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In this paper a numerical of the solution of the Cauchy problem for the nonlinear
modified Boussinesq equation (or IMBq equation) is studied. This equation with the
boundary conditions models the propagation of waves in shallow water, taking into account
capillary effects and the preservation of mass in the layer, filtration of water in the soil, as
well as shock waves. In the case when the equation is nondegenerate, a global solution and a
solution in the form of solitons are obtained. In the degenerate case, the existence of a unique
local solution was proved by the methods of phase space and the theory of relatively limited
ones developed by G. Sviridyuk and his students, as well as the theory of differentiable
Banach manifolds. A numerical study of this problem by the modified Galerkin method
has already been carried out earlier. However, the operation time of algorithms based on
modified Galerkin method it rapidly increases with an increase amount of Galerkin sum. In
this article, a numerical study is carried out by the finite difference method. The Cauchy —
Dirichlet problem for the IMBq equation is reduced to an implicit difference problem. A
comparison is made of the speed of the modified Galerkin method and the finite difference
method.
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Introduction

The paper will carry out a numerical study of the mathematical model of wave
propagation in shallow water using the Galerkin method and the grid method. A
mathematical model of wave propagation in shallow water is based on the modified
Boussinesq equation (IMBq equation), the Dirichlet boundary condition, and for unique
solvability we add the initial Cauchy condition. In addition, the following conditions are
imposed on the process: the wavelength is much greater than the depthat a standstill,
capillary effects can not be neglected, the liquid is incompressible, the bottom surface is
solid and flat [1]. Thus, we get the problem

u(z,0) = ug(x), u(x,0) = uy(z), =€ (0,1), (1)
uw(0,t) =u(l,t) =0, te€(0,T), (2)
(A= A)uy = a*Au+ A(u?), (3)

where function v = u(z,t) is a wave height at x at time ¢, Au = u,, is a one-dimensional
Laplace operator. The constants a, A\ — characterize such fluid and medium parameters
as depth, gravitational constant, and Bond number. This mathematical model relates to
mathematical models of Sobolev type of high order [2]. In [1], equation (3) was investigated
in the case of a non-degenerate case, when A & o(A), particular solutions were found in the
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form of solitons, and it is noted that in a more general case, this problem allows studying
collisions plane waves. In [3], problem (1)—(3) was studied in the case when A € o(A), and
the existence of uniqueness of the global solution was proved.

The problem (1)—(3) in suitable spaces can be reduced to the Cauchy problem

u(0) = ug, w(0) = uy,
for semilinear sobolev type equation of the second order
Lii = Mu+ N(u),

where operators L, M € L(;F), N € C®(LF), U, § are Banach spaces. In [4], the
existence of a unique local solution of problem (1)-(3) was proved, when equation (3)
is an Sobolev type equation [5|, and solution u of class C*°(0, 7, W3*(Q2)), in our case
2 = (0,1). The applicability of the grid method to solving linear Sobolev type equations
in special cases was shown in [6].

1. Implicit Difference Scheme

On the rectangle [0, 7] x [0, 1], we introduce a uniform three-layer with a step h in
the variable x and with a step in s in the variable ¢ a grid
wmz{(xi,tj):xi:ih,tj:js,i = O, 1, .. .,n,j = 0, 1, e ,m}.
We introduce the grid function u;; = u(x;,t;) on the grid w; ;. On the grid we define linear
normed space with norm ||ups|| = Mmax | max. |wijl| -
We write problem (1)—(3) in a differential form. We approximate the derivatives using
a five—point cross—type pattern

e, ty) = S L Os),

_ Ui — 2Uij + Ui

uy(z,t;) = 2 + O(s?),
U (1, 1) = —22 h; L O(h?).

Thus, equation (3) takes the form

1 _ 1 2
Wui+l7j+l -+ (0425 2h282) Ui41,5 + Wuz?kl,j*l - ( + )\) Ui, j+1—

h?s?
20%5% — 2\h? — 4 2 1
— h282 uz’,j — W + A ui,j,l + wui,u,l—l—

1
+ﬁ((uz‘+1,j)3 —2(uij)* + (ui-15)*) =0

or in operator form

(Lu)ij + N(u)iy = 0. (4)
The boundary conditions (2) take the form

Ugj = Up,j =0 (5)
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and initial conditions (3)
Ui 0 = UO(JZ'Z‘), U;1 = UO(I'Z) “+ suq (JZ'Z) (6)

The boundary and initial conditions are approximated exactly, therefore, in general, the
scheme has the second order of approximation.

2. Numerical Research

A series of computational experiments were carried out in which the same problem was
solved by the finite difference method and the modified Galerkin method. We present the
results of two experiments. The first shows that the solutions obtained by various methods
are close. The second shows that if the split points of a region are chosen incorrectly using
the finite difference method, a solution different from the Galerkin solution can be obtained.

Example 1. In a cylinder [0, 1] x [0, 2] consider problem (1)—(3) when o =1, A\ = 1.

