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We propose an approach to construct the equations of state of molecular crystals of
nitro compounds. The approach allows to describe isothermal compression, and is based
on the division of the Helmholtz free energy into thermal and "cold" parts. It turns out
that the "cold" part can be divided into the intramolecular and intermolecular components,
while the low-frequency and high-frequency vibrations can be distinguished in the thermal
part. We propose to approximate the low-frequency component of the thermal part of the
internal energy and the pressure of a molecular crystal by the Debye approximation. In
order to describe the intermolecular energy of the Van der Waals interaction, we propose
a potential that closes on the heat of sublimation of a molecular crystal. The "cold"
part of pressure is determined by the change in intramolecular energy. We assume the
"cold" part of pressure to be constant, and use the condition that the pressure is equal
to 1 atm. under normal conditions in order to determine this part. This division of the
Helmholtz energy allows to obtain explicitly the expressions for all thermodynamic values
in the equations of state. In this paper, we assume the linear dependence of the Gruneisen
coefficient on the volume. The use of a more complex relationship is not necessary, since
we consider the isothermal compression, and the thermal component makes an insignificant
contribution to the total pressure. We use the obtained dependences of thermodynamic
values on temperature and volume in order to find the coefficients related to the known
experimental data. A comparative analysis of the calculated and experimental values of the
specific volumes of the molecular crystal of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as
a function of pressure shows their coincidence with an accuracy of 1%.
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Introduction

At present, the balance between detonation power and sensitivity to external
influences is a fundamental principle in the development of next-generation high-explosives.
This approach led to the creation of new inert explosives (IE). For example, 1,3,5-triamino-
2,4,6-trinitrobenzene (TATB) was created. An interesting feature of TATB is extensive
intermolecular hydrogen bonds leading to the formation of graphite crystalline structures.
Moreover, TATB is especially attractive due to the fact that its resistance to external
influences is combined with high density, high detonation pressure, and high detonation
speed [1, 2|. Despite the fact that TATB was synthesized in 1988, TATB turned out to
be less studied than its more sensitive and stronger equivalents, for example, hexogen and
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octogen. This is due to the fact that TATB crystals have triclinic symmetry [3-5], which
complicates the determination of material properties due to internal anisotropy.

The introduction of new methods for registering high-speed processes, as well as the
development of computer technology, led to the fact that mathematical modelling is a
competent method to study physical processes, which allows to obtain reliable information.
As a result, there is an increase in the requirements for mathematical models of the
equations of state describing the thermodynamic properties of substances. Indeed, the
reliability and accuracy of calculations of high-speed processes in condensed substances
are determined primarily by the inadequacy of the equations of state of the environment.

At present, quantum-mechanical methods to calculate the equations of state are
actively developed [6-8]. The main difficulty in the implementation of the methods
is the need to choose an adequate mathematical model of interparticle interaction.
The constant increase in the speed of computing technology allows to complicate the
mathematical equations of state. However, the results of calculations must be compared
with experimental data [9]. Despite the progress achieved in the development of the
equations of state, these equations can be used to study a limited number of problems,
for example, to study the isothermal compression of solids, including molecular crystals.
However, these equations can not be used to solve dynamic problems that consider high-
speed processes and require to calculate the thermodynamic state of the medium at each
time layer and at each space point.

Development of mathematical models for constructing semi-empirical equations of
state [10] can help to solve this problem. In this case, we use theoretical considerations in
order to determine the form of the functional dependence of one of the thermodynamic
potentials for the semi-empirical equation of state. At the same time, the coefficients
of the thermodynamic potential should be determined on the basis of the results
of thermodynamic experiments. Recently, quite a large number of publications, both
experimental and theoretical, are devoted to the study of various aspects of the behavior of
molecular crystals: the study of isothermal compression, the construction of dependencies
describing the behavior of the frequencies of normal vibrations on pressure, shock
adiabats, etc. Nevertheless, the theory of constructing mathematical models of semi-
empirical equations of state of molecular crystals is constantly developed and far from
its completion [9-12]. Let us give two possible reasons. On the one hand, the theoretical
determination of the thermodynamic properties of molecular crystals, including solid
explosives, is complicated by the fact that a considerable computational resource is
required even for the simplest models describing the interparticle interactions and the
vibrational motion of molecules forming a molecular crystal of nitro compounds. On the
other hand, experimental work is limited by the possibility of explosive transformations
at high pressures.

