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Identification problem for possibly degenerate evolution equations on Banach spaces

are considered. Such inverse problems are changed to direct differential problem, whose
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Introduction

In this preliminary section, motivation for development shall be described. Let us
consider the simplest case of evolution problem described by

dy

dt
= Ay + f(t)z, 0 ≤ t ≤ τ, (1)

y(0) = y0 ∈ D(A). (2)

Our goal is to identify the solution-pair (y, f), where y is the solution to (1), (2) and
f ∈ C([0, τ ],C), under the additional information

Φ[y(t)] = g(t), 0 ≤ t ≤ τ, (3)

where Φ ∈ X∗, the dual space of X, and g ∈ C([0, τ ],C).
Usually, such a problem is reduced to a fixed point problem in a natural way.
If A generates an analytic semigroup on X, let T (t) be a such semigroup. Then

necessarily

y(t) = T (t)y0 +

∫ t

0

T (t− s)zf(s)ds,

so that formally in a first step,

Φ[y(t)] = Φ[T (t)y0] + Φ[

∫ t

0

T (t− s)zf(s)ds]

implies, taking into account information (3),

d

dt
Φ[y(t)] = g′(t) =

dg

dt
(t) =

d

dt
Φ[T (t)y0] +

d

dt
Φ[

∫ t

0

T (t− s)zf(s)ds] =

= Φ[AT (t)y0] + f(t)Φ[z] + Φ

∫ t

0

∂

∂t
T (t− s)zf(s)ds. (4)

Suppose Φ[z] 6= 0. Then (4) implies that f(t) must satisfy the integral equation

f(t) =
1

Φ[z]
{g′(t)− Φ[AT (t)y0]− Φ

∫ t

0

∂

∂t
T (t− s)zf(s)ds}. (5)
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Assuming that z belongs to the real interpolation space (X,D(A))θ,∞ it is not a difficult
task to show that the integral equation (5) admits a unique solution f ∈ C([0, τ ];C). After
this step, well known results on solvability of Cauchy problem related to

y′ = Ay + F (t), 0 ≤ t ≤ τ,

apply, guaranteeing existence and uniqueness of the solution pair (y, f). In last times, a
different strategy was proposed by AL Horani and Favini [1]–[3]. It is developed on the
ground of the perturbation of generators. In fact, apply Φ to equation (1). Taking into
account information (3), we get

g′(t) = Φ[Ay(t)] + f(t)Φ[z]

provided that g ∈ C1([0, τ ];C). Assumption Φ[z] 6= 0 allows to deduce that necessarily

f(t) = Φ[z]−1{g′(t)− Φ[Ay(t)]}.

Substituting such function in (1), we get that y satisfies the direct problem

y′(t) = Ay(t)−
1

Φ[z]
Φ[Ay(t)]z +

g′

Φ[z]
z

i.e.
y′(t) = (A+B)y(t) + g′(t)Φ[z]−1z

where B is the linear operator from D(B) := D(A) into X

By = −
1

Φ[z]
Φ[Ay]z

One observes that B is compact from D(B) into X and thus a well known result from
Desh and Schappeber guarantees that A+B with D(A+B) = D(A) generates an analytic
semigroup on X.

More precisely, we use the methods of Favini, Lorenzi, Tanabe [8] and observe that a
change of variable y = ektv, where k > 0, transforms the Cauchy problem

y′ = (A +B)y +
g′(t)

Φ[z]
z, 0 ≤ t ≤ τ,

y(0) = y0

into the problem

v′ = (A+B − k)v + e−ktg
′(t)

Φ[z]
z, (6)

v(0) = y0

and we know that for k large enough A + B − k is closed and it has a bounded
inverse. It follows that if z ∈ (X,D(A))θ,∞ = (X,D(A + B))θ,∞, g ∈ C1([0, τ ];C),

(A+B)y0 = Ay0 −
Φ[Ay0]
Φ[z]

z ∈ (X,D(A)θ,∞), i.e, Ay0 ∈ (X,D(A))θ,∞, then there exists a

unique solution v to (6) such that

v′ − e−ktg
′(t)

Φ[z]
z = (A+B − k)v ∈ C

θ([0, τ ];X) ∩B([0, τ ]; (X,D(A))θ,∞).
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Here B([0, τ ];X) denotes the space of all bounded functions from [0, τ ] into the Banach
space X.

