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The article is devoted to the construction of a solution to the initial-final value problem
for a non-stationary Leontief type system. Such systems take place in dynamic balance
models of the economy. A distinctive feature of Leontief type systems is the degeneracy
of the matrix at the time derivative, due to the fact that some types of resources of
economic systems cannot be stored. In addition, dynamic balance systems of the economy
are often described using time-dependent coefficients. We use resolving streams of matrices
to construct solutions for such systems. In addition, the initial-final value condition is
used instead of the standard initial condition. For economic systems, the initial-final value
condition can be interpreted as taking into account not only indicators at the initial moment
of time, but also indicators that are achieved at the final moment of time.

Keywords: Sobolev type equations; spectral projector; relatively regular matrices; flows
of solving matrices.

Introduction

In order to construct mathematical models of economic systems and processes, balance
models [1, 2| are widely used. Dynamic models allow to describe the process of change of
economic indicators, to establish a direct relationship between the previous and subsequent
stages of development, and, therefore, to bring the analysis based on the economic-
mathematical model to the real conditions of development of the economic system. In
dynamic models, production capital investments are distinguished from the composition of
the final product, their structure and impact on the growth of production are investigated.

In R™, consider the dynamic balance model in the form of the non-stationary Leontief
type system

Lu(t) = a(t)Mu(t) + f(t), (1)
where L and M are square matrices of order n, and det L = 0. Here a : [0,7] — R, is a
scalar function that describes in time the variation of parameters of interaction between
the velocities of states changing and the states of the system under study, and the matrix
M is (L,p)-regular (i.e., there exists p € C such that det(uL — M) # 0, and oo is a
pole of (uL — M)~! of the order p € Ny, hereinafter Ny = {0} U N). The vector function
f :]0,T] — R™ describes external influences on the system. Note that the condition of
degeneracy of the system, det L = 0, is one of the distinguishing features of balance models
of the economy, since resources of a certain type cannot be stored [2]. Moreover, note that
balance models often have a non-stationary form, i.e. the matrices included in system
(1) depend on time (see, for example, [3]). However, in this case, in order to obtain a
constructive solution, special conditions are required for these matrices [4, 5.

Leontief type systems can be considered as a finite-dimensional analog of the Sobolev
type equations [6, 7, 8|. This study was carried out in the framework of the theory of
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degenerate families of solving operators [7]. In order to study the solvability of initial
problems for stationary Leontief type systems, the papers [9, 10, 11] use the theory of
degenerate groups. In the numerical study of problems for such systems, the Showalter —
Sidorov initial condition [12]

(LwL — M) (u(0) —up) =0, v eC: det(vL — M) #0

allows to remove the constraints of the initial data matching, for example, when using
the classical Cauchy initial condition [9]. In addition, in modern studies in the field of
Sobolev type equations, the initial Showalter — Sidorov condition is considered to be more
natural in order to study various applied problems [12]. Note that the solution to the
optimal control problem for stationary Leontief type systems is used not only to describe
economic systems, but also to simulate technical systems [13, 14, 15|. For the first time,
non-stationary Sobolev type equations were considered in [16], and the proposed methods
[17] were used to study various problems (see, for example, [18, 19, 20]).

In order to solve applied problems, sometimes it is necessary to consider situations,
when some of the conditions on the desired vector function are given at the initial moment
of time, while the remaining conditions, due to the features of the simulated process, are
given at the final moment of time. In this case, it is adequate to consider the initial-
final value conditions [21| for Leontief type systems. Let us consider the initial-final value
problem in the following form:

Py (u(0) —ug) =0, Ppin(uw(T) —ur) =0 (2)

where P,, Py, are matrices to set conditions at the initial and final moments of time.
Note that earlier the solvability of initial-final value problems for non-stationary Sobolev
type equations was investigated when solving an optimal control problem of solutions to
such problems (see, for example, |22, 23|). The main purpose of this article is to solve
initial-final value problem (2) for equation (1), and apply the obtained theoretical results
to the study of the initial-final value problem for the non-stationary Leontief model [2].

The article besides the introduction and bibliography contains three parts. In the first
part, we give an information on the flows of solving matrices, as well as the solution to the
Showalter — Sidorov and Cauchy problems for a non-stationary Leontief type system. In
the second part, the initial-final value problem is described and its solution is constructed
using flows of matrices. In the third part, dynamic balance Leontief model is investigated
in the non-stationary case with the initial-final value condition.

