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The task of operatively to provide cargo transportation with the given kinds of available
vehicles is actual at operative planning of work of logistic centres. In the case of non-transit
transporting planning, the amount of available vehicles is critical, which in some cases does
not allow the fulfilment of orders to the full extent. The use of transit transport allows
to reduce the volume of unfulfilled orders. The article presents a formal setting of the
given problems in the form of multi-index problems of linear programming. Special cases of
problems, which allow to use effective algorithms for their solution, are noted.
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Introduction

The task of operatively to provide cargo transportation with the given kinds of
available vehicles is actual at operative planning of work of logistic centers [1].

Let J be a set of logistics centers, R be a set of kinds of goods, K be a set of vehicle
modes. Let us consider set of possible communications D = {(i,7) : 4,5 € J, i # j}. Let
there be \'* a generalized specific volume required for transportation of the unit of the
product r € R on the transport of the species k € K, let there Rfj be a allowable no-transit
volume of transportation from the center ¢ € I to the center j € J by transport k € K.
Thus, if the amount ]} of non-transit traffic from center ¢ € I to center j € J of the
product r € R with vehicle kind k € K, then it is necessary to implement the restriction

d XNFaF < RE, (i,j) €D, keK. (1)
reR
Let Ej; be volume of the order for transportation of the product r € R from the center
1 € J to the center j € J, i.e. the volumes xff of transit-free shipments of a product » € R
must satisfy the condition

Ejj=e;+> alf, (i,j)€D, reR, (2)
keK
where e;; > 0 is an unsatisfied part of the demand, since in the general case the system of
constraints (1)—(2) may be inconsistent if e}; = 0 for all r € R.
Although an unmet part of the current demand can be met in the next planning period,
an enterprise pays a penalty

Py=> del, (i,j) €D. (3)

reR
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The foregoing demonstrates the possibility of scheduling off-transit traffic on a route
(7,7) € D by solving the distribution problem [2], [3] of linear programming

S NFar <Ry, ke K
reR
min Zc Z wif +e;=E;, reR », (i,j)eD. (4)

e 20, €20
The problem (4) for each unbound rote (i, j) € D has |R|-| K|+ |R| variables and | K|+ |R]|

restrictions for non-negative variables.
If for all £ € K and r € R we have equation

)\Tk = Oérﬁka (5)
then the change of variables a,z} = y/F, a,ej; = f; allows us to pass from problem (4)
to problem
Rk
Z yz] \ k E K7
reR ﬁk 5
: i , (i,j) € D. 6
mln ZTU Zyrk+ r= I reR (4,7) € (6)
keK Qr
y=0, f=0

The problem (6) is known as a transportation problem in a matrix setting [2|. Effective
algorithms are known for its solution [4].

1. Reducing Volume of Unfulfilled Orders by Transit Transport

To reduce the total amount of penalty

> Pi= ) (Zc@-e@-) (7)

(4,)€D (i,j)eD \reR
one may introduce transit routes. So, let us define for every (i,j) € D a set of
D(i,j) ={le J: (i,0), (I,j) € D} (8)

logistics centers, through which a transit route is possible (4,1, 7) : (,1),(l,j) € D.

Let 2j; be the amount of a product r € R, transferred from the route (i,j) € D to
the transit route (7,1, 7). In the case of the possibility of transit transporting the analogue
of the equation (2) of the balance between the transport order E}; and the volumes of
transporting xrk > 0 is the equation

Ej; + Z Zij ~ Z llj_ew—i_zxw’ JED, rTER (9)
I:1€D(l,5) leD(i,j5) keK

In (9) the volume of the order is modified by including the transit volumes from the more
remote points (the first amount) in the route (i,7) € D , and the excluding the transit
volumes through less remote points (the second amount).
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Expansion of the task (4) of planning taking into account transit transportation has
a form

Z /\rk rk Rk

’L]’
reR
: ror Elr+ Z Zi' Z Zz _€Z+le7
mm Z <Z Cijeij) T LDy " 1€D(,j) g ! J (10)
| Ga)ep \reR (1,7) € D, r € R;
z20, =20, e=0.

ke K, (i,j) € D;

Problem (10) is multi-index transport problem, special variants of the simplex-method
are known for its solution [2].

2. Special Cases
If for all K € K and r € R there is equality (5), then the change of variables

rk __ rk __ T __ /T
QrZi; = Yij arez]_ ijs arzzj ij

makes it possible to pass from problem (10) to problem

4 k 3

_RY . ‘
_Zyz] = B’ kGK, (Zvj)eDa

" Er.
: Cij pr r rk p——
min 3 ) <Z o z‘j) fit Ly = 2 Gt 2 G : (11)

Gy f | 4 . 1:ieD(1,5) 1€D(i,j) Or
(G)eD Arek (i,7) € D, r € R;
¢=0, y=0, f=0.