This implies that

Av = A(A+B − k)−1(A+B − k)v ∈ Cθ([0, τ ];X),

v′ ∈ B ([0, τ ]; (X,D(A))θ,∞) .

It is also easy to verify that this implies y ∈ C1([0, τ ];X),
µ′ ∈ B([0, r]; (X,D(A))θ,∞), Ay ∈ Cθ([0, τ ];X), cfr. Al Horani, Favini [1]–[2]. More general
problems are treated in Favini, Lorenzi, Tanabe [8], [9], [10].

This perturbation approach applies also when A generates a C0-semigroup in X. If
B ∈ L(D(A);X) and range B is contained in the Favard space

F1 = {x ∈ X : sup
t>t0

‖tA(t− A)−1x‖ < ∞}

for some t0 > 0 (in particular, if X is reflexive, it is shown that F1 = D(A), see Engel-
Nagel monograph) then A+B generates a C0-semigroup in X, cfr. Engel-Nagel [Semigroup
theory, p.204]. As a consequence, if A generates a C0-semigroup in X, problem (1)-(3)
admits a unique strict solution

(y, f) ∈ {C([0, τ ];D(A)) ∩ C1([0, τ ];X)} × C([0, τ ];C)

provided that z ∈ F1, Φ ∈ X∗,Φ[z] 6= 0, y0 ∈ D(A), g ∈ W 2,1([0, τ ];C), g(0) = Φ[y0]. See
Al Horani – Favini[3].

To conclude, one takes into account the direct results from Sinestra. These are the
main results on the regular case and many examples of application to PDE’s could be
described. See the final section in a related paper.

In this paper the case with possible degenerations in which the term dy
dt

is multiplied
by an operator M , possibly noninvertible, is considered and the additional interaction
includes functionals Φi, i = 1..N , i.e.

d

dt
(My)(t) = L1y(t) +

N∑

i=1

hi(t)zi + F (t), 0 ≤ t ≤ τ, (7)

(My)(0) = x0 = My0 (8)

Φi[y(t)] = gi(t), i = 1..N, (see [7]), (9)

where the closed linear operators L,M satisfy the weak parabolic estimate

‖M(zM − L1)
−1‖L(X) ≤ C(1 + |z|)−β, (10)

for all z in the region

Σα := {z ∈ C;Rez ≥ −C(1 + |lnz|)α}, C > 0, 0 < β ≤ α ≤ 1. (11)

Examples of operators L satisfying resolvent estimates like

‖(z − L)−1‖L(X) ≤ C(1 + |z|)−β,
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∀z, Rez ≥ −C(1 + |lnz|)α, 0 < β ≤ α ≤ 1, can be found, for instance in Krein’s
monograph, Chapter 1, section 8 (Evolution equations well posed according to Shilov).
As a simple example, whose main idea comes from professor Yuli Eidelman (Tel Aviv),
take X = L2(R) and L : X → X, D(L) = H3(R), Lu = u′′ − u′′′ + γu, u ∈ H3(R), γ < 0.
By using Fourier transform, it is easy to verify that the previous estimates hold with
α = β = 1/2. As another simple example, take m(x) ≥ 0 a measurable function on [0, 1],
M the multiplication operator by m(x) in L2(0, 1), Lu = u′′, D(L) = H1

0 (0, 1) ∩H2(0, 1).
Then one recognizes, see Favini and Yagi [16] that

‖(z − L)−1‖L(L2(0,1)) ≤ C(1 + |z|)−1/2

holds in a sector Rez ≥ −C(1 + |lnz|)1/2, whit C a suitable positive number. Therefore
(10) holds with α = β = 1/2.