1. Solvability of Initial Problems for Non-Stationary Leontief Type
Systems

Here and below we denote a set of matrices of order n x m by a symbol M,,,,. Let
L, M € M,, be square matrices of order n. Following by [7, 13], we call sets p"(M) =
{u € C: det(uL — M) # 0} and o%(M) = C\ p“(M) an L-resolvent set and an L-
spectrum of the matrix M correspondingly. It is easy to see |7, 13] that is p*(M) = @ or
an L-spectrum of matrix M consists a finite number of points. Additionally we note that
sets p(M) and o%(M) don’t change with the transition to the other basis.

For a complex variable y1 € C we define matrix-valued functions (uL — M)~} RL(M) =
(uL—M)"'L and L} (M) = L(uL — M)~" with a domain set p”(M). These matrix-valued
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functions we call an L-resolvent, a right L-resolvent and a left L-resolvent of the matrix
M correspondingly. Also by the results of |7, 13] the L-resolvent, the left L-resolvent and
the right L-resolvent of the matrix M are holomorphic in domain p*(M).

Definition 1. A matrix M is called an L-regularif p* (M) # 0 and it’s called (L, p)-regular
if, in addition, oo is a polar of order p of the function (uL — M)

Remark 1. If infinity is a removable singular point of the L-resolvent of the matrix M
then we set p = 0. Also we note that for square matrices the parameter p can’t be more
than the dimension of space n.

Remark 2. The term the "L-regular matrix M" is equivalent to a "regular band of
matrices uL — M" by K. Weierstrass [24]. Also the relatively p-regular matrices (p € Ny)
is a particular case of relatively p-bounded operators from Sobolev type theory |7, 13].

We choose in complex plane C a closed loop. This loop bound a part of the plane,
which consist the relatively spectrum o*(M) of the matrix M. The next integrals

P e [ RO aa Q= o5 [ riand, (3)

27 2
¥ v

have meaning as integrals of holomorphic functions by a closed loop. If the matrix M is
an (L, p)-regular (p € Ny) then the matrices P and @) are projectors |7, 13].

Let the restriction of the matrix L to ker P and im P be denoted by Ly and I,
correspondingly. By the same way we denote the restriction of the matrix M to ker P
and im P by M, and M;.

Lemma 1. If a matriz M is an (L, p)-reqular (p € Ny) then there exists inverse matrices
Lyt and My'.

There is the existence of matrices H = My ' Lo and S = L;'M; by Lemma 1.
On the interval J C R we consider the Cauchy problem

ulte) =uy  (tg €3) (4)
for the homogeneous non-stationary matrix equation

Lu(t) = a(t)Mu(t), (5)
where a scalar function a : J — R, will be defined further.

Definition 2. A vector-function u € C'(J;R") is called a solution of equation (5) if it
satisfies to this equation on J. The solution of equation (5) is called a solution of a Cauchy
problem (4), (5) if, in addition, it satisfies to the condition (4).

Definition 3. A two-parameter family U(-, ) : R x R — M, is called a degenerate flow
of solving matrices (or shortly adegenerate resolving flow) for equation (5) if it satisfies to
the next conditions

(i) U(t,t) = P;
(i) U(t, s)U(s,7) = U(t, 7);
(iii) if for an arbitrary uy € R™ a vector-function u(t) = U(t,to)ug is a solution

of equation (5) (by the Definition 2).
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Degenerate flow of matrices is called analytic if its matrices admit analytic extension
to a hole complex plane C with retaining the properties (i) and (ii) from Definition 3.

Since the matrices are a finite dimensional analogue of the bounded operators (see
Remark 2) then by virtue [17]| the next statement is true.

Theorem 1. If M is an (L, p)-reqular matriz (p € Ng) and function a € C(R;R,) then
the family {U(t,s) € M,x,, : t,s € R} with the matrices

21
5

Ult,s) = —— / RE(M) exp (M f a(g)dg) du,  s<t, (6)

is a analytical degenerate resolving flow of matrices for equation (5).

Remark 3. The matrices (6) can be construct by using of a Hille — Wider — Post
approximation [25].

Consider the Showalter — Sidorov problem
P(u(to) — uo) =0 (7)
for the non-stationary nonhomogeneous matrix equation
Lu(t) = a(t)Mu(t) + f (1) (8)

with function f :J — R". Here and below we denote (E, — Q)f(t) = f°(t), where E,, is
an identity matrix of order n.

Definition 4. The solution of equation (8) is called a solution of the Showalter — Sidorov
problem (7), (8) if in addition it satisfies to the condition (7).