As a rule, in order to construct mathematical models of semi-empirical equations
of state of molecular crystals, the pressure and internal energy are divided into two
components: thermal and "cold" [9-13]. In the equations of state, the thermal component
is determined by the kinetic energy of the atoms forming the crystal molecules, and the
cold component is determined by the change in the potential energy of the interparticle
interaction, both within the molecule and between molecules, depending on the volume
of the molecular crystal. It is necessary to use known experimental data in order to verify
the reliability of the constructed equations of state by independent verification of the
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thermal and "cold"components of pressure and internal energy. In order to verify the
thermal component of pressure and internal energy, we can use experimental data on the
dependence of the heat capacity and isobaric coefficient of volume expansion of a molecular
crystal on temperature, and for the "cold" one — the isothermal compressibility data.

The objectives of the paper are as follows.

1. Construct the equations of state of a molecular crystal in order to describe the
isothermal compression of TATB.

2. Verify the obtained dependence of pressure on the relative specific volume. To this
end, we use experimental data on the isothermal compression of 1,3,5-2,4,6-trinitrobenzene

crystals (TATB) [4].

1. Equations of State of Molecular Crystals of Nitro Compounds

Depending on the set of experimental data, the construction of a semi-empirical
equation of state of a molecular crystal begins with the choice of the thermodynamic
potential. In this paper, we choose the Helmholtz free energy as such a thermodynamic
potential, since the Helmholtz free energy is most simply and naturally associated with
the model of the structure of substance [14-16], and is automatically divided into thermal
and "cold" components:

hwa 1
F:U+E0+kTZln(1—exp(—kiT)>,Eozizmja. (1)

Here U, T, h, k, w,, and Ej are are the energy of interparticle interaction between atoms
of a crystal, body temperature, Planck constant, Boltzmann constant, frequencies of
normal vibrations, and energy of zero vibrations, respectively. In formula (1), the sum
is taken over the frequencies of vibrations of both the molecules forming the crystal
structure, and the atoms forming the molecules. We determine the expression for the
Helmholtz free energy function F(V,T'), differentiate the given thermodynamic potential
by volume and temperature, and find all forms to determine both measured and calculated
thermodynamic characteristics [17].

In the equation for the Helmholtz free energy F(V,T) (1), the energy of interparticle
interaction between the atoms of a molecular crystal can be divided into the following
two components: the intramolecular U,;, which determines the energy of the interaction
of atoms inside the molecule, and the intermolecular (elastic) Ug, which determines the
energy of non-valence interactions of atoms between molecules. The elastic energy Ug
depends on the geometry of the molecular crystal, i.e. on the spatial arrangement of the
molecules and the volume of the unit cell. The intramolecular energy U, is the energy of
formation of a molecule and depends exclusively on the structure of the molecule.

Divide all frequencies of normal vibrations of atoms in a crystal into the low-frequency
(deformation) and high-frequency (intramolecular) [18, 19]. Here low-frequency vibrations
include six vibrations of the molecule as a whole (three vibrations of the center of mass,
and three Euler angles), as well as vibrations inside the molecule depending on the crystal
field, for example, torsional vibrations of nitro groups and amino groups. High-frequency
vibrations inside the molecule have larger order than low-frequency ones. Therefore, we
can divide the vibrational component of the Helmholtz free energy into low-frequency
and high-frequency ones. Note that the frequencies of the deformation vibrations are
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determined by the change in the energy Ug, i.e. the energy of non-valent interactions
between molecules. Consequently, only low-frequency vibrations depend on the volume.
The papers [13, 20| successfully use the possibility of frequency division in molecular
crystals in order to calculate the temperature at the shock wave front for a number of
organic nitro compounds, while the paper [21] experimentally confirm this possibility in
the case of nitromethane.

Let us use the Debye approach to describe the low-frequency component of the
Helmholtz free energy F(V,T). Then we can rewrite the vibrational component of the
free energy in expression (1) as follows:

D

T\ b 3N 0.
F:UC+UN[+E0+3MRT(%) /ﬁln(l—exp(—ﬁ))dﬁ#—Rr ;ﬂln(l — exp (—%)) . (2)
0 =

Here R, M, N, 3N — M, 6p, 0; are the universal gas constant divided by the molecular
mass of the substance i, the number of low-frequency vibrations, the number of atoms in a
molecule, the number of high-frequency vibrations, the characteristic Debye temperature,
the characteristic temperatures of high-frequency vibrations, respectively.