1. Preliminaries

We need linear relations or multivalued linear operators A. Such operator acts from
X into P(X) with domain D(A) = {x ∈ X,Ax 6= ∅} which is a linear subspace of X.
Recall that

Ax+ Ay ⊂ A(x+ y), λAx ⊆ A(λx), λ ∈ C, x, y ∈ D(A)

The graph of A is G(A) = {(x, y); x ∈ D(A), y ∈ Ax} if U ∈ P (X), U ∩G(A) 6= ∅, the
restriction A|U of A to U is defined by D(A|U) = U∩D(A) and (A|U)x = Ax, x ∈ D(A|U).

The inverse A−1 of A is a m.l. operator given by

D(A−1) = R(A) = imm A

and
A−1y = {x ∈ D(A) : y ∈ Ax}.

The kernel N(A) of A is A−10 = {x ∈ D(A), 0 ∈ Ax}. If N(A) = {0}, A is said to be
injective.

If λ ∈ C, A and B are m.l. operators, then λA and AB,BA are defined in a natural
way. If U ∈ P(A) \ ∅, IU (IX = I) denotes the identity operator in U . If A,B are m.l.
operators, B ⊂ A if D(B) ⊆ D(A) and Bx = Ax for all x ∈ D(B).

If B ⊂ A and Bx = Ax ∀x ∈ D(B), one says that A is an extension of B. If A is an
extension of B, then G(B) ⊆ G(A), but the inverse does not hold. A single-valued linear
operator S is called a linear section of A if D(A) = D(S) and S ⊂ A, i.e., Sx ∈ Ax for all
x ∈ D(A).

If U, V ∈ P(X) \ ∅, the distance d(U, V ) is defined by

d(U, V ) = inf
u∈U,v∈V

‖u− v‖X .

d(x, V ) = d(V, x) is the distance from {x} to V .
If A is a m.l. in X, we define

‖Ax‖ = d(Ax, 0)

and it is easily seen that ‖Ax‖ = d(z, 0) ∀z ∈ Ax, so that ‖Ax‖ = d(Ax, 0).
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Norm ‖A‖ of a linear relation A is defined by

‖A‖ = sup
x∈D(A),‖x‖≤1

‖Ax‖.

If D(A) = X and ‖A‖ < ∞, A is said to be bounded.
Notice that ‖A‖ is not a true norm if A is not single-valued. A linear relation A is

closed if its graph is closed in X ×X. The resolvent set of A is

ρ(A) = {z ∈ C; (zI − A)−1 ∈ L(X)}.

If ρ(A) 6= ∅, then A is closed.
If A is a linear relation, A0(zI − A)−1 is the linear section of A(zI − A)−1 given by

z(zI −A)−1 − I, z ∈ ρ(A). A0 is in fact only a symbol. We shall say that A satisfies (HA)
if ρ(A) contains Σα = {z ∈ C;Re z ≥ −C(1 + |lnz|)α} for some α ∈ (0, 1], C > 0 and
∃β ∈ (0, α], C̃ > 0 such that

‖(zI − A)−1‖L(X) ≤ C̃(1 + |z|)−β,

∀z ∈ Σα.
If M,L are closed linear operators in X, D(L) ⊆ D(M), let us introduce the linear

relation A = LM−1 by

D(A) = M(D(L)), Ax = {Ly; y ∈ D(L), x = My}.

Then it is seen that (zM −L)M−1 = zI −A, z ∈ C and M(zM −L)−1 = (zI −A)−1.
Denote by ρM(L) the M-modified resolvent set of L:

ρM (L) = {z ∈ C : (zM − L)−1 ∈ L(X)}.

If M is also closed, then ρM (L) ⊆ ρ(A). Therefore if L and M are closed linear
operators in X and

Σα ∈ ρM(L) and ‖M(zM − L)−1‖L(X) ≤ C(1 + |z|)−β∀z ∈ Σα, (HM,L)

then m.l. operator A = LM−1 satisfies (HA).
If A is a m.l. operator in X, 0 ∈ ρ(A), D(A) becomes a Banach space with the norm

‖x‖D(A) = ‖Ax‖, x ∈ D(A).

