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In addition to the model of polar ionosphere in terms of ordinary differential equation
with random coefficients we construct and investigate two more models: described in terms
of a stochastic differential equation in Ito form and in terms of stochastic equation with
current velocities (symmetric Nelson’s mean derivatives). The existence of solution theorems
for those equations are proved.
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Introduction and Setting up the Problem

Traditional models of distribution of electron concentration Ne in the F -region of polar
ionosphere are based on two determining factors: ionization q and the large-scale electrical
field of magnetospheric convection generating the transfer v̄ of ionospheric plasma [1]. Note
that q takes two values: at day time it is a positive constant (without loss of generality
we can set it equal to 1) and at night time it is equal to zero. Thus, in the polar day
we consider it as 1 and in polar night as zero. The vector v̄ is equal to E×B

B2 where E

and B are electric and magntic strengths, respectively. Everything is considered over some
neighbourhood of the North Pole, so that x is a two-dimensional vector with coordinates
x1 and x2. The same notation for coordinates we keep for coordinates of vector v̄, w(t),
dw(t), etc.

In [2] the continuity equation ∂Ne

∂t
+v̄·∇Ne = q−βNe is considered with the assumption

that v̄ is the sum of the deterministic summand (for which we keep the notation v̄) and the
stochastic summand that is supposed in [2] to be the Wiener process w(t) (the Brownian
motion) with a certain real function coefficient σ(x), β is the recombination coefficient,
and q is the ionization (see above). The function σ may be piece-wise constant. Thus the
equation describing this model takes the form

∂Ne

∂t
+ (v̄(t, x) + σ(x)w(t)) · ∇Ne = q − βNe (1)

or in coordinate form

∂Ne

∂t
+
(

v̄1 + σw1(t)
) ∂Ne

∂x1
+
(

v̄2 + σw2(t)
) ∂Ne

∂x2
= q − βNe. (2)

The main aim of this paper is to pass from ordinary differential equation (1) and
(2) with random coefficients to stochastic differential equations in the Ito form and
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to stochastic differential equations with current velocities (Nelson’s symmetric mean
derivatives). In the framework of stochastic analysis such equations are considered as
more adequately describing the behaviour of physical processes. Note that the current
velocities are natural analogues of ordinary physical velocity of deterministic processes.
We construct such equations and prove the existence of solution theorems for them.

At the present moment the analytical formulae for the solutions of those equations
cannot be found, but the numerical methods (and in particular, the Monte Carlo method)
can be applied. This will be done in the forthcoming publications together with comparison
with the results of experiments. After that it will be possible to understand which model
and in which situation gives the adequate description of real Ne.

1. Model Based on Equation in Ito Form

We refer the reader to [3] for detailed description of the theory of stochastic differential
equation. We transform (2) into

dNe =

(

q − βNe − v1
∂Ne

∂x1
− v2

∂Ne

∂x2

)

dt− σ
∂Ne

∂x1
dw1(t)− σ

∂Ne

∂x2
dw2(t). (3)

Here the vector ∇Ne is considered as a linear operator sending R
2 where the Wiener

process is given, to R
1 where the solution Ne lives.

Note that all the models and equations under consideration are applicable for
describing the ionosphere only over a small enough neighbourhood of the North Pole.
That is why we can suppose that the domain of the coefficients in (3) is compact. To
avoid investigating the behaviour of the processes on the boundary, we may consider the
domain as flat torus. We suppose all functions in (3) to be smooth and since the domain
is compact, they all together with their derivatives are bounded.

Denote by Ft the filtration that defines the Wiener process. Consider equation (3)
either with q = 1 or with q = 0.

Theorem 1. For every initial condition Ne(0) = N0
e where N0

e is measurable with respect
to F0, equation (3) has a unique strong solution well-defined for all t ≥ 0.

The proof follows from the fact that under the above assumptions equation (3)
satisfies all conditions of existence and uniqueness of strong solution theorem for stochastic
differential equations in Ito form [3].

2. Model Based on Current Velocities

We refer the reader, e.g., to [4] for rather detailed introduction to the theory of
equations with mean derivatives. But since this theory is much less known than the Ito
equations, we have introduce to some definition and facts from this theory here.