Theorem 2. Let to, T € J, M is a (L,p)-reqular matriz (p € Ny) and function
a € CP([ty, T);Ry). Then for an arbitrary function f : [to,T] — R", such that
Qf € CY[ty, T];im Q) and f° € CP*([ty, T|; ker Q), and for an arbitrary initial value
ug € R™ there is a unique solution u € C([ty, T|; R™) of the Showalter — Sidorov problem
(7) for equation (8), witch has the form

t

u(t) = U(t, to) Puo + / U(t,s)Ly'Qf(s)ds — > H'My ' (E, — Q) (ﬁ%) % 9)

to

q
ﬁ@ in the last summand means applying q times of this operator.
a

If additionally the initial data satisfies to the condition

where a symbol

(En—P)ug=—Y H'M;"(E, - Q) (ﬁ%) %

t=to

then the function (13) is a unique solution of the Cauchy problem (4) for equation (8).
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2. Solvability of the Initial-Final Value Problems for the Non-
Stationary Leontief Type Systems

Let L, M € M, «, be square matrices od order n, such us det L = 0 and M is an
(L, p)-regular matrix (p € Np). In order to state of the initial-final problem consider a
condition
o"(M) =cl(M)Uok, (M), tme of(M)Naok, (M)=0
in fin ’ Pl in fin )
witch automatically satisfies for Leontief type system. Then there are exist the closed loops
Yin, Yfin C C, witch bound these components of relatively spectrum, i.e. there are exist

Diy, Dgin, C C, such that
Yin = 8Dm, Yfin = anm, Dm D) O'Z[;AL(M), Dfm D) UJIFm(M)

By analogy with (3) we define the next spectral projectors

P, = % Ry (M)dp and Py = % / R (M)dy. (10)
Yin Yfin
Finally, consider the initial-final value problem
Py (u(0) —ug) =0, Prin(uw(T) —ur) =0 (11)
for the non-stationary Leontief type system
Lu(t) = a(t)Mu(t) + f(t) (12)

with function f : [0, 7] — R", witch will be define later.

Definition 5. The solution of equation (12) is called a solution of initial-final value
problem (11), (12) if in addition it satisfies to the condition (11).

Theorem 3. Let M is a (L, p)-reqular matriz (p € Ny) and function a € CPT1([0,T]; R,).
Then for any function f : [0,T] — R", such that Qf € CY([0,T];im Q) and f° €
CPTH([0, T]; ker Q), and for an arbitrary values ug, up € R™ there is exist a unique solution
ue CY[0, T);R"™) of the initial-final value problem (11) for equation (12), which has the

form
R 1 d\"f(t) |
u(t) = —;H My YE, - Q) (@@> ) + U(t, to) Pinuo+
t T
+/U(t, s)LllQinf(s)ds+U(t,T)meuT—/U(t, $)LT Qi f(s)ds, (13)

1 d\*
where the symbol ((—t) %> in the first summand means applying q times of this operator
a

and by the analogy with (10) the matrices Qi and Qi are given by the formulas

1 1
Qin = 5— [ Li(M)dp, Qpin=5— [ Li(M)dp.

21 271
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Proof. Let us act on the system (12) sequentially with matrices E, — Q, Qi and Qs
and reduce it to a system of the form

Hu® = a(t)u® + My fO(t), (14)

After that, it remains to be noted that by virtue of the classical results on the solvability
of systems the first term of the solution (13) is the solution (14), the second and third

terms of this solution constitute the solution (15) and the last two terms from solution

(13) resolve (16). 5

Remark 4. When considering a multipoint initial-final value problem |26, 22| for Leontief
type systems (see Remark 1), a natural restriction on the number of conditions m in
the multipoint initial-final value problem is satisfied. Namely, because of the finiteness of
the space must be satisfied the condition

m < n — dim ker P.

3. Non-Stationary Leontief Balance Model with the Initial-Final
Value Condition

A dynamic balance model of the form (12) is considered in [2| with matrices L and
M of the form

71 21 3 -1 -1l

20 20 20 4 5 20

| 1 103 s and Mo | =7 2 =3
00 200 2% 35 5

0 0 0 -4 2 B

15 15 15

Using the equation (12) with these matrices, the relationships between the three branches
of the economy are described: agriculture, industry and household. The third line in the
matrix L is zero, since the labor can not be stored. Thus, we consider a non-stationary
system of the form

( %ul(t) + %m(t) + %ug(t) = a(t)( Zul(t) - ém(t) — %Us(ﬂ) +f1(b),
5800+ gonta(®) + ia(t) = a6~ () + o0alt) - Jual0)) 4400, (17
\ 0 =a(t) (—%ul(t) - %UQ(t) + %u;g(t)) ().