We recall that if (Y, ‖ · ‖Y ) is a Banach space, C0(0,+∞; Y ) denotes the set of all
continuous Y -valued functions on (0,+∞).

Let us introduce the mean space of Lions – Peetre. Let g be a strongly measurable
function from (0,+∞) into Y and define

‖g‖L+∞

∗ (Y ) = sup
ξ∈(0,∞)

‖g(ξ)‖Y .

If γ ∈ (0, 1), S(γ,∞, X, γ − 1,∞, D(A)) = {x ∈ X, x = v0(t) + v1(t) for all t > 0,
v0 ∈ C0(0,+∞;X), v1 ∈ C0(0,+∞;D(A))} such that

‖ξγv0‖L∞(X) < +∞, ‖ξγ−1v1‖L∞(D(A)) < +∞.
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The Banach space (X,D(A))γ,∞ is defined by

(X,D(A))γ,∞ = S(γ,∞, X, γ − 1,∞, D(A)),

‖x‖(X,D(A))γ,∞ = inf{‖ξγv0‖L∞(X) + ‖ξγ−1v1‖L∞(D(A))},

where the infimum is taken on all possible representatives as indicated above.
If [0,∞) ⊆ ρ(A) and γ ∈ (0, 1), A being a linear relation in X, introduce the Banach

space Xγ
A by

Xγ
A = {x ∈ X : |x|Xγ

A
:= sup

t>0
‖tγA0(t−A)−1x‖X < ∞},

‖x‖Xγ
A
:= ‖x‖X + |x|Xγ

A

and observe that if α = β = 1, Xγ
A = (X,D(A))γ,∞ in the single-valued case. We have

(see Favaron – Favini [5], Prop. 4.3).

Proposition 1. If A is a linea relation in X satisfying (HA), then for any γ ∈ (0, 1)
Xγ

A →֒ (X,D(A))γ,∞. Moreover, if γ ∈ (1− β, 1), (X,D(A))γ,∞ →֒ Xγ+β−1
A .

Proposition 2. Let M,L1, L2 be closed linear operators in X. Let
D(L1) ⊆ D(L2), D(L1) ⊆ D(M), 0 ∈ ρ(L1) ∩ ρ(L1 + L2) and (HM,L1

), (HM,L1+L2
) hold.

Put

A0 = (L1 + L2)M
−1, A1 = L1M

−1

and assume L2|D(L1) ∈ L(D(L1);X). Then

Xγ
A1

→֒ Xγ+β−1
A0

, γ ∈ (1− β, 1).

2. Perturbation results

The following result extends a result from Lunardi [8], Proposition 2.4.1 (ii) for
α = β = 1 and M = I.

Theorem 1. Let M,L1, L2 be single-valued closed linear operators in X,
D(L1) ⊆ D(L2) ∩D(M), 0 ∈ ρ(L1) and (HM,L1

) hold, β ∈ (0, α], α ∈ (0, 1]. Moreover,
L2|D(L1) ∈ L(D(L1), Y ), where Y is a Banach space such that Y →֒ {(X,D(A1))γ,∞, Xγ

A1
},

γ ∈ (1− β, 1), A1 = L1M
−1. Then there exist C1, C2 > 0 such that

‖M(zM − (L1 + L2)
−1)‖L(X) ≤ C1(1 + |z|)−β

for all z ∈ Σα, |z| ≥ C2.

A basic role is played from lemma as follows taking into account that L1+L2 may not
having a bounded inverse even if L1 has.

