 0 for all u € U and equals to zero for such u =
Ejce
(u1,ug, ..., uj,...), that u; = u2 = ... = u; = ... = const. We introduce the eigenfunction
1 = (> dil;)"Y2(1,1,...,1,...) of the operator A, which is normalized in the sense of
Ejee

Ly(G) and corresponding to the first eigenvalue.

We denote by {\,}22, the set of remaining eigenvalues of the operator A, numbered by
nondecreasing order with their multiplicity; and by {¢,}32, we denote the corresponding
eigenfunctions orthonormal in the sense of Ly(G). Note that the linear span of {¢y, : k € N}
is dense in 4, Ls(G), §.
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3. Solutions of the Non-Stationary Linearized Hoff Equation
on the Five-Edged Graph

Let G = G(0; €) is a finite connected oriented graph (see Fig. 1), where U = {V}}

(k = 1,2,3,4,5,6) is a set of vertices, and € = {E;} (I =
1,2,3,4,5) is a set of edges. To each edge we associate two
numbers [;,d; € R, which define the length [y =, =13 =1, =

ls = | and the cross-sectional area di = dy =d3s =dy =ds =1
of this edge.
As a solution of the Sturm — Liouville problem for the

,..
J

Laplace operator on the graph G we looking for nontrivial
functions X (z) = (Xi(x), Xo(x), X3(x), X4(z), X5(2)) (eigen- XAS
functions). In view of the conditions (11) and (12) we obtain ° ®
the eigenvalues Ay = (Z£)% and the eigenfunctions: X*(z) =
(Xt(2), X3 (), X5 (), X (2), X5(2)) (k € N), where Fig. 1. Graph G

( XF(z) = Cy cos "Ny

X¥(x) = O} cos @x,

X¥(x) = C; cos(m(k — 1)x) cos @a:,

Xhi(x) = C) cos*(m(k — 1)) cos @x,

| XE(2) = Cy cos?(n(k — 1)x) cos "1 g

The equation (6) on the graph G takes the form
AUjp — Ujgar = a(t)u; +g; for all x € (0,1;), t € R. (13)

At each vertex V; for equations (13) we define the boundary conditions (11), (12).
The problem (11), (12), (13) can be considered as the Neumann problem for the equation
(6) defined on the domain. If we supplement (11), (12) with the initial condition

uj(x,0) = ugj(x) forall =z € (0,1;), (14)

then we get the initial-boundary value problem for equations (13).

We carry out the reduction of the problem (11), (12), (14) for the equations (13) to
the Showalter — Sidorov problem (3) for the linear equation Sobolev type (4), where the
operators L, M € L(4, F), and 4, § are the Banach spaces from the previous section.

Fix A € R and construct the operators L = A\ — A, M =1, where the oparator A
from Theorem 4. Then the next lemma is true.

Lemma 2. [10] Let A € R\{0} then the operator M is (L,0)-bounded.

Let {Ar} be the eigenvalues of the operator A, numbered by nondecreasing order with
their multiplicity; and X* are the corresponding eigenfunctions, which orthonormal in the
sense of Lo(G). We construct projectors

I if A¢o(A); L if A¢o(A);
P = { I— 3 (L XMXF if Neo(d); @@= { I— S (-, XMX* if Xeo(A);
A=A A=A

1
A=A\

where ol(M) = {uk =

is true.

ke N}. By Theorem 3 and Lemma 2 the next theorem
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Theorem 5. Let A € R\{0}, a € C([0,T];R,), g € C([0,T];F) and
(i) X € a(A). Then for arbitrary uy € L there exists the unique solution of problem
(13), (14), which has the form

a(T)dT> <g(3>, Xk>Xk

d .
A— N, 5

<
)
~
SN—
|
(e
Q
/
>
;H
I
o
Q
~
2
Y
3
~—
—~
<
<
e
~
BN
+
[~]e
9]
N
>
>‘/,_.
2
® e

(ii) A € a(A). Then for arbitrary ug € L there exists the unique solution of problem
(13), (14), which has the form

e XN (e

a(t)
1EN:N =\ KEN\{l:\,=A}

t t
s o) s 0
5 (o) (o) xH)xE

+ A=\,

keEN\{l:A=A}

4. The Numerical Solution of the Non-Stationary Linearized Hoff
Equation on the Graph

On the basis of the obtained theoretical results, a numerical method for solving the
linearized Hoff equation on a graph is developed, which is depended on the specified
parameters of the equation, coefficients, and initial data. The constructed numerical
method is based on the modified Galerkin method (see also [23-25]). The algorithm for
constructing the approximate solution of the problem (13), (14) and plotting the graphics
consists the following steps.

Step 1. The graph G is set.

Step 2. The Sturm — Liouville problem for the Laplace operator on G is solved.

Step 3. The required parameters of the Hoff equation are given.

