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The article examines the possibility of improving the security of user workstations

equipped with web cameras. This is achieved by implementation of continuous user

authentication through face recognition. This method significantly increases a security level

of the system from the threat of gaining access while the user is not at the workplace. In

addition, various methods to protect the system from imitating the images of a genuine

user were developed. Testing various approaches to solving the problem was performed and

the reliability of the system was estimated.
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Introduction

While a user is not at his workplace, access to his computer or mobile device can
be intercepted through input-output devices. Especially it concerns systems in high-risk
environments, such as computers at the banks or management of important objects [1].
The standard protection consists in fixing of a certain time interval. If no user actions
are detected during this interval, the computer is blocked and re-entering the password
is requested. Otherwise, the computer is not blocked. An intruder can exploit this and
perform an arbitrary input.

To increase the level of protection, we propose to use the system of continuous
authentication, which is capable of verifying a user for authenticity in a short time
period. Since it is futile to force a user to constantly enter a password or insert a token,
the only possible suitable factor for continuous authentication is biometrics. A chosen
authentication method is 2-dimensional recognition of face geometry using a standard
webcam.

1. Related Work

Researches propose such solutions as recognition of the key typing [2], recognition of
a user’s finger movements on the touch screen of the mobile device (using the specially
developed digital sensor glove) [3], and computer mouse movement analysis [4]. Their
distribution is blocked by various factors: a clear keyboard handwriting is formed not by
all users; scanning of finger movements requires a special glove, which will have to be
purchased additionally; the movements of the computer mouse are subject to elementary
falsification.

It was also proposed to identify the characteristics of the human heart: its tones [5]
and geometry [6]. For these methods, a very high level of reliability is achievable since
neither tones nor the geometry of the heart is practically impossible to falsify. The main
disadvantage of these methods is the need to purchase additional expensive equipment.
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Recognition of the geometric characteristics of the user’s face was proposed by [1,
7, 8]. In [8], a continuous authentication system was developed using a three-dimensional
RGB-D camera. It achieved very high reliability indicators (EER ≈ 0.8%). However, three-
dimensional cameras are very rare at the moment.

In [1, 7], two-dimensional face recognition was proposed. In [7], the front camera of the
smartphone is used to obtain the image, in order to detect the necessary facial features
when the user conceals or leaves the boundaries of visibility. In [1], a standard webcam
was used, but authentication is not really continuous, it works whenever a user attempts
to perform any operation requiring access. In both works, acceptable reliability indicators
were achieved, but there is no possibility to recognizing a photo of an authentic user that
an intruder can show to a camera.

The paper considers the method of continuous authentication, which has the following
advantages:

–to use this method of biometric authentication, only a web camera is required that
is built-in most smartphones and laptops or can be purchased at a low price;

–by monitoring from a webcam, it is possible to activate the energy saving mode of
the computer during the absence of the user, which will save energy;

–the ability to distinguish a living user from his photo.
This paper is organized as follows: Section 2 describes the algorithm used for face

recognition. Section 3 shows the results of testing performance and system accuracy.
Finally, Section 4 presents our conclusions and considers further perspectives followed
by references.

2. Face Recognition

Face recognition is reduced to a process consisting of two stages:
–face localization on the image (i.e. detection);
–detection of key structures on the face surface.
To achieve this, we used the facial landmarks construction algorithm described in [9]

and implemented in the Dlib library. To identify a face, it localizes and marks the following
areas: the right eye, the left eye, the right eyebrow, the left eyebrow, the nose, the jaw.

The work uses the pre-trained convolutional neural network ResNet [12]. The layers
that are responsible for the classification are cut off from the network, and only the
convolutional layers remain that extract the key features from the image, i.e. structure
of the face. In Dlib a modified version of this network is used – ResNet34.

The image is marked with the specific (x, y)-coordinates that surround each of the
above facial structures. There are 68 such landmarks in total.