Lemma 1. Suppose k > 0 suitable large so that 0 ∈ ρ(kM+L1) and 0 ∈ ρ(kM+L1+L2).
Let A1 = L1M

−1, A2 = (L1 + L2)M
−1 and assume L1 ∈ L(D(L1), X

θ
A1
), θ > 1− β. Then

for all σ ∈ (0, 1)

Xσ
A1

= Xσ
A2

= Xδ
(kM+L1+L2)M−1 .
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See Favaron, Favini, Tanabe [7]. The second basic lemma concerns existence,
uniqueness and regularity of solutions to the problem

d

dt
(My)(t) = Ly(t) +

N∑

i=1

hi(t)zi + F (t), 0 ≤ t ≤ τ, (12)

(My)(0) = My0, (13)

where the pair (M,L) satsfies

‖M(z + L)−1‖L(x) ≤ C(1 + |z|)−β, z ∈ Σα, 0 < β ≤ α ≤ 1,

cfr. Favaron, Favini, Tanabe [7] and Favaron, Favini [6].

Lemma 2. Let L,M be two closed linear single-valued operators in X such that
0 ∈ ρ(L), (HM,L) holds and 5α+2β > 6. Assume y0 ∈ D(L), (h1..hN) ∈

∏N
i=1C

σi([0, τ ];C),

z0 = Ly0 + F (0), (z0, z1..zN ) ∈
∏N

j=0 Yγj , where σi ∈ ((3 − 2α − β)/α, 1), i = 1, ..., N ,

γj ∈ (5− 3α− 2β, 1), j = 0, 1, ..., N,
∏N

j=0 Yγj ∈ (
∏N

j=0(X,D(A))γj∞,
∏N

j=1X
γj
A ),

A = LM−1. Let γ = min
j=0,1..N

γj, τ = mini=1..N{σi, χα,β,γ}, where

χα,β,γ = (α + β + γ − 2)/α.

Then for every fixed δ ∈ Iα,β,τ , with

Iα,β,γ =

{
((3− 2α− β)/α, γ], if γ ∈ ((3− 2α− β)/α, 1/2),
((3− 2α− β)/α, 1/2), if γ ∈ [1/2, 1)

problem (12) has a unique solution y ∈ Cδ([0, τ ];D(L)) satisfying y(0) = y0 and
My ∈ C1+δ([0, τ ];X) provided that F ∈ Cθ([0, τ ];X), θ ∈ [δ + (3− 2α− β)/α, 1).

3. Solution of the inverse problem

Now we handle the inverse problem (6)-(8). Applying the linear functionals Φ1..ΦN to
both the members in (6) and taking into account information (8), we obtain the following
linear system for the N unknowns h1..hN :

N∑

j=1

Φi[zj ]hj(t) =
d

dt
gi(t)− Φi[L1y(t)]− Φi[F (t)], i = 1..N, t ∈ [0, τ ].

If the square matrix of order N

U =




Φ1[z1] . . . Φ1[zN ]

ΦN [z1] . . . ΦN [zN ]




is invertible, denoting with det(U) the determinant of U , the solution (h1(t), .., hN(t)) to
the previous system is given by

hi(t) = [det(U)]−1
N∑

k=1

U(k, i){
d

dt
gk(t)− Φk[F (t)]− Φk[L1y(t)]}, i = 1, .., N,

38 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

where U(k,i) = (−1)k+idetU(k, i) ∈ C, k, i = 1, ..., N , is the cofactor of the element Φk[yi]
of U , U(k, i) being the square matrix of order N − 1 obtained from U cancelling the k-th
row and the i-th column (by convention U(1, 1) = 1 if N = 1).

Replacing these values in (6), we obtain the following initial-value problem in which
only the unknown y appears:

d

dt
(My(t)) = (L1 + L2)y(t) +

N∑

i=1

fi(t)zi + F (t), t ∈ [0, τ ], (14)

where L2 and fi, i = 1, ..., N denote respectively,

D(L2) := D(L1), L2x := −[detU ]−1

N∑

k,i=1

U(k, i)Φk[L1x]zi, t ∈ [0, τ ],

fi(t) = [det(U)]−1
N∑

k=1

U(k, i){
d

dt
gk(t)− Φk[F (t)]}, i = 1, .., N.