In order to apply the above results, we firstly find

—43295u% + 99225 — 21 744
140000
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and the L-spectrum of matrix M consists of two points o”(M) = {0,245419; 2, 046416} .
The L-resolvents of matrix M has the form

)
(L — M)~ = .
3(—43295u2 + 99 2251, — 21 744)

4(9760 — 102691)  280(55u+ 74)  3(—14693u2 + 13181 + 13 040)
56(141p+604)  280(151 — 175u)  42(—20342 + 6594 + 1208)
32(538 —357u)  560(23 —5u)  3(5033u2 — 17423 + 11 632)

So we can conclude that p = 0 and the matrix M is (L, 0)-regular. If p = 0 then we get
0,9306
that ker P = ker L = span 0, 1800 . Denote this vector by .
—0, 3188

Since dim(ker P)=1 then by Remark 4 for the Leontief balance model in the multipoint
initial-final value condition [26, 22| we can consider only m < 2, i.e. initial-final value
problem.

Denote by 1,92 € coker L vectors, which are corresponding to the points of the
relative spectrum ol(M) = {0,245419;2,046416}. We can do that because of the fact
that set ol (M) doesn’t change with the transition to the other basis. Let’s move to the
new basis {9, 1,90} Let the initial condition be given on the vector ¢q, and the final
condition is given on . Then, in this new basis, the solution of (17) with an initial-finite
condition (11) by virtue of Theorem 3 has the form

t

ult) = —% (M) + Ut o) o) + [ UG )L (G0 s o

to

U T) (ur, o) 0 — / Ut )L (f(5), 02)ds 0.
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PEIIIEHNE HAYAJIbHO-KOHEYHOII 3A AU
OJ1d HECTAIITMOHAPHOII CUCTEMbBI
JIEOHTBEBCKOI'O TUIIA

M. A. Cazadeesa, A. A. Cmenuna

CraTbs MOCBsIIIIEHA TOCTPOEHUIO PEIleHUs] HaYaIbHO-KOHEYHON 3324 JIJIsl HeCTallu-
OHAPHOW CHUCTEMBI JICOHTHEBCKOTO THIA. TaKhue CUCTEMbl BO3ZHUKAIOT IPU KCIIOJH30BAHUU
JIMHAMAYECKUX OAJAHCOBBIX MOJesel 9KOHOMUKU. OTIMINTeTbHON YepTOil CHCTeM JIeOH-
THEBCKOI'O THUIIA ABJIAETCH BBIPOXKJIEHHOCTb MATPUIIBI IIPU IIPOU3BOJIHON 110 BpeMeHH, 4TO
00yCJIOBJIEHO T€M, YTO HEKOTOPBIE BUJIBI PECYPCOB SKOHOMUIECKUX CACTEM HEBO3MOXKHO 3a-
mactu. K ToMy 2Ke, TuHaMudecKre 6aJIaHCOBbIE CUCTEMbI SKOHOMUKHU YACTO OIMUCHIBAIOTCS C
ITOMOIIBI0 KO MDUINEHTOB 3aBUCSIIIUX OT BPEMEHU. B JIAHHOI cTaThe JIjisi IOCTPOEHUS pe-
IIEHII TAKUX CHCTEM HCIOJIL3YIOTCHA Pa3pelnaoline IoToOKn Marpui. Kpome Toro, BMecTo
CTaHJAPTHOIO HA4YaJIbHOI'O YCJIOBUS HCIIOJIb3yeTCd HadaJIbHO-KOHEYHOE YCJIOBHE, KOTOpOoe
JJ151 9KOHOMUYECKHUX CUCTEeM MOXKeT MHTePIPeTUPOBaThCA KaK y4deT IIoKa3aTesell He TOJIbKO
B HAYAJbHBI MOMEHT BPEMEHU, HO U TIOKa3aTeseil, KOTOPbIE OY/IyT JIOCTUTHYTHI B KOHEYHBIH
MOMEHT BPEMEHH.

Karouesvie caosa: ypasrernus cobonesckozo muna; cnekmpaibhoili nPOeKmop; omHoCU-

MEADBHO PESYAAPHDIE MATNPUUDBL, PA3PEWATOWUE NLOTNOKYU MAMPUY,.
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