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The notion of mean derivatives was introduced by E. Nelson in 60-th years of XX
century and at the moment there are a lot of mathematical models of physical and technical
processes constructed in terms of equations with those derivatives. The paper is devoted
to investigation of stochastic differential equations with backward mean derivatives. This
type of equations arise in several models of physical and technical processes and so its
investigation is important for applications. But on the other hand, the investigation of such
equations requires new methods and ideas. In this paper we deal with the property of global
in time existence of all solutions of "inverse" Cauchy problem for equations with backward
mean derivatives. A condition that guarantees the global in time existence of such solutions
is obtained. This result is useful for many mathematical models of physical and technical
processes.

Keywords: backward mean derivatives; stochastic equations; global existence of
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Introduction

The notion of mean derivatives was introduced by Edward Nelson (see. [1-3]) for the
needs of stochastic mechanics (a version of quantum mechanics). The equation of motion
in this theory (called the Newton-Nelson equation) was the first example of equations in
mean derivatives. Later it turned out that the equations in mean derivatives arose also in
many other mathematical models in mathematical physics.(see, e.g., [4,5]).

The equations with backward mean derivatives arise in description of some special
stochastic processes of mathematical physics. Say, a second order equation in backward
mean derivatives of the group of Sobolev diffeomorphisms is derived that describes a
process whose expectation is a flow of viscous incompressible fluid (see, e.g., [4,5]). It
should be pointed out that such equations are much more complicated for investigation
than those with forward mean derivatives. Nevertheless there exists a simple method of
using inverse time direction for solutions of equations with forward mean derivatives (see,
e.g., [6]), that allows one to obtain some results for the case of backward mean derivatives.
In this paper we find a sufficient condition for global in time existence of all solutions of
"inverse" Cauchy problem for such equations.

Some remarks on notations. In this paper we deal with equations and inclusions in the
linear space R"™, for which we use coordinate presentation of vectors and linear operators.
Vectors in R™ are considered as columns. If X is such a vector, the transposed row vector
is denoted by X*. Linear operators from R" to R™ are represented as n X n matrices, the
symbol * means transposition of a matrix (pass to the matrix of conjugate operator). The
space of n X n matrices is denoted by L(R™ R™).
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By S(n) we denote the linear space of symmetric n x n matrices that is a subspace in
L(R™ R™). The symbol S;(n) denotes the set of positive definite symmetric n x n matrices
that is a convex open set in S(n). Its closure, i.e., the set of positive semi-definite symmetric
n x n matrices, is denoted by Sy (n).

1. Mean Derivatives

In this section we briefly describe preliminary facts about mean derivatives. See details
in [1-3,5].

Consider a stochastic process £(t) in R", t € [0, T, given on a certain probability space
(Q, F,P) and such that £(¢) is an L; random element for all ¢. It is known that such a
process determines 3 families of o-subalgebras of the o-algebra F:

(i) "the past" Pf generated by preimages of Borel sets from R™ under all mappings
£(s) : Q@ —=R" for 0 <s <t

(ii) "the future" .7-"f generated by preimages of Borel sets from R™ under all mappings
E(s) : Q=R fort <s<T;

(iii) "the present" ("now") N generated by preimages of Borel sets from R” under
the mapping £(¢) : 2 — R™.

All the above families we suppose to be complete, i.e., containing all sets of probability
Zero.

For the sake of convenience we denote by Ef the conditional expectation E(-JN}¢) with
respect to the "present" NF for &(t).

Following [1-3], introduce the following notions of forward and backward mean
derivatives.

Definition 1. (i) The forward mean derivative DE(t) of £(t) at the time instant t is an
Ly random element of the form

DE(t) = lim Ef (g(HAt) _g(t)) : (1)

At—+0 At

where the limit is supposed to exist in L1(Q2, F,P) and At — +0 means that At tends to
0 and At > 0.
(ii) The backward mean derivative D,E(t) of £(t) at t is the Ly-random element

D - 6 (L0=5=50) o

At—+0 At

where (as well as in (1)) the limit is assumed to exist in L*(Q, F,P) and At — +0 means
that At — 0 and At > 0.

Remark 1. If £(¢) is a Markov process then evidently ES can be replaced by E(-|P?) in
(1) and by E(:|Ff) in (2). In initial Nelson’s works there were two versions of definition
of mean derivatives: as in our Definition 1 and with conditional expectations with respect
to "past" and "future" as above that coincide for Markov processes. We shall not suppose
£(t) to be a Markov process and give the definition with conditional expectation with
respect to "present" taking into account the physical principle of locality: the derivative
should be determined by the present state of the system, not by its past or future.
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Following [6] we introduce the differential operator D that differentiates an Ly random
process &(t), t € [0,T] according to the rule

Dog(t) = lim I ((5“ + 4t — é(t)ﬁ(t + At) — g(t))*) |

(3)

where ({(t+ At) —£(t)) is considered as a column vector (vector in R™), (£(t+ At) —&(t))*
is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L1(92, F,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix so that Dy£(t) is a symmetric semi-positive definite matrix function
on [0, 7] x R™. We call Dy the quadratic mean derivative.

Remark 2. From the properties of conditional expectation (see, e.g., [7]) it follows that
there exist Borel mappings a(t,z), a.(t,r) and a(t,z) from R x R™ to R™ and to S,
respectively, such that DE(t) = a(t,&(t)), D.E(t) = a.(t,£(t)) and Do&(t) = a(t,&(t)).
Following [7] we call a(t, x), a.(t,z) and a(t, x) the regressions.

