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Mathematical models of the stress state of plastic layers (interlayers) under the tensile
load under plane deformation are investigated. The layer of rectangular shape is included
in the strip of more durable material. The method of characteristics (slip lines) is used. The
reasons that contact hardening is not fully realized are investigated. The characteristic fields
in the layer in the process of loading are analyzed. The classification of characteristic fields
at the critical moment of loading is given. The criterion for the full realization of contact
hardening of the layer material is obtained. It depends on the relative thickness of the layer
and the coefficient of mechanical heterogeneity of the joint. Explicit analytical expressions
for calculating the critical load in the case of the full implementation of contact hardening
are obtained.
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Introduction

Extensive literature is devoted to the study of the stress-strain state (SSS) and
strength of thin plastic layers (interlayers) under the action of a tensile or compressive
load. In one of the first papers devoted to the subject [1] an infinite plastic strip was
considered. It can be taken as a model of a thin interlayer. It was noted in [1], that in this
interlayer the tangential stresses do not vary along its length.

∂τxy/∂x = 0. (1)

Later on it was noted that this condition (the Prandtl hypothesis) can be adopted for
simulation of the SSS of not very thin layers. From hypotheses related to stresses we can
also note the hypothesis of linearity of tangential stresses of one of the variables [2–6].
Сonditions (1) has a limited application. Nevertheless, there are meaningful papers [7–11],
using, together with numerical methods, the condition (1). Various restrictions laid upon
the classes of functions in which the solution is found, both of force and deformation
nature, are given in [12, 13].

However, the features of strain state and the variety of critical states of thin plastic
layers between the stronger sections of heterogeneous joints [6, 11–16] remain insufficiently
studied. A more detailed theoretical understanding of the conditions for the manifestation
of contact hardening and its effect on the strength of heterogeneous joints is also required.

2018, vol. 5, no. 4 3



V. L. Dilman, A. N. Dheyab

The aim of the work is to explore mathematical models of the stress state of thin
plastic layers depending on their mechanical and geometric parameters and, on this basis,
to obtain conditions for the destruction of thin layers with the full implementation of
contact hardening.

1. Critical States of the Joint

Let the tensile load increases in in the case under consideration. The material of the
layer passes into a state of plastic flow in the process of loading. In other words, the loss
of the plastic stability of the deformation process of the layer has occurred. However, in
relatively thin layers, so-called contact hardening begins to appear at this time, requiring
an increase in the external force for continuing the deformation to some point, which we
call a limiting state of the layer. This state can also be called a state of pre-destruction,
or a critical state in which the continuation of an increase in the external load leads to
deformation of the layer with uncontrolled speed and rapid destruction.

SSS of a plastic body under a plane deformation is determined by five equations. In
dimensionless variables, these equations take the following form [2]:

∂σx

∂x
+

∂τxy
∂y

= 0; (2)

∂σy

∂y
+

∂τxy
∂x

= 0; (3)

(σx − σy)
2 + 4τ 2xy = 4; (4)

∂vx
∂x

+
∂vy
∂y

= 0; (5)

σx − σy

2τxy
=

∂vx

∂x
−

∂vy

∂y

∂vx

∂y
+

∂vy

∂x

. (6)

Here σx, σy and τxy – the stresses, νx, νy – the speed of movement in the
appropriate directions. Equations (2) and (3) are the equations of equilibrium, (4) the
plasticity condition, (5) the incompressibility equation, and (6) is the condition for the
proportionality of stress deviates and strain rates.

All these equations are considered (Fig. 1) on a rectangle (rectangular section of the
layer) of length 2 along the Ox axis and thickness 2κ, κ ∈ (0; 1) with the axes of symmetry
as axes of the Cartesian coordinate system. Here κ is the relative thickness of the layer, i.e.
the ratio of its thickness to length. The direction of the Oy axis coincides with the direction
of the external load. On the coordinate axes, by virtue of symmetry, the tangential stresses
are zero.