As a result, the network produces a vector d called a descriptor. Such descriptors will
be extracted from an original user image and from an image received from the web camera.

The descriptors are used for face recognition: for this purpose, the Euclidean distance
e(d, c) (where d and c are two different descriptors) between them is calculated by

e(d, c) =

√

√

√

√

n
∑

k=1

(dk − ck)2. (1)

If this distance is less than some constant threshold, then it is considered that the
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persons belong to the same user, therefore, the person’s face is identified. Otherwise, the
user s access to the system denied.

If a user’s face is rotated, the affine transformation of the derived landmarks is
performed.

3. Testing

To evaluate the effectiveness of continuous authentication, the following criteria are
used:

–False Accept Rate (FAR) means the probability that the system recognizes another
person (impostor) as a legitimate user;

–False Reject Rate (FRR) means the probability that the system recognizes legitimate
user as an impostor;

–Equal Error Rate (EER) determines the accuracy of the recognition;
–RAM usage;
–CPU usage;
–Duration of one recognition procedure.
To get the EER, it is necessary to plot the FAR and FRR graphs. EER will be equal

to that value of FAR(threshold), at which it is equal to FRR(threshold), i.e. EER is at
the intersection of these graphs:

EER = FAR(threshold) = FRR(threshold). (2)

3.1. Dataset

Video from 11 different videobloggers of different emotional expressiveness, various
illumination level and duration from 10 to 220 minutes was used as a data set.

All the videos were taken from YouTube. Videoblogers were divided into two groups.
Bloggers from the first group have weak emotional expressiveness and use a dark
background. Bloggers from the second group have strong emotional expressiveness and
use light or neutral background.

Videos from the first group:
https://www.youtube.com/playlist?list=PLjd1aefITwnGbaW0mBNna9e1qVBhNV4t0
Videos from the second group:
https://www.youtube.com/playlist?list=PLjd1aefITwnHiW9-9IB5V6tLDeVitb5Lh

3.2. Evaluation of Accuracy

Before testing, each blogger was registered in the system as a user with his login and
received his own template. A template is a set of four manually taken images containing
a face. On three images a face is turned towards the camera, and on the fourth one
it is rotated 45 degrees to the side to test the quality of affine transformation the face
landmarks. The descriptors d1, d2, d3, d4 are computed for all 4 images.

A FAR graph is plotted according to the following algorithm:
–threshold takes values 0.01, 0.02, ..., 1.0.
–The descriptors d1, d2, d3, d4 are computed for a template of each user.
–The system consistently scans the videos of all other bloggers and processes 100

frames from the beginning of each blogger’s video. When processing a frame, the system
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looks for a face on it. If a face is found, the descriptor dcurrent is calculated from it.
–Euclidean distance between each of d1...4 and dcurrent is calculated. The result is 4

values e1, e2, e3, e4. The average value e is calculated from them by e = e1 + e2 + e3 + e4/4;
–If e < threshold, then the value is considered erroneous.
–FAR for one threshold value is the ratio of the number of erroneous values to the

total number of values.
–Based on the 100 FAR values obtained, the FAR(threshold) graph is plotted.
To calculate a FRR, the user’s template is compared to the 100 frames from the

beginning of video of the same user. Erroneous values should exceed the threshold. The
remaining steps of the algorithm are the same as in the FAR calculation algorithm.

Consider the change of an EER when changing the following parameters, which can
affect the quality of recognition:

–User s template;
–Video resolution;
–Illumination (brightness) of the template images.
The standard test was conducted on video with a resolution of 360p. The test results

are shown in Fig. 1 (marked as FAR1, FRR1). FAR and FRR intersect at threshold =
0.63, and an EER of 0.87% is achieved. Next, the impact of various user’s templates on an
accuracy of the system was tested. Templates were obtained automatically directly from
the video by reading every 100th of the processed frame as one of four images. Test results
with the modified template are shown in Fig. 1 (marked as FAR2, FRR2). Changing the
template has almost no effect on an accuracy: EER = 0.88%. But FAR1 and FRR1 are
less than FAR2 and FRR2 with same threshold values.