Let Borel measurable mappings a(t, z) and a(t, z) from [0, T] x R" to R™ and to S, (n),
respectively, be given. We call the system of the form

DE(t) = alt, (1)),
{ Dpg(t) = a(t, (1)) (%)

a first order differential equation with forward mean derivatives.

Definition 2. We say that (4) has a solution on [0,T] with initial condition £(0) = o, if
there exist a probability space (2, F,P) and a process £(t) given on (2, F,P) and taking
values in R™ such that P-a.s. and for almost all t (}) is satisfied.

Several existence of solution theorems for (4) can be found in [6].

Definition 3. The smooth function ¢ : X — R sending the topological space X to R
18 called proper if the preimage of every relatively compact set in R is relatively compact
n X.

Denote by L the generator of Markov process generated by equation (4).

Theorem 1. Let on R" there exist a smooth proper positive function ¢ : X — R such
that Lo < C for all t € [0,+00 and x € R™ where C > 0 is a certain real constant. Then
the flow generated by equation (4) is complete, i.e. all solutions of (4) with deterministic
initial values exist fort € [0,400).

Theorem 1 is a reformulation of [8, Theorem IX. 6A].

2. Differential Equations with Backward Mean Derivatives

The system
{ D.£(t) = a(t, (1)), (5)
Dy&(t) = at, &(1))

is called a first order differential equation with backward mean derivatives.
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Notice that we do not introduce the notion of backward analog of operator D5 since,
applying the properties of It6 integral, one can easily prove that for a diffusion process
&(t) the result of application of that analog coincides with Dy&(t) (this follows from the
results of |2, 3]).

Definition 4. We say that (5) has a solution on [0,T] with condition {(T') = &, if there
exist a probability space (0, F,P) and a process £(t) given on (2, F,P) and taking values
in R™ such that £(T) = &, P-a.s. and for almost all t equality (5) is satisfied.

Consider a solution n(t), given on t € [0,7], with initial condition n(0) = & € R" of
the following differential equation with forward mean derivatives

{ Dn(t) = —a(T —t, (1)), (6)
Dyn(t) = a(T —t,n(t)).

Theorem 2. The process (t) = n(T — t) is a solution of (5) with condition {(T') = &,
where n(t) is a solution of (6) with initial condition n(0) = .

Indeed, D.&(t) = —Dn(T —t) = a(t,n(T —t)) = a(t,£(t)). For Dy&(t) the arguments
are analogous. The equality &(T") = & is obvious.

Now we are in position to find conditions, under which solutions of (5) exist on every
interval [0, T]. It is evident that for this it is enough to show that the flow generated by
equation (6), is complete. Denote the generator of (6) by L.

Theorem 3. If on R" there exists a smooth proper positive function ¢ : R" — R such
that Lo < C for some real C > 0 at all t € [0,4+00) and x € R", then all solutions of (5)
with deterministic values of "inverse" Cauchy problem exist on every interval [0, T].

Theorem 3 follows from Theoren 1 and Theorem 2.

The research is supported in part by RFBR Grant 18-01-00048.
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O I'"IOBAJIBHOM I10 BPEMEHU CYIIIECTBOBAHUN
PEIIIEHUN CTOXACTUYECKUX YPABHEHUN
C IIPOU3BOJIHHIMUI B CPE/IHEM CJIEBA

KO. E. T'hrukaux, H. B. Baxapos

IlousTe mpoOM3BOAHBLIX B cpeaHeM ObLIO BBeieHo . Henbconom B 60-x romax XX
CTOJIETHs], ¥ B HACTOAIIEE BPEMsI NMEeTCsl MHOIO MaTeMaTHIeCKUX Moeell pU3nIecKux u
TEXHUYECKUX [IPOIECCOB B TEPMUHAX YPABHEHUI C yKA3aHHBIMU IIPOU3BOIHLIMUA. DTa, CTAThs
IIOCBSIIIIEHa U3YYEeHNI0 CTOXACTUIEeCKUX AuddepeHnnalbHbIX YPaBHEHNH C IIPOU3BOIHBIMEI
B CpejHeM CJieBa. DTOT THUIl YPABHEHUII BOZHUKAET B HEKOTOPBIX MOIENAX (DU3UIECKUX U
TEeXHUYIECKUX IIPOIECCOB, U, TAKUM ODPa30M, €ro M3ydeHue BazKHO i npuyioxkenuii. Ho,
C JIpyroii CTOPOHBI, U3yYeHNe TaKUX ypaBHEHUN TpeOyeT HOBBIX METOJOB U wjeil. B 3Toit
cTaThe Mbl IMEEM JIEJI0 CO CBOMCTBOM IJI00aIbHOIO 110 BPDEMEHHU CYIeCTBOBAHUS BCEX Pellle-
Huit <obpaTHoit> 3amaun Komm s ypaBHEHWI ¢ TPOU3BOAHBIMI B CpeaHeM cjeBa. Haii-
JIEHO yCJIOBUE, KOTOPOE TapaHTUpyeT IJI00abHOE 110 BPEeMEeHM CYIIEeCTBOBAHME YKA3AHHBIX
peleHnii. TOT pe3y/IbTaT BarKeH Ijis MHOIMX MaTeMaTHYeCKUX Mojejeil (hU3nvecKux u
TEXHUYIECKUX IIPOIIECCOB.

Karouesvie crosa: npoussodnvie 6 cpednem caesa; CoLACUMECKUE YPABHEHUS; CYULe-
CMBOBAHUE 2A00AALHBIT PEWEHUL.
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