Consider a stochastic process ξ(t) in R
n, t ∈ [0, T ], given on a certain probability

space (Ω,F ,P) and such that ξ(t) is an L1 random element for all t. Denote by N ξ
t the

minimal σ-subalgebra of F that contains the preimages of Borel sets from R
n under the

mapping ξ(t) : Ω → R
n. This σ-subalgebra is supposed to be complete. We denote by E

ξ
t

the conditional expectation E(·|N ξ
t ) with respect to N ξ

t for ξ(t).
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Definition 1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant t is an
L1 random element of the form

Dξ(t) = lim
△t→+0

E
ξ
t

(

ξ(t+△t)− ξ(t)

△t

)

, (4)

where the limit is supposed to exist in L1(Ω,F ,P) and △t → +0 means that △t tends to
0 and △t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

D∗ξ(t) = lim
∆t→+0

E
ξ
t

(

ξ(t)− ξ(t−∆t)

∆t

)

(5)

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F ,P) and ∆t → +0 means
that ∆t → 0 and ∆t > 0.

Introduce the differential operator D2 that differentiates an L1 random process ξ(t),
t ∈ [0, T ] according to the rule

D2ξ(t) = lim
△t→+0

E
ξ
t

(

(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t

)

, (6)

where (ξ(t+△t)−ξ(t)) is considered as a column vector (vector in R
n), (ξ(t+△t)−ξ(t))∗

is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L1(Ω,F ,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix so that D2ξ(t) is a symmetric semi-positive definite matrix function
on [0, T ]×R

n. We call D2 the quadratic mean derivative. Note that for a diffusion Markov
process its quadratic mean derivative equals the diffusion coefficient.

Remark 1. From the properties of conditional expectation (see, e.g., [5]) it follows that
there exist Borel mappings a(t, x), a∗(t, x) and α(t, x) from R×R

n to R
n and to the space

of symmetric positive semi-definite matrices, respectively, such that Dξ(t) = a(t, ξ(t)),
D∗ξ(t) = a∗(t, ξ(t)) and D2ξ(t) = α(t, ξ(t)). Following [5] we call a(t, x), a∗(t, x) and
α(t, x) the regressions.

Consider the vector fields

vξ(t, x) =
1

2
(a(t, x) + a∗(t, x)),

uξ(t, x) =
1

2
(a(t, x)− a∗(t, x)),

where a(t, x) and a∗(t, x) are regressions for forward and backward derivatives, respectively.

Definition 2. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called current velocity of ξ(t);
uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called osmotic velocity of ξ(t).

Here DS = 1

2
(D +D∗) and DA = 1

2
(D −D∗).

Let a Borel vector field a(t, x) and a Borel field of symmetric positive semi-definite
matrices α(t, x) be given on R

n. The sustem of the form
{

DSξ(t) = v(t, ξ(t)),

D2ξ(t) = α(t, ξ(t)),
(7)
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where the equalities are fulfilled a.s., is called the first order equation with current
velocities.

Definition 3. Equation (7) has a solution on the interval [0, T ] if there exists a probability
space (Ω,F ,P) and a process ξ(t) given on it for t ∈ [0, T ], so that (7) is satisfied.

For our model we introduce the equation with current velocities of the form

{

DSNe = q − v̄ · ∇Ne − βNe

D2Ne = σ2(∂Ne

∂x1 )
2 + σ2(∂Ne

∂x2 )
2 (8)

As well as above we suppose that all functions in equation (8) are smooth. Since the
domain is compact, they all together with their derivatives are bounded.

Theorem 2. Let the density ρ of the initial value of Ne be smooth and nowhere equal
to zero. Then under the above assumptions there exists a solution of (8) with this initial
condition.

Proof. In [6] an existence of solution theorem for equations with current velocities is
proved under the assumption that ρ is smooth and nowhere equal to zero and under the
assumptions of some inequalities for the right-hand sides of the equations together with
their first partial derivatives. Thus, since all the functions in (8) are bounded together
with their derivatives, the assertion of theorem follows from [6].

✷
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О МОДЕЛИРОВАНИИ КОНВЕКТИРУЮЩЕЙ ПОЛЯРНОЙ
ИОНОСФЕРЫ

Ю. Е. Гликлих, Г. А. Власков

В дополнение к модели полярной ионосферы в терминах обыкновенных диффе-
ренциальных уравнений со случайными коэффициентами мы строим и изучаем еще
две модели, описанные в терминах стохастических дифференциальных уравнений в
форме Ито и в терминах стохастических уравнений с текущими скоростями (симмет-
рическими производными в среднем по Нельсону). Доказаны теоремы существования
решений для указанных уравнений.

Ключевые слова: модели полярной ионосферы; производные в среднем; текущие

скорости; стохастические уравнения в форме Ито.
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