Fig. 1. Illustration of ratio FAR to FRR for the standard test and test with automatically
obtained samples (fragment). Intersection points are marked by a circle.

As a rule, FAR is much lower than FRR in single-entry authentication systems
(for example, 6.5% FRR and 0.1% FAR) [10]. This is justified since it is usually more
important to block access for an impostor than allow it for a legitimate user. In the
case of continuous authentication, it is highly likely that an already authorized user can
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be incorrectly identified and denied access during the session. To solve this problem, we
propose to keep FRR on balance with FAR.

Testing was also conducted for the two groups separately (see Fig. 2, first group is
marked as FAR1, FRR1, second group marked as FAR2, FRR2). The first group was
much easier to recognize than the second group: EER for the first group of 0.15% is
achieved, at threshold = 0.59. EER for the second group of 1.31% is achieved, at threshold
= 0.68. Therefore, an emotional expressiveness and background have a significant influence
on the recognition accuracy.

Fig. 2. Illustration of the ratio FAR to FRR for the first and second group videos (fragment).
Intersection points are marked by a circle.

Now let’s consider influence of resolution. All the video were consistently tested in the
following resolutions: 240p, 360p (standard test), 480p, 720p. The results are shown in
Fig. 3.

Fig. 3. The influence of different video resolution on EER. The minimum value = 0.87% for the
standard test at 360 pixels, the maximum value = 2.5% at 240 pixels.

Testing demonstrates that the highest accuracy is achieved on the standard test at
360 pixels. With a strong reduction in resolution, the EER rises sharply to 2.5% at 240
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pixels (this is due to low image clarity). However, when the resolution is increased, the
EER also rises: to 1.10% at 480 pixels and 1.25% at 720 pixels.

The influence of illumination on recognition quality was tested. To simulate different
illumination, all user’s templates were taken with different brightness: -50%, -25%, 0%
(standard test), +25%, +50%. The test results are shown in Fig. 4.

Fig. 4. The influence of different illumination level on EER. The minimum value = 0.86% with
a brightness increase of 25%, the maximum value = 3.6% with a 50% increase. The dimming of
templates had little effect on recognition quality.

Illumination negatively affects an accuracy only at high or very low intensity usually
not used in reality [7]. Increasing the brightness by 25% reduced the EER to 0.86%, but
it rises sharply to 3.6 at 50 percent. Therefore, The dimming had an insignificant effect on
an EER - 0.92% with brightness of -25% and 0.96% with -50%. Therefore, lighter images
are easier to recognize, but further brightening on the contrary reduces the accuracy.

3.3. Photo Classification

The standard vulnerability of any face recognition system is the possibility that an
intruder can bypass the system protection by faking an image of a genuine user s face and
showing it to a webcam (for example, using a photo). To protect against this, two different
methods are considered.

Suppose that the intruder fixed the photo in front of the webcam for greater reliability.
In this case, the difference between the face descriptors in different frames will tend to a
minimum. The first method is based on this supposition. Euclidean distance between the
previous and the current processed frame is calculated and compared with the constant
threshold2. If the distance is below threshold2, then it is user’s photo on image, not
genuine user himself.

The second method is based on the differences in the movement of a real person and a
photo in the frame. For its implementation, a convolutional neural network created with
the Keras library was used. It includes three subsamples and convolution cascades. The
convolutional part of the network is designed to highlight the characteristic features in
the image. The convolutional part is followed by the fully connected part of the neural
network, which is responsible for the classification. For this purpose, two fully connected
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layers are used. The network was used for binary classification of the images. The first
class is an images of the faces of living people, the second - an images of photos of people
in front of a webcam.