τxy(x, 0) = τxy(0, y) = 0. (7)

On the free surface specified by the equation x = 1 it is assumed that there are no external
loads:

σx(1, y) = 0; τxy(1, y) = 0. (8)
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Fig. 1. A cross-section of a less hard layer in a heterogeneous joint and a field of characteristics
(slip lines) at an early stage of its plastic deformation

Proceeding from symmetry, it is sufficient to consider a quarter of the layer x ≥ 0, y ≥ 0
(rectangle OHAC in Fig. 1).

The system of equations (2) – (4) is closed (three equations and three unknown
functions σx, σy и τxy) and, together with conditions (7) and (8), determines the stress
state of the plastic layer.

At the moment of the transition of the layer from the elastic to the plastic state, its
stress field is homogeneous: at all points of the layer in dimensionless values

σx = 0; σy = 2; τxy = 0. (9)

Both families set of characteristics of a homogeneous field are families of lines. As the
tensile load increases, homogeneous field (9) is distorted. Areas of a fan-centered field
appear in the form of circular sectors with vertices at the corner points of the layer (Fig.
1 and 2, section EAB). The change in the stress state of the layer is seen as an increase
from zero of the angles ω− of these sectors. We will call the section of the field simple if
one of its families of characteristics is rectilinear.

Further transformation of the field of slip lines (characteristics) and the form of this
field depends on the loading stage and the two main connection parameters: κ and K – the
coefficient of mechanical heterogeneity of the joint. The form of the field of characteristics
in the critical state of the layer, including the magnitude of the angle ω−, is completely
determined by parameters κ and K. One of the possible patterns of the characteristics
field at an intermediate moment is shown in Fig. 2. Here the triangles ABC and AEF
and the quadrilateral DOHG are sections of the uniform field of characteristics, sector
ABE and area DGFE are sections of a simple field, area BDE is covered by curvilinear
characteristics.

At first the basic material is deformed elastically during the process of increasing the
external load. As the load increases, angle ω− increases too, and point D moves to point O.
There are several possible situations for the deformation process of the stretchable joint,
accompanied by an increase in the contact hardening of the layer.

Situation 1. In the process of increasing the external load, angle ω− reaches the
theoretically possible maximum:

ω− = π/4 (10)
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Fig. 2. The field of characteristics (slip lines) in the intermediate stage of loading of the plastic
layer, κ = 0,32
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Fig. 3. The field of characteristics (slip lines) in the intermediate stage of loading of the plastic
layer with full realization of contact hardening, κ = 0,21

(Fig. 3), whereas point D does not reach point O. In this case the basic material does not
go anywhere in the state of plasticity. On the segment EA, the tangential stresses reach
their absolute maximum: τ̃xy = k−, or, in dimensionless values τxy = 1. In Fig. 3, contact
hardening has not yet reached its limit. Indeed, the field of characteristics can continue to
vary so that, even outside the segment, the tangential stresses can turn out to be equal to
1 (more fully about this in the next section).

Thus, condition (10) is equivalent to the equality of the tangential stresses to one in a
certain segment LA including EA (Fig. 3). When segment LA reaches its greatest possible
value, the so-called full realization of contact hardening takes place. In [12, pp. 81–83],
the system of equations determining the conjugation conditions of normal and tangential
stresses on the contact surface was numerically solved. On this basis, it was shown there
that inequality

K ≥ Kcr ≈ 1,98 (11)

is necessary to satisfy condition (10). For small values κ, condition (11) can be sufficient
to satisfy condition (10). We shall call such layers thin underlayers.

Situation 2. As angle EAB = ω− increases, point D (Fig. 1–3) of characteristic
AED moves to the axis of symmetry of the layer – axis Oy, i.e. to point O. The extreme
position in this situation is the hit of characteristic AED in the center of the layer, i.e.
to the coincidence of the points D and O. At this moment, angle ω− turned out to be
smaller π/4, and its further increase contradicts to condition (7). Under such conditions,
further deformation of the field of characteristics and, as a consequence, growth of contact
hardening cease. The reason for this phenomenon is the "too large" relative thickness
of the layer. In the terminology of O.A. Bakshi, there is an incomplete implementation
of contact hardening. We must note that in not very thin interlayers, contact hardening
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Fig. 4. The field of characteristics of the plastic layer of the smallest relative thickness κ = 0,251