Integrate by parts the fourth term in the expression for the free energy F(V,T') defined
by equality (2), use the Debye function D(x) [22],

3 [, de
D(x)_;/ggexpﬁ—l’
0

and obtain the following equality:

D
F=Us+Uy+ Ey+ MRT (ln(l —exp(—zp)) — (xD)) +

3
3N 0.
+RT Z In (1 — exp (—TZ)) ,

i=M+1

Op

where rp = —.

We use expression (3) for the free energy F'(V,T) in order to obtain the expressions for
the pressure P and the entropy S. To this end, we differentiate the free Helmholtz energy
by volume and temperature, respectively:

_ a_F . _8UC . aUV . dE() . d(ln@D)i
P= (av)T = ~ov v av  METD@o)gas )
D(zp) 3N
S =—{MR |In(1 — exp(—xp)) — — MRD(zp)+ R Z In(1 — exp(—x;))—
3 i=M+1
3N -
—R -
i:;rl exp(z;) — 1}

(5)
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In expression (5), we introduced characteristic temperatures for high-frequency vibrations

S TZ In order to obtain the formula, we used the following feature of the Debye function:

Dlz) = exp(z)—1 3

D'(),
where the prime denotes differentiation by the characteristic temperature x.

Equations (3) and (5) allow to determine the expressions for the total energy £ and
the heat capacity at a constant volume C'y:

3N
E=F+TS=Uo+Uy+ Ey+ MRTD(zp) + RT Y ex(zﬁ (6)
=1 P
Oy = Cup + Crag = MR (4D(ap) — — 20 Yy 3 _devln)
Voo vp v PP exp(zp) — 1 A lexp(a) — 1)

Here Cyp and Cyy, are the components of heat capacity at a constant volume
that depend on low-frequency and high-frequency (intramolecular) vibrations of the
molecule, respectively. Cy p is determined in the Debye approximation, and Cy ,; is called
intramolecular.

We introduce the Gruneisen coefficient by the formula

d(lnfp)
V)=—
V) = =Gy
and write expression (4) as follows:
oUc  0oUy dEy MRT~p(V)D(zp)
P=- — — .
ov _ov av Vv (®)
Based on the definition of the energy of zero vibrations and taking into account the
dE
division of frequencies, we obtain expressions for the functions Ey and d—v?:
3N
1 3 1 dEy 3 MRy (V)0p (V)
Ey=— hwo ==MROp(V)+ =R 0;, = —= : 9
0 zza:w sMRO(V) +3 i:%:ﬂ v 8 % ©)

Taking into account equality (9), differentiate expression (3) by volume V' and obtain
the expression for pressure P:

N 1%

oU, oU 3
(D(zp)) + Po, Po= -5 — =2 L CMRTyp(V)ap/V,  (10)

P ov ov. 8

where expression (10) defines the cold component of pressure. The papers [18, 19| give a
detailed description of the approaches to determine the number of low-frequency vibrations
M.
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2. Mathematical Model of the Elastic Component of the Equation
of State of High-Molecular Structural Materials

In order to construct a mathematical model of the elastic component of the equation
of state of molecular crystals, it is necessary to choose the form of potential of nonvalent
interactions between atoms of different molecules that form a molecular crystal, to
calculate the energy of the crystal lattice, and to compare the energy with the heat of
sublimation. In practice, the scheme of atomic potentials [14] is a good tool to calculate
the energy of the lattice of organic molecular crystals. In the scheme, the potentials can
be represented by the analytical expressions of the Buckingham (6-exp) or Lennard-Jones
(6-12) type, where arbitrary parameters of the expressions are determined experimentally
and, possibly, taking into account the electrostatic interactions. The paper [23] shows that
the energy of electrostatic interactions can be up to 30% of the energy of the lattice of
molecular crystals of nitro compounds.

The papers [6-8| show that detalization of calculations of interparticle interactions
leads to enormous expenditure of computer time. In the A.l. Kitaygorodskiy model, an
approximation of the energy of non-valent intermolecular interactions by a set of potentials
leads to the appearance of a large number of constants, which sometimes can not be
adequately determined from the available experimental data.

