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THE HOFF EQUATIONS ON A GRAPH WITH
THE MULTIPOINT INITIAL-FINAL VALUE CONDITION
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!South Ural State University, Chelyabinsk, Russian Federation

We consider the Hoff equations on a graph. For these equations, we prove the unique
solvability of the multipoint initial-final value problem, and construct an analytical solution.
As an example, we consider the Hoff equations on a double-edge graph with a three-point
initial-final value condition. The article, in addition to the introduction and bibliography,
contains two parts. The first part presents theoretical information about Sobolev type
equations, as well as construction of a solution to an abstract Sobolev type equation with the
multipoint initial-final value condition. In the second part, we apply the obtained abstract
results to a specific Hoff model.

Keywords: Sobolev type equations; relatively bounded operator; multipoint initial-final

value condition; Hoff model on a graph.

Introduction

Let G = G(*0, €) be a finite connected oriented graph [1], where U = {V;} is the set
of vertices, and & = {E;} is the set of edges such that each edge E; has length [; € R
and cross-sectional area d; € Ry. At vertices U of the graph G, define the conditions of
"continuity" and "flow balance", respectively:

uj(()?t) = uh(ov t) = um(lmvt) = un(lm t)7
Ej, E, € Ea(Vk), E,. E, € Ew(vk),

S dju(0,t) = > dytne(ln,t) =0, (2)

j:E]'EEO‘(Vk) Tl:EnGEw(Vk)

where E*@)(V},) is the set of edges that are incident to the vertex Vi, t € R,. If the
graph consists of the single non-cyclic edge (i.e., the graph has only two vertices), then
condition (1) is absent, and condition (2) is equal to the Neumann condition. If the edge is
cyclic (i.e., the graph has the single vertex), then conditions (1), (2) are equal to matched
conditions. Also, note that in the context of conditions (1), (2), "to be absent" does not
mean "to be zero". For example, if all edges are oriented such that the vertex Vj is a
"gutter" (i.e., there is no edge such that Vj is a beginning of the edge), then the first two
equalities in (1) and decreasing one in (2) are "absent", and are not zero.
On the graph G with conditions (1), (2), consider the linear Hoff model |2]

(1)

)\jujt + ujtacac = OZjUj + f, (3)

which simulates the dynamics of buckling of I-beams in the structure under high
temperature conditions. Here u; = u;(z,t), (z,t) € (a,b) x R4, characterizes the deviation
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of the j-th beam from the equilibrium position; the parameters A\; € R;, o; € R
characterize the material properties of this beam, f; = f;(x,t) corresponds to the external
load on the j-th beam.
In the corresponding spaces, problem (1) — (3) is reduced to the linear Sobolev type
equation [3, 4]
Li = Mu+ f, (4)

for which we define the multipoint initial-final value condition 5]

PO(U (t> - 50) =0, pr(n(Tr) - Sr) =0, r=1p, (5>

where P, are relatively spectral projectors, which we will define later; 7. € R, (1,1 < 7,.),
r = 1,p. Let us give some explanations. Initial-final value problem (5) describes the
following situation. Suppose that some object, for example, the structure of I-beams,
moves in near-Earth space. At different times, only some projections of this object can be
observed from the surface of the Earth. We want these projections to coincide with the
given when observing. The mathematical model of this situation is defined by the Hoff
equations given on a geometric graph and supplemented by an initial-final value condition.

Note that various questions for the Hoff equation in a bounded domain were studied
by various researchers (see the reviews in |6, 7]). On a graph, the Hoff equation was first
investigated by G.A. Sviridyuk and V.V. Shemetova [8]. As a result, the simplicity of
the phase space of the Cauchy problem for the Hoff equations on a graph is proved. The
inverse problem for the Hoff equations on a graph was solved in [9]. Later, the paper [10]
establishes the conditions of stability and asymptotic stability of the zero solution to the
Cauchy problem of the Hoff equations on a graph. The optimal control of the solutions to
the initial-final value problem for the Hoff equation was investigated in [3].

The goal of the paper is to prove the unique solvability of multipoint initial-final value
problem (5) for problem (1) — (3).