subject to the full implementation of contact hardening. Characteristic AED falls into layer
center O
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Fig. 5. The field of characteristics of a thin less hard layer provided the full implementation of
the contact hardening at the critical moment of loading, when κ = 0,178, and the stress diagram
σy along the axis of symmetry of the layer (the first type of the stress state of the layer)

is not fully realized even under condition (11). The lower boundary κ
∗ of the relative

thickness of such interlayers will be calculated below. The boundary case between two
marked situations arises when, at the moment of the coincidence of points D and O, angle
ω− is equal to π/4 (Fig. 4).

The stress state of the layer at the critical moment of loading also depends on whether
normal stresses σy in some part of the layer reach stresses 2K in the basic part of the
material. We call the first type of the critical state of the layer the case when σy < 2K
everywhere in the layer (Fig. 5) and the second type of critical state of the layer – when
at some part of the layer σy = 2K (see the section HNH ′ in Fig. 6 and the section
HMNM ′H ′ in Fig. 7). Note that if the angle between the contact and free surfaces is not
equal to π/2, then the value of Kcr depends on this angle.

Situation 3. With the growth of the external load, there may be a moment when
the process of deformation of the layer ceases, in spite of the fact that point D has not
reached point O, and angle ω− < π/4. This occurs when the basic material in the near-
boundary zone goes plastic state. Then the further increase of angle ω− stops 1, the contact
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Fig. 6. The field of characteristics of a thin less hard layer provided the full implementation of
the contact hardening at the critical moment of loading, when κ = 0,158, and the stress diagram
σy along the axis of symmetry of the layer (the second type of the stress state of the layer)

AE
E1MH

O
C

BDD1ND2

M
’

L

L
’

E1

'
E

’
A

’H
’

2K

σy

1

2

y

x

Fig. 7. The field of characteristics of a thin less hard layer provided the full implementation of
the contact hardening at the critical moment of loading, when κ = 0,088, and the stress diagram
σy along the axis of symmetry of the layer (the second type of the stress state of the layer)

hardening has reached the limiting value and, as in situation 2, is not fully realized. This
phenomenon occurs when the mechanical heterogeneity is not very considerable [6, 13–16].

2. Conditions for the Full Implementation of Contact Hardening

The stress state of a loaded solid at each point is related to its field of characteristics
by well-known relationships. If the external load acts in the direction of axis Oy with plane
deformation, the following dependences take place:







σx = σ − sin 2γ;
σy = σ + sin 2γ;
τxy = cos 2γ.

(12)

Here γ is the angle of inclination of the characteristics to axis Ox.
Let us consider a thin interlayer in situation 1, when condition (10) is satisfied. The

effect of the basic part of the joint on a less durable layer leads to an increase in tangential
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stresses on the contact surface. On segment EA (Fig. 4), in the limiting state, the tangential
stresses reach their maximum value:

τ−xy(x,κ) = 1, (13)

which in view of last equation (12) τxy = cos 2γ is equivalent to condition: γ = 0. Suppose
that the tangential stresses are maximal also on the segment LE adjacent to EA. Then
the characteristics along LE touch contact line HA. Let LA be the largest segment on
the contact boundary, where τ−xy = 1. Note that H 6= L, since γH = π/4. The tangential
stresses on axis Ox are indeed zero for symmetry reasons.

Such stress state arises in particular under Prandtl condition of the constancy of
tangential stresses along the layer:

∂τxy/∂x = 0.

For the layers symmetric with respect to axis Ox for which τxy(x, 0) = 0 this condition is
obviously equivalent to the following equality:

τxy = y/a (14)

for some constant a.
It is common knowledge [2] that the slip lines (characteristics) are arcs of the cycloid

under L.Prandtl’s condition. The zone in which this condition at least approximately
occurs, forms area OLEBE ′L′ at the cross-section of the layer (Fig. 5). The form of the
characteristic field in Fig. 5 is approximate. In some vicinities of curves EB and OL –
the boundaries of the Prandtl area – the stressed state has an intermediate form, not
being exactly Prandtl’s. For example, the curve EB can not be both an arc of a circle and
a cycloid at the same time. Cycloids passing through point B are shown in phantom in
Fig. 5.