Step 4. The general solution of the equation is constructed.

Step 5. We apply the initial conditions and the coefficients of expansion are determined.

Step 6. We obtain a general solution in expanded form.

Step 7. The graphic of the solution of the equation is constructed.

This method is implemented in the Maple 16 environment. To implement the
algorithm, standard functions and operators Maple were used.

Let us find a numerical solution of problem (13), (14) defined on the five-edged graph
(see Fig. 1) with parameters A = 2, a(t) = 5t/2. We take the initial data wuy in form
ujo=cos 3mz, and the vector funtion g(s) in form g;(s)=(1+ s)cosbmz (j=1,2,3,4,5).

For given functions, we find the values of the constants, determine the coefficients of
the expansion, and put it in the solution. Since A = 2 and, consequently, A & o(A), by
Theorem 5 the numerical solution has the form

K t t t
L [a(t)dt Xk L [a@)dt

u(t) = E e’ W (g, X™) +/—<g)(\52,>\k >eA Wl ds | X*,

k=

1 0
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where A, and X* are eigenvalues and eigenfunctions of the Sturm — Liouville problem for
the Laplace operator on a geometric graph. We seek the sum of a finite number of terms,
for this we set K = 6.

The solution u(t) is represented in the form of graphics for ¢ = 0 in the figure 2, and
for t =1 in the figure 3.

0154

0.10

S MY LTLTAVAN
LUV

-0.10+

=1

-0.157

Fig. 2. The graphic of the solution of the problem (13), (14) at the time ¢ = 0

0.1
| [\
0 "Bl ¥ = - =

W

-0.14

-0.2-

Fig. 3. The graphic of the solution of the problem (13), (14) at the time ¢t = 1

In the figures 2, 3 the middle section (from 1 to 2) corresponds to the edge Ej; on the section
from 0 to 1 are the coinciding parts of the solution on the edges F, Es; and on the section
from 2 to 3 are the coinciding parts of the solution on the edges E,, Fs (see Fig. 1).
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YNCJIEHHOE PEINTEHVUE HECTAIIMOHAPHOI'O
JINMHEAPN30BAHHOI'O YPABHEHUNA XOPDA
HA TEOMETPNUYECKOM I'PA®E

M. A. Cazadeesa, A. B. I'enepanos

B crarpe paccmarpuBaeTcsi HeCTAMOHAPHOE JIMHEAPW30BAaHHOE ypaBHeHue Xodda.
1151 9TOTO ypaBHEHUsI TIOJIYI€HO PEIlleHre KaK B 00JIaCTH, TaK U HA T€OMETPUIECKOM rpade.
J s nsatupebepuoro rpada pemena 3anaqda Hlrypma — JluyBusmis fyis oy denns: 9uceH-
HOT'O PEIIeHNs] HECTAIMOHAPHOI'O JINHEAPU30BAHHOIO ypaBHeHus Xodda Ha rpade. Onucan
YUCJIEHHBII METOJ] pellleHus JJIsi YKa3aHHOI'O ypaBHeHus Ha rpade. [locTpoens! rpaduku pe-
IIEHNUsT B PA3JINIHbIE MOMEHTHI BDEMEHU IIPU 33/ [aHHBIX 3HAUEHUSX [apaMEeTPOB yPABHEHUS
u dyskmusx. Ctarbsi, KpOMe BBEJIEHHUS U CIHMCKA JUTEPATYDPHI, COAEPXKUT UETHIPE IACTU.
B nepBoit yactu npuBeseHs! cBefleHns 00 AOCTPAKTHBIX HECTAIMOHAPHBIX YPABHEHUS CO-
00JIEBCKOI'O THUIIA, & TaKKe IIOCTPOEHO PeIleHre I HECTAIMOHAPHOIO JIMHEAPH30BAHHOIO
ypasuenus Xodda B obsactu. Bo BTopoit paccmarpuBaercs 3amada [ltypma — JInyBusis
Ha rpade U CTPOsiTCsi HEeOOXOIAMMbIe IIPOCTPAHCTBA W OMEpaTopbl Ha rpadax. B Tperbeii
HCCTIeIYeTCs Pa3pelnMOCTh HECTAIMOHAPHOIO JIMHEAPU30BAHHOIO ypaBHeHUs Xodda Ha
rpade, 1, HAKOHEI], B MOCJEIHEN YaCTH IPUBEICHO OMUCAHNE UUCJICHHOTO PEIeHUs NCCIIe-
JIyeMOro ypaBHeHHs Ha Ipade u rpaduKu ITUX PelleHnii B Pa3InIHble MOMEHTHI BDEMEHH.

Karouesvie cr06a: ypasHernus cobonescko20 muna; OMHOCUMENYHO 02PAHUNEHHBLT One-

pamop; 3adava Imypma — Jluyeuans; onepamop Jlansaca na epage.
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