1. Generalized Splitting Theorem

Let 4 and § be Banach spaces, the operators L € L(;F) (i.e., L is linear and
continuous) and M € CI(L; F) (i.e., M is linear, closed, and densely defined). In addition,
suppose that the operator M is (L, p)-bounded, p € {0} UN (see [11] for terminology and
results), then there exist degenerate analytic groups of resolving operators

1 1

Ut = 5 VRﬁ(M)e“tdu and F'= %fyLﬁ(M)e“tdu
defined on the spaces { and §, respectively. Moreover, UY = P and F° = () are projectors.
Here v is a contour bounding the domain D containing the L-spectrum ol (M) of the
operator M; R/ (M) = (uL — M)~'L is the right, and L, (M) = L(uL — M)~" is the left
L-resolvents of the operator M. For degenerate analytic group, the terms of the kernel
ker U = ker P = ker U? for any t € R and the image imU- = imP = imU" for any t € R
are correct. Let 4° = ker U+, U = imU", and §° = ker F*, ' = im[", then 4’ @' = U and
FP@F! = F. Denote by Ly, (My,) the restriction of the operator L (M) on U* (domM NUF),
kE=0,1.
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Theorem 1. [11] (Splitting theorem). Let the operator M be (L, p)-bounded, p € {0} UN.
Then (i) the operators Ly, € L(UW*; %), k=0, 1;

(ii) the operators My € CI(U%; %), M, € L(UY;Fh);

(iii) there exist the operators L7 € L(F';4Y) and Myt € L(F°;U0).

Suppose that H = My 'Ly € L(U°), S = LM, € L£L(U'). Consider the following
condition:

ol(M) = U O'JL(M), m € N, moreover, O']L(M) # (), there exists
=0

a closed countour ; C € bounding the domain D; D o (M)
such that D; Nof(M) =0, Dy N D, =0 for all j, k,l=T1,m,k # 1.

Then, the following theorem is correct.

Theorem 2. |5, 6] Suppose that the operator M is (L,p)-bounded, p € {0} UN, and
condition (A) holds. Then

(i) there exist the degenerate analytic groups

1
t L 1t : .
Uj = o Ry (M)e"du,j = 1,m;
e

(i) U'U; = UsU* = U;’Lt foralls, t eR, j=1,m;
(iii) ULUF = UUL = O for all s, t e R, k, I =1,m, k # .

Suppose that Uf = U' — > U}, t € R.
k=1

Remark 1. Consider the units P; = U?, j = 0,m, of the constructed (according
to condition (A)) degenerate analytic groups {U; : t € R}, j = 0,m. Obviously,
PP, =PFP;P=P;, j = 0,m, and P,P, = PP, = O, k, |l = 0,m, k # [. By analogy,
we can construct the projectors Q; € L(F), 7 = 0,m, (see |9] for more details) such that

QQ;=Q;Q=Q;, j =0,m; QpQi=QQr =0, k, 1 =0,m, k #1.

The projectors P;, Q;, j = 0,m, are called relatively spectral projectors.
Consider the subspaces 4 = imP;, § = im@;, j = 0, m. By construction,

m m

4 =Puv and § = PH3Y.

J=0 J=0

Denote by Ly; the restriction of the operator L on 4%, j = 0,m, and denote by M; the
restriction of the operator M on domMNUY | j =0, m. It is easy to see that Pjp € dom M,
if ¢ € dom M. Therefore, the domain dom M;; = dom M NUY is dense in U, j =0, m.

Theorem 3. [5, 6]. (Generalized splitting theorem). Suppose that the operators
Le L(F) and M € CI(;F), and the operator M is (L,p)-bounded, p € {0} UN,
moreover, condition (A) holds. Then

(i) the operators Ly; € L(UY;FY), My; € LU FY), j=0,m;

(ii) there exist the operators Ly, € L(F;4Y), j =0,m.
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Suppose that condition (A) holds. Fix 7; € R, (; < 7j41), the vectors u; € 8, j =0, m,
and the vector-function f € C*(R;F). Consider the linear inhomogeneous Sobolev type
equation

Li = Mu+ f. (6)
A vector-function v € C*°(R; L) that satisfies equation (6) is called a solution to equation
(6). A solution u = u(t), t € R, to equation (6) that satisfies the conditions

Pj(u(rj) —u;) =0, j=0,m, (7)
is called a solution to the multipoint initial-final value problem for equation (6).