\ V

Theorem 1. The restriction matriz of problem (11) is the incident matriz of an digraph
G with a set of vertices

and a set of arcs

G: E(G) = Exr(G)U Egr(G), Exr(G) = ((K x D) x (R x D)),
Err(G) ={Rx{((i,5),(1,5)) : (i,5) € D, (I,j) € D}}.

Proof.

It s obvious there 1is one-to-one correspondence between the vertices
((i,7) € D, k € K) of digraph G and the constraints of the first group of problem
(11), as well as between the vertices ((¢,j) € D, r € R) of digraph G and the constraints
of the second group of problem (11). Thus, a one-to-one correspondence is established
between the vertices of graph G and the rows of the constraint matrix of problem (11).

Let ¢,7,l € J, r € R . Non-zero elements of the constraint matrix corresponding to
variables 2, r € R, 7 is permutation of mutually distinct fixed i, j,! € J, are given in
Table 1.

From the table we see that for any » € R and any mutually distinct 7, 7,1 € J variable
zj; can be treated as a flow along an arc (r, ((4,1), (j,1))) € Egg . Thus, z-submatrix
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Table 1
The fragment of the incidence matrix of graph G

Restric- Variables / Arcs

tions / 2l / i1 / il / 2 / 25 / 25l
Nodes , (L.5) , (4.9) , (&1 , (4,9) , (4,8 , (4,0

) L (L) TG " () L) )

{r, (i,7)) 1 -1 0 0 0 0
(r, (4,1)) 0 0 0 1 -1 0
r, 7, -

(r, (i,1)) 0 0 1 0 0 1
(r, (1,7)) 0 0 0 -1 1 0
{(r, (4,0)) 0 0 1 0 0 -1
(r, (1, 7)) -1 1 0 0 0 0

(containing only the columns corresponding to the variables of the group z ) of the matrix
of problem (11) is the incidence matrix of subgraph G (Vgr(G)). It is obvious that this
subgraph contains all arcs from the set Err and only them.

It is easy to see that y-submatrix is the incidence matrix of subgraph H(Ekpg) of
digraph G for all arcs from the set of arcs Fxpg, that are not included into subgraph
G (Vr(@)). By construction digraph G and its incidence matrix are the junction of digraphs
G (Vg(G)), H(Ekg) and their incidence matrices respectively. The theorem is proved.

O

As is known, the incidence matrix of the oriented graph is absolutely unimodular [5].
Consequently, problem (11) has an integral-valued optimal solution at integrality of the
right part of its system of constraints. Paper [4] presents effective algorithms to find an
integral-valued optimal solution for problems of high dimension.

The work was supported by Act 211 Government of the Russian Federation, contract
no. 02.A03.21.0011.
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MATEMATNYECKAAd MOAEJIb /1JIAd PEINTEHM A
OIIEPATMBHOMN ITPOBJIEMBI PETMIOHAJIBHBIX
I'PY3OIIEPEBO30K

A. B. Ilawoxos, IO. B. ITueosaposa, X. 3. Yaaybd

IIpu oneparuBHOM mIAHUPOBAHUK PAOOTHI JIOTUCTUIECKUX IIEHTPOB AKTYaJbHOMN SIBJISA-
eTcs 3a/a4a OMEPATUBHOIO 0DECIeYeHNsI I'PY30IEPEBO30K 3aIaHHBIX 00bEMOB PA3IUIHBIX
TOBAPOB IPHU 3a/IAHHBIX KOJIMYECTBAX PA3IUIHBIX TPAHCIIOPTHLIX CPeAcTB. B ciyuae rra-
HUPOBaHMsS OE3TPAH3UTHBIX MMEPEBO30K KPUTUIHBIM SIBJISIETCS O0bEM HMMEIOIINXCsl TPAHC-
[IOPTHBIX CPEJCTB, YTO B Psijie CJIyYaeB He [MO3BOJISET BBIOJHUTH 3aKa3bl B IIOJHOM O0b-
eMe. YMEHBINMUTH 00beM HEBBIIOJHEHHBIX 3aKa30B [T03BOJIAET UCIIOIHb30BAHNE TPAH3UTHBIX
mepeBo3oK. B crarbe mana popmasibHAs MOCTAHOBKA YKA3AHHBIX IPOOJIEM B BHUE MHOTOMH-
JIEKCHBIX 33129 JIMHEHHOro porpaMMupoBanis. OTMeYeHbl 9aCTHBIE CJIyYan 3314, O3B0~
JISTFOIIUE MCIIOJIb30BATh JJjIs UX pemnteHus 3 OEeKTUBHbBIE aJITOPUTMBI.

Karouesvie cao8a: mpancnopmmuas A02UCMUKG; PACnpedeaumenvhas 3a0a4a; mMpaHc-

nopmHas 3a0a4a; 2pad; MAMPUUE UHLUIEHMHOCTIU, AUHETHOE TIPOZPAMMUPOSIHUE.
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