Consequently, it is necessary to choose some effective potential of elastic interaction
having the following propeties. First, the potential takes into account the features obtained
as a result of detailed calculations of the energy of elastic interactions of molecular crystals
of nitro compounds. Second, the potential can be used to solve problems of mathematical
physics. Therefore, in accordance with the ideas of the work [15] and taking into account
the recommendation of the work [23], the energy of elastic interactions can be expressed
as follows: 4

Uc = 3—eXp [b <1—x%>] —Qx’Q—g:z:’%, (11)

bpo 2po Po

where x = po/p is a dimensionless volume; A, b, C, D are constants to be defined. In
equality (11), the second term describes the energy of Van der Waals, and the third term
describes the energy of electrostatic interaction. Due to the fact that the second and third
terms describe the energy of attraction [23], the terms are presented with a minus sign.
Therefore, it is necessary to modify the potential of elastic interactions (11). Taking into
account that the expressions describing the energy of attraction have an extremum at a
point, we replace the sum of the second and third terms with one function as follows:

Ue = %exp [b (1 — x%ﬂ - Q:z:’”. (12)
bpo npo

Potentials of elastic interactions (11) and (12) differ in that the exponent is not
fixed in the expression describing the energy of attraction, and must be determined from
experimental data [1, 2|. In order to determine the constants of expression (12), it is
necessary to choose four parameters from an experiment, and close the equations of state
to the parameters at a temperature of T'=0 K or T' = 293 K.

Differentiate expression (12) by specific volume V' and obtain the following form of
the expression of the elastic pressure P conditioned by the energy of elastic interactions
UC ($)

Pe = Az" 5 exp [b (1 — x%ﬂ — Oz~ (D), (13)
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In order to obtain the relationship between the coefficients in the expressions for the
elastic components of the internal energy (12) and pressure (13), with the properties
of crystals that are more understandable from the point of view of physics, we make a
number of transformations. By definition, the isothermal compressibility S is related to
the isothermal speed of sound as follows:

1 _c%__ opP
v (or), (14

Substitute expression (10) in the right-hand side of equality (14) and obtain

/BLT = —V% {MRTVD(V) Em + D(mD)} JV + PC}T =
= MRT [v5(V) +vp(V)] Ex[) + D(ID)} JV — Vaa% — MRT~3(V)De(xp)/V—

—MRT~, (V) Exp + D(:rp)} :

(15)
where 7, is the derivative with respect to V' of the Gruneisen coefficient

3 0

exp(ap) — 1 = ——"p(V).

In order to obtain equality (15), we take into account that the change in the intramolecular
energy Uy, under the action of the crystal field is small compared with the energy of the
molecule formation [14]. Therefore, further, we can assume that the derivative of the
intramolecular energy U,; with respect to the volume is constant and is determined from
the condition that the pressure is equal to 1 atm. under normal conditions.

In the case of small compression, the papers [24, 25| show that the dependence of the
Gruneisen coefficient on the specific volume can be described by the following expression:

D =D (%) : (16)

which is widely used to process experimental data. Here 7% is the value of the Gruneisen
coefficient under normal conditions V' = Vj, T' = Tj. In order to use expression (14) for
the Gruneisen coefficient 7p, it is necessary to determine its value 7% corresponding to the
initial specific volume V4. To this end, the paper [19] obtain an analogue of the Gruneisen
equation for molecular crystals in the following form:

aCt = p(V)Cyp, (17)

where the values of the isobaric coefficient of volume expansion a and isothermal velosity
of sound Cp are chosen from the experiment, and the heat capacity is determined at
a constant volume Cyp of equation (7) at the initial values of the specific volume and
temperature.
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Substitute the expression for the Gruneisen coefficient (16) in equality (15). We obtain
the expression for isothermal compressibility in the following form:

ﬁiT = —V% {MRT”VD(V) |:§$D + D(J}D):| JV + PC}T —
— MRT~3(V) E% + D(ap) - Dc(a:D)} v V%%' (18)

Let us estimate the contributions of individual terms that form the isothermal
compressibility. Under normal conditions 7" = 293 K and V, = 0.5162 cm?/g, it turns
out that the contribution of the first term in equation (18) is three orders of magnitude
less than the contribution of the second term. Therefore, further, the first term in equation
(18) can be ignored. We turn from isothermal compressibility to isothermal speed of sound,
and obtain )

o __ydc (19)
Vo av
Substitute expression (12) for cold pressure in the right-hand side of equality (19), for
x = 1 we obtain

oB, 0B, 2, 53 1/3 Lo a3 1/3
VO@V =3y = 3Ax exp[b(1 — /%) + 3Abx exp[b(1 — x/7)]

2 1
—C(n+1)2= "2 = 3A+3Ab = C(n+1).