Theorem 4. [9] Suppose that the operator M is (L, p)-bounded, p € {0}UN, and condition
(A) holds. Then for any f € C®(R;§), u; € U, j =0, m, there exists the unique solution
to problem (6), (7), moreover, the solution takes the form

u(t) = — io HIMG (L= Q) f D)+ ) U "uj+ > / Uy " Ly Qif (s)ds. (8)
= j=0 §=0 75

2. Linear Hoff Model on a Graph

Remind that G = G(U, €) is a finite connected oriented graph, where U = {V}} is
the set of vertices, and € = {E}} is the set of edges, moreover, each edge E; has length
l; € Ry and cross-sectional area d; € R. At the vertices U of the graph G, define the

conditions of "continuity"
u;(0,t) = up(0,t) = up (I, t) = up(ln, t), )
(9
E;, Ey € E¥(V), En, E, € E(Vy),

and "flow balance"

> djua(0.t) = > duting(ln,t) =0, (10)

J:E;€E*(Vy) n:E,e B« (V)

where E““)(V},) is the set of edges that are incident to the vertex Vj, t € Ry. Supply
conditions (9), (10) with the linear Hoff equations

/\jth + ujtxx = ozjuj + f (11)

Consider problem (9) — (11). Based on the results of [3, 4], consider the Hilbert space
Ly(G) = {9 = (01,92, .-, 9, ---) : gj € L2(0,1;)} with the scalar product

L

(g.hy=">_ dj/gjhjdx,

Ejee 0

and the Banach space 4 = {z = (uy, ug, ..., uj, ...) : u; € W5 (0,1;) and (2) holds} with the

norm
lj

Julli = Y d; f u + e

Ejee 0
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According to the Sobolev embedding theorems, the functions that belongs to Wy (0,1;) are
absolutely continuous. Therefore, the space 4 is defined correctly.
Denote by § the conjugate space to 4 with respect to the duality (-,-). The formula

(Au,v) Zd / UjpVje + bjujv;)de,  u,v e il

defines the operator A : 4l — §, where b; € Ry are arbitrary constants. From the results
of [3, 4], it follows that A € L(i;§), moreover, the spectrum o(A) is positive, discrete,
finite-multiple, and converges only to +oc0.

Construct the operators

l.7
(Lu,v) Zd (Aj + b)) /u — (Au, vy, (12)
0

l .

(Mu,v) Z&] /ujvjdx. (13)
0
By construction, L, M € L(L;F).
Lemma 4. 3, 4] For any o # 0, j € N, such that ; have the same sign, the operator
M s (L,0)-bounded, and the relative spectrum ot (M) of the operator M is real, discrete,
converges to 0, and takes the form

% ..
ol(M) = {uzj = ﬁ 1,5 € N\{\; — i :0}}, v; € o(A).
J

-

We are interested in the solutions to problem (9) — (11) satisfying multipoint initial-
final value conditions (5). The relative spectrum o”(M) of the operator M satisfies
condition (A). Therefore, in (5), the projectors P, = > (-, ¢i)p:;, k = 0,1, and ¢;

1iij €0
are the eigenfunctions of the operator A that form a basis of the space . Consequently,
the multipoint initial-final value conditions (5) take the form

> A@0) —uo), )i = > {(u(m) —u), o) i =0, k=11 (14)

i:/J,»;jGO’é(M) ’i:uijEU]%(M)

moreover,

U= > ¢ 0)pn k=T]1 (15)
ipig€af (M)
Similar to the scheme used in [5, 6], the following theorem is correct.
Theorem 7. For any a; # 0, j € N, such that o have the same sign, 7, > 0,
up € Y, k = 0,1, multipoint initial-final value problem (9), (10), (14) for equation (11) has
the unique solution u € C*((a,b); ), moreover, the solution takes the form

p

l l t
u(t) = = (Mg Lo)" Mg (T = Q) fO(t) + > U i+ / ULy Qi f (s)ds. (16)
i=0 i=0 v Ti

q=0
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Example 1.
Let Gy be a graph consisting of two edges that connect three vertices and have the
common beginning, lengths /; and /5, and cross-sectional areas d; = dy = 1, see Fig. 1.

