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In this article Uzawa algorithm for steady incompressible Newtonian liquids was

implemented. The flow model of these liquids is described by Navier – Stokes equation.

Uzawa method involves the Delaunay triangulation of a set and computation of values

in the middle of every triangle’s edge. The method is iterative and the proper implicit

scheme that describes the flow of an incompressibe Newtonian liquid is introduced. For

the computational experiment the centrifuge model was taken. The abstract example is

about stiring the incompressible Newtonian liquid inside the centrifuge. The result of the

computational experiment corresponds to practise: the pressure increase towards the wall,

the lowest pressure is in the middle. The results of this research will be helpful for the

further research of steady incompressible Non-Newtonian liquids in the same condition.
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Introduction

The problem of Stokes equations approximation was considered in [1] – [4]. It is
claimed in [5] that discretization of the Stokes equations does not solve completely the
problem of numerical approximation of these equations. In the following sections we will
try to implement the classical algorithm of optimization introduced by Uzawa [6]. The
proof of convergence result from optimization theory.

Firstly, we will introduce the Theorem from [5].
Let Ω be an open set of Rn with boundary Γ. H1

0 (Ω) is a Hilbert space for the scalar
product

n
∑

i=1

(∇ui,∇vi) = ((u, v)). (1)

Let f ∈ L2(Ω) be a given vector function in Ω. We seek a vector function u = (u1, ..., un)
representing the velocity of the fluid, and a scalar function p representing the pressure,
which are defined in Ω and satisfy the following equations and boundary conditions

−ν∆u +∇p = f in Ω (ν > 0), (2)

div u = 0 in Ω, (3)

u = 0 on Γ. (4)

There in [5] it appears the following statement

u belongs to V and satisfies ν((u, v)) = (f, v), ∀ν ∈ V. (5)
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Lemma 1. Let Ω be an open bounded set of class C2. The following conditions are
equivalent

(i) u ∈ V satisfies (5).
(ii) u belongs to H1

0 (Ω) and satisfies (2) – (4) in the following weak sense

there exists p ∈ L2(Ω) such that − ν∆u+∇ p = f

in the distribution sense in Ω; (6)

div u = 0 in the distribution sense in Ω; (7)

ξ0u = 0. (8)

Theorem 1. For any open set Ω which is bouded in some direction, and for every
f ∈ L2(Ω), the problem (5) has a unique solution u. (The result is also valid if f is given
in H−1(Ω).) Moreover, there exists a function p ∈ L2

l oc(Ω) such that (2) – (3) are satisfied.
If Ω is an open bounded set of class C2, then p ∈ L2(Ω) and (2) – (4) are satisfied by u

and p.

In next several sections we shall discuss the variety of equations, ordered by complexity,
the Uzawa method is used for. The complete computational experiment will be provided
in 2-dimensional case and the results will be shown.

1. Function value on a Triangle

Let u and p be the functions defined by Theorem 1; we will obtain u, p as limits of
sequences um, pm which are much easier to compute than u and p.

The algorithm starts with an arbitrary element p0,

p0 ∈ L2(Ω) (9)

When pm is known, we define um+1 and pm+1 (m ≥ 0), by the conditions
um+1 ∈ H1

0 (Ω) and

ν((um+1, v))− (pm, divv) = (f, v), ∀v ∈ H1
0 (Ω), (10)

pm+1 ∈ L2(Ω) and

(pm+1 − pm, q) + ρ(div um+1, q) = 0, ∀q ∈ L2(Ω). (11)

We suppose that ρ > 0 is a fixed number.
The algorithm of Uzawa based on a triangulation of the set Ω. We will consider the

values of the function u on midpoints of each triangle T .
Let T be a triangle with vertices M1, M2, M3, mid-edges P1, P2, P3, and let ν1, ν2, ν3

denote the corresponding basis functions (νi (Pi) = σij). Let us introduce T̂ , a reference

triangle, and the linear mapping transforming T̂ into T (fig. 1, 2).
Suppose Tn is the set of all triangles to triangulate Ω. π0

n : Tn → R is the initial
approximation to pressure. Ωh =

⋃

T∈Th

T is the initial approximation to the set Ω after

triangulation, ∂Ωh is the boundary,
transforms into reference triangle T̂ ,
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Fig. 1. Original triangle