Note that the elastic component of the internal energy has a minimum for x = 1. Therefore,
the value of the elastic component of pressure is zero for x = 1. Also, as follows from

expression (13), the coefficients A and C' are equal. We use equations (19) and (20) to
determine the coefficient A by the speed of sound Cr for x =1 and T = 293 K:

A =3ctpy/(b—3n—1).

(20)

In this case, the expressions for the elastic component of the internal energy and the elastic
component of pressure take the following form:

Ve =5t —3?71 —1) Bresp (b(1-0t)) = b, (21)
Po = [ enp (b (1 03)) -] (22

3. Equations of State of Molecular Crystals of Nitro Compounds
to Describe Isothermal Compression

In order to describe the behavior of molecular crystals of nitro compounds under
isothermal compression, it suffices to construct one equation of state, which determines the
dependence of the pressure P on the density p or specific volume V. We use the condition
that the pressure is equal to 1 atm. under normal conditions in order to normalize equation
(10) with the help of the derivative of the intramolecular energy with respect to the volume.
As a result, we obtain the following equality:

3
P = MRTyv)po(D(zp) — D(x},)) + Po + gMR’YJO)Po(@D —0}) + Po. (23)
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Here, the values with zero index correspond to the values of the parameters under normal
conditions. Let us estimate the contributions of individual terms in equality (23). It turns
out that the value of the elastic pressure Pg is three orders of magnitude greater than the
values of the other terms. Consequently, equality (23) can be simplified and represented
as follows:

P oo (3 (1)) -], 24)

Here the parameters cr, b, n are determined from the experimental data of the work [4]:
2975 m/s, 14.5, and 3.1, respectively. Table 1 shows the experimental values of pressure,
relative density xpyx, the experimental error, the lower and upper limits of the relative
density in accordance with the error presented in [4], as well as the relative density z.
calculated by equation of state (24).

Table 1

Comparison of experimental and calculated values of relative density

Pressure, GPa | xgx | Error, % | Lower limit | Upper limit T
0.56 0.9608 0.27 0.9581 0.9635 0.9715
0.85 0.9498 0.32 0.9466 0.953 0.9592
1.2 0.9397 0.42 0.9355 0.9439 0.946
1.66 0.927 0.43 0.9227 0.9313 0.9308
1.95 0.9148 0.44 0.9104 0.9192 0.9221
2.42 0.9054 0.51 0.9003 0.9105 0.9094
3.29 0.8834 0.58 0.8776 0.8892 0.8891
4.95 0.858 0.71 0.8509 0.8651 0.8581
8.18 0.8134 0.96 0.8038 0.823 0.8148
8.53 0.8045 0.99 0.7946 0.8144 0.811
9.53 0.7943 1.1 0.7833 0.8053 0.8006
10.17 0.7869 1.2 0.7749 0.7989 0.7945
11.64 0.7707 1.26 0.7581 0.7833 0.7816
13.22 0.7579 1.52 0.7427 0.7731 0.7691
Conclusion

Based on the results of the presented work, we conclude the following.

1. Analysis of the data given in Table 1 shows that the experimental and calculated
values of the relative density are in good agreement with each other within the experimental
error.

2. Equations of state for describing the isothermal compression of molecular crystals
of nitro compounds (24) are based on a minimum set of experimental data. Nevertheless,
the equations allow to describe the experiment rather accurately.
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IIOCTPOEHUNE YPABHEHUN COCTOIHN A