To evaluate the accuracy of both methods, we used FAR and FRR. FAR is the
probability that the system incorrectly recognizes the user’s photo as his living face, and
FRR is the probability of wrong recognizing of the legitimate user, but almost motionless
user as his photograph. Testing was conducted using the camera "HDE 12 Megapixel". As
a material for testing, 250 frames with 10 different live people and 250 frames with photos
of 10 people in front of a webcam were taken.

The results for first method are shown in Fig. 5 (marked as FAR1, FRR1). EER of
3.5% is achieved at threshold2 = 0.1. It should be noted that situations when a real user
sits in the workplace almost motionless can occur very often. Therefore, we suggest to keep
FRR higher than FAR, with a threshold2 no more than 0.09, to avoid false recognition
as a photograph.

Testing of the second classification method was conducted with the training sample of
500 frames for both classes. Figure 5 shows the test results of the second method (marked
as FAR2, FRR2). EER = 4.9% is achieved with threshold2 = 0.11.

Figure 5 demonstrates that FRR1 is almost equal to FRR2. Hovewer, FAR1 value
grows much faster than FAR2.

Fig. 5. Illustration of the ratio FAR to FRR for testing the photo recognition quality by the
both methods (fragment). Intersection points are marked by a circle.

Testing was conducted with the training sample of up to 3000 different frames for both
classes. Figure 6 shows the results of testing with its values of 500, 1000, 1500, 2000, 2500
and 3000 frames.

Increasing the size of the training sample improves accuracy. At 3000 frames, EER
= 1.3% is achieved. It should be noted that the growth rate of accuracy decreases.
Consequently, a further increase in the size of the training sample will have little impact
on the growth of accuracy. A comparison of the two methods shows that with a sufficiently
large size of the training sample, the second method demonstrates greater accuracy.
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Fig. 6. The influence of different size of the training sample on EER. The minimum value =
1.3% with 3000 shots, the maximum value = 4.9% with 500 shots.

3.4. Total Accuracy

Let s consider the total accuracy of the system, taking into account the user recognition
and the photo recognition. When processing a frame from a webcam or video, the following
events may occur:

–image with the face of a legitimate user is on input (event A);
–image with the photo of a legitimate user is on input (event B);
–image with the face of an impostor is on input (event C).
The recognition system works according to the following algorithm. Firstly it recognizes

the face for legitimacy, depending on the threshold t1. If the result is greater than t1, then
the face is considered as an impostor, and access is denied (event D). Or it tries to recognize
if the face is in the photo, depending on the threshold t2. If the result is less than t2, it is
considered that the image is a photograph and the system denies access (event E). Or the
user is considered to be alive and legitimate, and access is granted (event F).

Now let’s determine the probability of a false reject of the system FRRtotal. This is
the probability of occurrence of any the events D or E, provided that event A occurred.
Therefore, it is influented by the following events:

–The image contains the face of a legitimate user, the face is recognized as a user,
recognized as a photograph (AE);

–The image contains the face of a legitimate user, the face is recognized as an impostor
(AD).

Then FRRtotal is calculated by

FRRtotal = P (D|A) + P (E|A), (3)

where
P (D|A) = (1− FRR(t1)) ∗ FRR2(t2), (4)

P (E|A) = FRR(t1). (5)

Note that the a priori probability of event A (i.e. P(A)) does not affect FRRtotal.
Now let s determine the probability of a false access of the system FARtotal. This is the

probability of occurrence of the event F, provided that any of the events B or C occurred.
Therefore, it is influented by the following events:
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–The image contains the photo of a legitimate user, the face is recognized as a user,
recognized as a living person (BF);

–The image contains the face of an impostor, the face is recognized as a user, recognized
as a living person (CF).

Then FARtotal is calculated by

FARtotal =
(P (F |B) ∗ P (B) + P (F |C) ∗ P (C))

(P (B) + P (C))
, (6)

where

P (F |B) = (1− FRR(t1)) ∗ FAR2(t2), (7)

P (F |C) = FAR(t1) ∗ (1− FRR2(t2)), (8)

P (B), P (C) are the a priori probabilities of occurrence of the events B and C,
respectively.