If section LE is absent, then the zone of the Prandtl stresses is a quadrangle OEBE ′

in Fig. 7. The layer shown in this Figure is the thickest (broadest) of all layers, in which
at point E the characteristic touches the contact line. This is equivalent to (13), in view
of the last equation (12). Let us find the relative thickness κ of such layer, assuming that
in the section DEBE ′ (Fig. 7), there occurs Prandtl stress state. Let us calculate the
coordinates of points D and E1. In view of the above assumption and formulas (12) and
(14) for points of curve DE, the following assumptions are satisfied:

{

τxy = cos 2γ,
τxy = y/a.

Hence follows the equation of the characteristic in the Prandtl zone as a function of the
ordinate of the tilt angle of the characteristic:

y = a cos 2γ. (15)

At point E the tangent to curve DE is horizontal, i.e. γE = 0. Obviously yE = κ, therefore

a = κ. (16)
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We find the equation of the curve DE as a function x of γ. From .. It follows from (15)
and (16) that y = κ cos 2γ.. Therefore

dx

dγ
=

dx

dy

dy

dγ
= κ tg−1 γ(cos 2γ)′ = −4κ cos2 γ,

from which we find the equation of the curve DE:

x = −κ(2γ + sin 2γ + C).

Substituting the coordinates of the point E: γE = 0, xE = 1 −
√
2κ in the previous

equation, we get the value of the constant C. The equation of the curve DE has the form:

x = −κ(2γ + sin 2γ) + 1−
√
2κ. (17)

Since at point D γD = π/4, from (17) we get:

xD = −κ(π/2 + 1) + 1−
√
2κ. (18)

Obviously, xB = 1− κ. Therefore

|DB| = xB − xD = (π/2 +
√
2)κ. (19)

Consequently, the relative thickness of the thickest layer, which allows a complete
realization of contact hardening, is equal to

κ =
|AC|
|OC| =

|AC|
|OB|+ |BC| =

κ

(π/2 +
√
2)κ + κ

=
1

1 + π/2 +
√
2
≈ 0,251.

Let us call a less hard layer a thin (thin interlayer) if its relative thickness

κ ≤ κ
∗, κ

∗ =
1

1 + π/2 +
√
2
≈ 0,251. (20)

Summarizing the results, we obtain:

Proposition 1. For the full realization of contact hardening, it is necessary and sufficient
that two conditions be satisfied: (10) and (20).

The characteristics grid for the boundary case κ = κ
∗ is shown in Fig. 7.

To obtain the dimensions of Prandtl zone let us calculate |E1D|. On the curve E1D
γE1

= −π/2, yE1
= κ. Substituting these values into (15), we get: a = −κ. Since it is

obvious that
dy

dx
= −ctgγ,

from (15) it follows that

dx

dγ
=

dx

dy

dy

dγ
= κ tg γ

dy

dγ
= κ tg γ

d cos 2γ

dγ
= −4κ sin2 γ.

Therefore, the equation of the curve E1D can be written in the form:

x = −4κ

∫

sin2 γ dγ = −κ(2γ − sin 2γ + C).

Since γD = −π/4, and xD is calculated by formula (18), we get the abscissa of point E1:

xE1
= −πκ + 1−

√
2κ.

And finally,
|E1D| = xE1

− xD = κ(π/2− 1) ≈ 0,57κ.
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3. The Critical State of the Less Hard Layer Provided the Full
Implementation of the Contact Hardening

The average critical stress in the stretching of a homogeneous strip in dimensionless
coordinates is equal to the value of

σcr = 2K.