Fig. 2. Reference triangle

x = x1 +
(

x2 − x1 | x3 − x1

)

X, (12)

where x is a coordinate vector corresponding to the triangle T and X is a coordinate vector
corresponding to the reference triangle T̂ . Now we need to construct the basis functions.
Let λi denote the barycentric coordinates in T with respect to the Xj . We have

ν1 = λ1 + λ2 + λ3, ν2 = λ2 + λ3 − λ1, ν3 = λ3 + λ1 − λ2,

where ν1, ν2 and ν3 are corresponding basis functions. On the other hand,

λ1(X) = 1−X1 −X2, λ2(X) = X1, λ3(X) = X2,

where X1 and X2 are coordinates of the midpoint on the reference triangle T̂ .
Now, there are three possible midpoints for each side of the triangle.
Case 1. The point belongs to the bottom edge.

ν1 = 1− 2X2.

Case 2. The point is on the left edge.

ν2 = 1− 2X1.

Case 3. The point belongs to hypothenuse.

ν3 = 2(X1 +X2)− 1

For the system of triangles the following conditions are fulfilled:
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• Pressure p is constant on each triangle

• u is the sum of basis functions

u =

Nm
∑

i=1

(

Ui

Vi

)

wi,

where Nm is the number of internal points.

• wi is defined on the neighbouring triangles to mid-point ’i’, it is zero everywhere else.

Now we can find the function w (fig. 3).

Fig. 3. Neighbouring triangles

We have two linear mappings transforming T1 into T̂ and T2 into T̂

γ1 = x3 + (x1 − x3 | x2 − x3)X, (13)

and
γ2 = x4 + (x2− x4 | x1− x4)X. (14)

w(T1) = ν(γ−1
1 (x)), w(T2) = ν(γ−1

2 (x)).

Depending on a position of the considered midpoint, w can be different, as ∇w.

2. Implementation for steady incompressible Newtonian liquids

Now we can derive the new equation using Navier – Stokes equation.
For the example of Stokes equation, described in [5], we had following equation

∫

Ωh

−wk∇p+ wkµ∇
2u+ wkfd

2x = 0.

In the case of steady Newtonian liquid the equation will be different

∫

Ωh

−wk∇p+ wkµ∇
2u+ wkfd

2x = ρ (u∇u)wk.
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For this equation we can obtain the following implicit scheme

ρ

∫

Ωh

wku
n
h∇un+1

h d2x+ µ

∫

Ωh

∇wk∇un+1

h d2x =
∑

T

area(T)πn
h(T)∇wk +

∫

Ωh

fwkd
2x. (15)

Also obtain the equivalent of this equation in radial coordinate system:

−ρ
u2(r)

r
er = −

∂p

∂r
er + µ

(

1

r

∂

∂r
r
∂

∂r
u(r)−

u

r2

)

eθ + f(r)eθ,

and finally, split the equation in two

µ

(

1

r

∂

∂r
r
∂u

∂r
−

u

r2

)

+ f = 0

and
∂p

∂r
= ρ

u2

r
.

The force F should be

F = (−r sin θ, r cos θ)

This information is enough to make a computational experiment.

3. Computational experiment

To produce a computational experiment we compiled a code using Matlab with ρ = 1,
ν = 1, µ = 1.

The result of computational experiment is shown below (fig. 4, 5)

Fig. 4. Pressure distribution

The result of the computational experiment corresponds to practise: the pressure
increase towards the wall, the lowest pressure is in the middle.
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Fig. 5. Flow direction
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