We didn’t find any examples in which the system would be wrong at recognition of
the presence or the absence of a person. Therefore, FAR0 and FRR0 were taken as 0.1%.
With this in mind, we walked through all the values of t1 and t2 and achieved the optimal
values of FARtotal = 1.02% and FRRtotal = 1.06% at t1 = 0.63 and t2 = 0.1.

3.5. Performance Testing

Performance testing was conducted on a PC with 8 GB of RAM and an Intel Core
i5-3570K 3.40 GHz processor with 4 cores. The load was distributed to one core. There
was a video with 11 minutes duration at different resolutions.

Let s consider the change in the average duration of the recognition procedure at
different resolutions of the video. The time increases almost linearly, from half a second at
240 pixels, to 0.66 seconds at 360 pixels and to 1.28 seconds at 720 pixels. Consequently,
a larger resolution adversely affects the duration.

Testing the average CPU usage and the effect of different resolutions was conducted.
This indicator also demonstrates a practically linear increase at resolution change: from
22.7% at 240 pixels to 71.6% at 720 pixels.

Testing the RAM usage showed that different resolutions have little effect on this
indicator. The system uses at least 230 MB at startup. Subsequently, the usage grows on
average to 285 MB (290 MB limit) when processing video with 720 pixels.

Figure 7 shows the relative change in all three indicators. Their value with 360 pixels
was taken as 100%.

When analyzing the results of testing the RAM and CPU usage, it should be taken into
account that only the usage with time interval on which a recognition procedure occurs is
considered. The time interval between them is not considered.

Performance and recognition time using both photo classification methods are
approximately the same. The execution time of the first method is approximately 0.3
seconds, the execution time of the second method is approximately 0.5 seconds.

The results of performance testing showed that the use of the system on smartphones
is unreasonable because of the high load on the processor, and as consequence, large energy
losses. The most suitable types of mobile devices are laptops and tablets.
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Fig. 7. The relative change in CPU usage, RAM usage and average duration of the recognition
procedure at different video resolution.

4. Conclusions and Future Work

We developed a system of continuous authentication through two-dimensional
recognition of face geometry using a standard webcam. This system was tested on video
from different bloggers. It was found that different video resolution affects an accuracy,
duration of a recognition procedure, RAM and CPU usage. The best accuracy expressed
through the Equal Error Rate is equal to 0.86% and it is achieved for video with a resolution
of 360p, with an increase in the user’s templates brightness by 25%.

The ability of the system to distinguish a user’s real face from his photo by two different
methods was developed and tested. EER of the first method is equal to 3.5%. EER of the
second method is up to 1.4%.

In future, we plan to optimize the system as a whole to reduce its resource requirements
for widespread use on mobile devices.

The research was supported by Act 211 of the Government of the Russian Federation,
contract 02.A03.21.0011.
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УЛУЧШЕННАЯ СИСТЕМА НЕПРЕРЫВНОЙ
АУТЕНТИФИКАЦИИ С ПОМОЩЬЮ ЗАЩИТЫ
ОТ ПОДДЕЛОК

А. А. Кудинов, С. М. Елсаков

В статье рассматривается возможность повышения безопасности рабочих мест

пользователей, оснащенных веб-камерами. Это достигается за счет реализации непре-

рывной аутентификации пользователя с помощью распознавания лица. Этот метод

значительно повышает уровень защищенности системы от угрозы завладения досту-

пом, пока пользователь покинул рабочее место. Кроме того, были разработаны различ-

ные методы защиты системы от имитации образа подлинного пользователя. Выполнено

тестирование различных подходов к решению задачи, и получены оценки надежности

соответствующей системы.

Ключевые слова: аутентификация; распознование лиц; веб-камера; распознование

фотографий; библиотека Dlib.
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