(1— A)ii = Au+ A(u?), (7)

u(0,t) = u(l,t) =0, (8)

u(z,0) = 2sin(z) + 11sin(2z) — 3sin(3x) + 4sin(4z), (9)
U(z,0) = sin(z) — sin(2z) + 10sin(3x) — 5sin(4z).

For given parameters, equation (7) is not a Sobolev type equation. We will solve it by
the grid method for n = 10, m = 1500 and construct a graph of the approximate solution
of fig. 1. As well as using the modified Galerkin method m = 4 (the number of Galerkin
terms) and construct a graph of the solution in fig. 2 when building a solution using the
grid method and the Galerkin method, the same steps s = 0,2 were used with respect
to the variable ¢ and h = {Z55, h = 0.002 by variable x, respectively. The processor time
spent in both cases is comparable and averaged 45 sec and 30 sec. The calculations were

carried out in the Maple system on an FX-6300 processor.

Fig. 1. Approximate solution graph Fig. 2. Approximate solution graph
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Example 2. In a cylinder [0, 1] x [0, 2] consider problem (1)-(3) when v =1, A\ = —1.
(=1 — A)ii = Au+ A(u), (10)

u(0,t) = u(1,t) =0, (11)

u(z,0) = 11sin(2x) — 3sin(3z) + 4sin(4x),

(z,0) = sin(2z) + 10sin(3z) — 5sin(4z). (12)

The equation (10) is a Sobolev type equation for given parameters. Therefore, the
initial data (12) must be chosen so that they belong to the phase space |7] of equation
(10). We will solve it by the grid method for n = 10, m = 1500 and construct a graph
of the approximate solution of fig. 3. As well as using the modified Galerkin method
m = 4 (the number of Galerkin terms) and plot the graph of the solution in fig. 4. When
we construct a graph of approximate solution by the finite difference method and by the
Galerkin method, we used step s = 0, 2 with respect to the variable ¢ in both case and steps
h = 125, h = 0,002 by variable z, respectively. When we constructing an approximate
solution using the grid method on the time layer ¢t = 1, 4, the system of algebraic equations
has no solution. At the same time, the solution by the Galerkin method exists. However,
if we take the grid step with the variable x less, for example, h = 7, then the solution
will already exist on all time layers in the segment [0, 2].

Fig. 3. Approximate solution graph Fig. 4. Approximate solution graph
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METO/J KOHEUHELIX PASHOCTEN
AJId MOANPOUITNPOBAHHOI'O YPABHEHU A
BYCCHNHECKA

FE. B. Bwiukos

B crarbe nposeieno qnciieHHOE UCCIIeI0BaHNE PellieHns 3a1a49u Koy /1t HeJTnHetHO-
ro moudunupoBanHoro ypassenus Byccunecka (i IMBq ypasaenust). JlanHoe ypasHe-
HIE BMECTE C KPAeBbIMU YCJIOBUSIMEI MOJICIUPYET PACIPOCTPpaHEHNE BOJTH HA MEJIKOH BoJie, ¢
YUI€TOM KalULISIPHBIX (b DEKTOB U COXpAHEHUHN MaCChl B CJIoe, (DUILTPAIIIU BOJbI B I'PYHTE,
a Tak’>Ke yIapHBIX BOJH. B TOM ciydae, KOrjga ypaBHEHHE HEBBIPOXKJIEHHO IIOJIYYEHO IJIO-
OaJIbHOE peIlleHre W PelleHre B BUIE COJUTOHOB. B BLIPOXKICHHOM CJIytae ObLIO JOKA3aHO
CyIIIeCTBOBAHNE €INHCTBEHHOI'O JIOKAJIBLHOI'O PEIIeHns MeToIaMi (pa30BOro IPOCTPAHCTBA U
TEOpPUU OTHOCUTEJILHO OrPAaHUYEHHbBIX, pa3paboranubix Ceupuaiokom [LA. u ero yueHukamu,
a TakxKe Teopun uddepeHnupyeMbix 6aHAXOBBIX MHOro0Opasuii. Panee y»ke IpoBOIUIOCH
YUCJIEHHOE UCCJIEJIOBAHUE JAHHON 3a/a9u Mo auduIimpoBaHabiM MeTonoM [amepkuna. On-
HAKO, BpeMs pabOThl aJrOPUTMOB OCHOBAHHBIX Ha MOAuMUIMPOBaHHOM MeToze [asepkumna
OBICTPO BO3PACTAET IIPU yBeJndeHnn KosimdecTBa ['aepkunckux ciaraembix. B mannoit cra-
The YHCJIEHHOE UCCJIeIOBaHNe IIPOBOJIUTCSI METOJIOM KOHEUHBIX pasHocreii. 3agaua Ko —
Hupuxne nius IMBq ypaBHeHUs peynupyeTcst K HessBHON pa3HOCTHO# 3a1ate. [IpoBoguTcs
CpaBHEHNE CKOPOCTH PaboThl MOAUMDUIIMPOBAHHOIO MeTO/a [ ajlepKiHa 1 MeTo/1a KOHEIHBIX
pa3HoCTEeN.

Karouesvie cro8a: ypasrenus coboae6ckozo muna; mMemod KoHewHbT pa3Hocmetl; me-

mod Tanepruna.
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