JJIA OIINCAHN A N30TEPMUYECKOT' O C2KATU A
HEKOTOPHBIX MOJIEKYJISAPHBIX KPMCTAJIJIOB
HUTPOCOEJIMHEHIN

K. M. Kosanes, K. M. Kaaunun

B macrosamieit pabore OLLT TPEITOKEH MMOAXOT K MOCTPOCHUIO YPABHEHUA COCTOSTHUST
MOJIEKYJISIPHBIX KPUCTAJLIOB HUTPOCOEIMHEHUH, TIO3BOJISIIONINN OIMUCHIBATH H30TEPMIIECKOE
cxkatne. JJaHHbBIH MOIX0T OCHOBAH Ha pa3ieeHun CBOOOIHOM sHeprun ['eTbMIoIbIia Ha Terl-
JIOBYIO W <XOJIOAHYIO> cocTapjstomume. OKa3a/0Ch, UTO <XOJOIHYIO> YaCTh CBODOIHOMN
SHEPI'MYM MOYXKHO PAa3JIeJINTh Ha BHYTPUMOJIEKYJISPHYIO U MEXKMOJIEKYJISPHYIO, & B TeILIO-
BOI YaCTH BBLIEJINTH HU3KOYACTOTHBIE M BBICOKOYACTOTHBIE Kosiebanusa. HU3KoIacTOTHYTO
KOMITOHEHTY TEILJIOBOM YaCTU BHYTpPEHHEH SHEPTUU U JABJICHUS MOJIEKYJISIPHOIO KPUCTAJLIA
OBLIO TIPEIOZKEHO AMMTPOKCUMUPOBATL TpudmkenneM Jlebast. JIjis onucanuss MesKMOJIEKY-
JISIpHO# 9Hepruu B3auMojeiicrBusi Ban-ep-BaaJibca ObLI 1pe/jI02KeH BUJ[ IOTEHIMAJIA, 38~
MBIKQIOIIUNCS Ha TEILIOTY CyOJIMMAIUU MOJIEKYJISIPHOIO KpucTajuia. KOMIOHEHTa <XOJI0I-
HOII> COCTABJISIIOIIEH JaBJIeHNs, Olpeje/seMasl N3MEHEHHEM BHYTPHUMOJIEKY/ISIDHON SHEp-
IUH, TIOJIATAJIACH TOCTOSTHHOM BEJIMINHON U OTIPEJIe/ISJIACH M3 YCJIOBUI PABEHCTBA JABJICHUS
1 aT™. Ipr HOPMAJILHBIX ycjoBusX. JlaHHoe pasmesenne sneprun 1ejibMroJibIia MO3BOJIUIIO
[IOJIyYUTh B SIBHOM BHUJIE€ BBIPAXKEHUS JJIsi BCEX TEPMOINHAMUYECKUX BEJIUUNH, BXOIAIINX B
ypaBHeHusi cocrosiaust. /i koaddunmenta ['pronaiizena B HacToseil pabore ObLIa IpU-
HsITa JIMHEHHAsl 3aBUCUMOCTb OT oObeMma. [Ipumenenne Gojiee CJIOXKHON 3aBUCHMOCTHU OKa-
3aJI0Ch He TeJIeCOOOPA3HBIM B CBI3M C TE€M, UTO PACCMATPUBAETCS H30TEPMUIECKOE CIKATHE
U TEIJIOBasi COCTABJIAIONIAs] BHOCUT HE3HAUUTE/IBHBINA BKJIA ] B cyMMapHoe nasienne. Orpe-
JIeJIeHHbIE B paboTe 3aBHCUMOCTH TEPMOIMHAMUYECKUX BEJIMYUH OT TEMIEPATypbl U 00b-
eMa OBbLIU WCIOJIb30BAHBI JIJIsi HAXOXKJIEHUsI KOI(PDUIMEHTOB, 3aBI3aHHbIX HA M3BECTHBIE
SKCIIEpUMEHTAaJIbHbIE JTaHHbIe. [IpoBeileHNe CpaBHUTEIBHOIO aHAJM3a PACUETHBIX U IKCIIE-
PUMEHTAJIbHBIX 3HAYEHUI Y/IE€JIbHBIX 00bEMOB MOJIEKYJIAPHOTO KPHUCTAJLIA 1,3,5-TpHaMmHO-
2,4,6-rpunurpobenzosa (TATB) B 3aBucuMocTu OT HABJIEHUS [IOKA3AJI0 UX COBIAJEHUE C
TouHOCTBHIO 10 1%.

Karouesvie cao6a: YypasHerue coCmosnus; MOAEKYAAPHBOIT KPUCTNAAN; UOMEPMULECKOE
corcamue; anepausn Ieavmeorvua; capaxmepucmuveckas memnepamypa ebas; ypasHerue

I'pmonatizera; npubsusicernue Jebas.
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