Since at all points of the layer the critical normal stress can not exceed the stress at the
corresponding point of a homogeneous strip of more durable material, there is an inequality
for all points of a less strong layer:

σy(x, y) ≤ 2K. (21)

The stress state of the layer under the Prandtl condition is well known [2, 5]:







σx(x, y) = −x/a− 2
√

1− y2/a2 + C;
σy(x, y) = −x/a + C;
τxy(x, y) = y/a,

(22)

where in view of (16) a = κ, and constant C to be defined. To find it, we note that on
the one hand σx(B) = −xB/a − 2 + C by the first formula (22), and on the other hand,
σx(B) = 0. Consequently C = 1/κ + 1. Therefore

σy(x, y) = −x/κ + 1/κ + 1 (23)

in view of (22).
Let us consider two types of stress state of a layer.
The first type of stress state of the layer. Let the condition (21) be satisfied throughout

the layer (see Fig. 5). Then the Prandtl stress state takes place in the region containing
entire segment OB of axis Ox. It follows the implementation of inequalities from the
conditions (21) and (20):

1

2K − 1
≤ κ ≤ κ

∗ ≈ 0,251. (24)

The set of values κ at which the (24) is executed is not empty provided

K ≥ κ
∗ + 1

2κ∗
≈ 2,5. (25)

Proposition 2. The first type of stress state is realized if and only if (24) and (25). The
average critical effort is calculated by the formula:

σcr =
(κ + 1)2

2κ
. (26)

Proof.
Using (23), we obtain:

σcr =

∫

1

0

σy(x, 0) dx =

∫

1−κ

0

(

1− x

κ

+ 1

)

dx+ 2κ =
(κ + 1)2

2κ
.

✷
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The second type of stress state of the layer. Let on some segment [0;N ] of axis Ox
stress σ(x, y) calculated by formula (22) exceed 2K on some segment [0;N ] of axis Ox.
This means that for some point N of axis Ox the formula is incorrect on the segment ON ,
and stresses σy(x, y) = 2K (see Fig. 6 and Fig. 7). Such conditions arise if







κ(2K − 1) ≤ 1;
K ≥ Kcr ≈ 1, 98;
κ ≤ κ

∗ ≈ 0,251.
(27)

This type of stress state is determined by the following field characteristics (see Fig. 6
and 7). In the area OHMNM ′H ′ the field is simple homogeneous. In triangles NML and
N ′M ′L′ the field is transitional between Prandtl field and homogeneous field, where one
of two sets of characteristics consists of straight lines.

Coordinate xN of point N is found from equation σ(x, y) = 2K, which gives in view
of (23):

xN = 1 + κ − 2κK. (28)

Proposition 3. The second type of stress state is realized if and only if (27). The average
critical effort is calculated by the formula:

σcr = 2K(1 + κ − κK). (29)

Proof.

σcr =

∫

1

0

σy(x, 0) dx =

∫ xN

0

2K dx+

∫

1−κ

xN

(

1− x

κ

+ 1

)

dx+ 2κ.

Using (23), we obtain:

∫ xN

0

2K dx = 2K + 2κK − 4κK2,

∫

1−κ

xN

(

1− x

κ

+ 1

)

dx = 2κK2 − 2κ.

Hence follows (29).

✷

Both types of stress state of the layer occur in the intermediate case κ(2K − 1) = 1.
Then the formulas (26) and (29) coincide.
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КРИТИЧЕСКИЕ СОСТОЯНИЯ ТОНКИХ ПРОСЛОЕК
ПОД РАСТЯГИВАЮЩЕЙ НАГРУЗКОЙ

В. Л. Дильман, А. Н. Дияб

Исследуются математические модели напряженного состояния пластических слоев
(прослоек) под растягивающей нагрузкой при плоской деформации. Прослойка прямо-
угольной формы входит в состав полосы из более прочного материала. Используется
метод характеристик (линий скольжения). Исследованы причины неполной реализа-
ции контактного упрочнения. Проанализированы поля характеристик в слое в процес-
се нагружения. Дана классификация полей характеристик в критический момент на-
гружения. Получен критерий полной реализации контактного упрочнения материала
прослойки в зависимости от относительной толщины прослойки и коэффициента меха-
нической неоднородности соединения. Получены явные аналитические выражения для
вычисления критической нагрузки при полной реализации контактного упрочнения.

Ключевые слова: пластический слой; напряженное состояние; системы нелиней-

ных дифференциальных уравнений; контактное упрочнение; коэффициент механиче-

ской неоднородности.
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