Fig. 1. Graph Gy

On the graph Gy, based on the results of [12], we have that the Sturm-Liouville
problem

(X +AX, =0,
XQ” + )\XQ - 0,
X1(0) = X(0),

Xi(h) =0,
x5(l2) =0,

[ X1(0) + X3(0) =0

2
has eigenvalues A\, = ( l Tl ) , k = {0} UN, which correspond to the following
1+l

eigenfunctions:

k k
XF*(z) = (XF(x), X5(2)) = (Cl cos Lx,Cg cos — x) , k={0}UN.
ll +l2 ll +l2

Moreover, taking into account the normalization condition, we have that

2
02 -
Tkl kl 7rkl Tkl
\/(l1 +12)(1 + ctg? 7o + = g, t 2 S 7 iz (gl — 3))’
if sin gﬂg # 0, and otherwise, i.e. for sin lﬁlllg = 0, we obtain that

2

Cl - .

I+ 1y

Therefore, if the edge lengths are [y = [ = 7, then the eigenfunctions corresponding

to the eigenvalues take the form
B \F \F
- 7‘(" T ’
1 1 1
= \/isinz,—\/isinf . A =2,
s 2 T 2 4
1 1
= (\/icosx, \/jcosx> . AN =1,
7r 7r
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\/ism \/781n3—x , )\3:9,
2 4
1 1
= (\/jcos 2z, \/icos 2x> . A =5,
T T

On the graph Gq, consider the linearized Hoff equations
Aujt‘ + Ujtze = QU , J=12
with the conditions of "continuity" and "flow balance"

u1(0,1) = uz(0, 1),
ulx(lla t) = 07
u2x(l27 ) 07

Supply the problem with the three-point initial-final value condition

Yo (@O~ = Y () —w), @) @i =

ip€ol (M) i €0l (M)

- Z ((u(r2) — u2), wi) i = 0,

i, €0l (M)

where

)
4oy 4oy

LMY= = —2 . i=13%=

oy (M) =qui=y—3i=13 IN—1'4r—9[’

(07 . (67 (67 (07
J%(M):{IU/Z:)\_)\Z :2:07274}:{X7ﬁ7)\_4}'

According to Theorem 1, the solution takes the form

u(t) = Z e ug, 03) L) it
pi€ol (M)

+ e Ty, ) (@) @i + Z U g, 1) )i
HkEU%(N[) IU,ZEO'%(]\/[)

The work was supported by Act 211 Government of the Russian Federation, contract
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YPABHEHNA XOOPDA HA I'PAOE C MHOI'OTOYEYHDBIM
HAYAJIbHO-KOHEYHbBIM YCJIOBUEM

C. A. Baepebuna, E. A. Coadamosa

B crarbe paccmarpuBatoTcs ypapHerus Xodda Ha rpade. s 5Tux ypaBHeHU J0Ka-
3aHa OJITHO3HAYHAS PA3PENINMOCTb MHOIOTOYEYHON HaYa IbHO-KOHEYHO! 3a/1a4U 1 TIOCTPOEHO
aHAJUTUIECKOe peleHne. B KadecrBe npumepa paccMoTpeHbl ypaBHeHusi Xodda Ha IByX-
pebepHOM rpade ¢ TPEXTOUEUIHBIM HAYAJIbHO-KOHETHBIM yestoBueM. CTaThs, KpOMe BBEIeHUS
U CIIACKA JINTEPATYPHI, COIEPKUT JIBe YaCTH. B 1mepBoil 4acTu MPUBEIEHBI TEOPETUIECKUE
CBeJIeHNsT 00 ypPaBHEHUSIX CODOJIEBCKOTO THUIIA, & TaKKe IOCTPOEHO PelleHre adCTPAKTHOTO
ypaBHEHUs COOOJIEBCKOT'O THUIA ¢ MHOTOTOYEYHBIM HAYAJLHO-KOHEYIHBIM yCJIOBUEM. Bo BTO-
Ppoil 1mojryueHHbIe abCTPAKTHBIE PE3YJIbTATHI IIPUMEHSFOTCS K KOHKPETHOI Mozen Xodda.

Karouesvie crosa: ypasrenus coboaesckozo muna; 0mHocumesdbHo 02PAHUYEHHBLT one-

DPAMOP; MHOLOMOYEUHOE HAYANDHO-KOHEYHOE Ycaosue; modeav Xopga na epage.
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