Now, L1 + L2 might not to be closed, as it is easy to verify from counterexamples. To
overcome this difficulty, we operate the change of variable y = ektw, k > 0 large, so that
our system reads

d

dt
(Mw(t)) = (L1 + L2)w(t)− kMw(t) +

N∑

i=1

f̃i(t)zi + F̃ (t), (15)

where (F̃ (t), f̃i(t)) = (e−ktF (t), e−ktfi(t)).
Observe that (L1 + L2 − kM)M−1 = (L1 + L2)M

−1 − kI = A0 − kI.
Moreover (cfr. Favini and Yagi [16])

kM − L1 − L2 = (kM − L)[I − (kM + L1)
−1L2]

= (kM − L)(I − L−1
1 (kML−1

1 )− 1)−1L2)

= (kM − L1)(I − L−1
1 A0

1(k −A1)
−1L2).

On the other hand, L2 ∈ L(D(L1), Yγ), see Lemma 2, and we have from Favini and
Yagi [16], p.49, that

‖A0
1(k − A1)

−1x‖X ≤ Ck1−β−γ‖x‖Xγ
A1

This implies that operator

L−1
1 A0

1(k − A1)
−1L2

is bounded from D(L1) into itself with norm less than 1 for k large enough. Thus for k
large kM − L1 − L2 has an inverse

(I − L−1
1 A0

1(k − A1)
−1L2)

−1(kM − L1)
−1.

The first operator is viewed in L(D(L1)), while the second one acts from X into D(L1).
Thus, in particular kM −L1 −L2 has a bounded inverse in X. Therefore, it is closed, too.
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Observe also that in view of Lemma 1,

Xθ
L1M−1 = Xθ

(L1+L2−kM)M−1 ,

provided that γ > 1− β.
Taking into account these preliminaries, we can solve the given inverse problem as

following.
We must solve (14) together with initial condition

(Mu)(0) = ML−1
1 L1y0.

Applying Lemma 2 with L = L1 + L2 − kM , (HM,L1
) holds with 5α + 2β > 6,

y0 ∈ D(L1), (f̃1, .., f̃N) ∈
N∏

i=1

Cσi([0, τ ] : C), σi ∈ ((3− 2α− β)/α1, 1),

z0 = (L1 + L2 − kM)y0 + F (0),

(z0, z1, .., zN ) ∈
∏N

j=0X
γj
L1M−1, γj ∈ (5 − 3α − 2β, 1), j = 0, .., N (notice that

5− 3α− 2β ≥ 1− β) and let

γ = min
j=0...N

γj , τ = min
i=1..N

{σi, χα,β,γ},

where χα,β,γ = (α + β + γ − 2)/α.
Recall that

Iα,β,γ =

{
((3− 2α− β)/α, γ), if γ ∈ ((3− 2α− β)/α, 1/2),

((3− 2α− β)/α, 1/2), if γ ∈ [1/2, 1).

Then for any fixed δ ∈ Iα,β,τ and F̃ ∈ Cθ([0, τ ];X), θ ∈ [δ+(3−2α−β)/α, 1) problem
(12), (13) admits a unique strict solution w satisfying w(0) = y0,Mw ∈ C1+δ([0, τ ];X),

L1w = L1(L1 + L2 − kM)−1(L1 + L2 − kM)w ∈ Cδ([0, τ ];X).

Condition (L1 + L2 − kM)y0 + F (0) ∈ Xγ0

L1M−1, γ0 > 5 − 3α − 2β is guaranteed by
L1y0 + F (0) ∈ Xγ0

L1M−1 if γj ∈ (5− 3α− 2β, β), j = 0, 1, .., N, α+ β > 5/3.

Indeed, L2y0 ∈ Xδ
L1M−1 , δ = min γ1..γN and My0 ∈ Xω

L1M−1 for all ω < β, since
y0 ∈ D(L1). Thus we have what required provided that γ1..γN ∈ (0, β), too.

In our application to inverse problems, we have seen that in fact fi(t) is a linear
combination of g1k(t) and Φk[F (t)]. So we can establish the main identification problem
(6)–(8) as follows.

Theorem 2. Suppose

L1y0 + F (0) ∈ Xγ0
A1
, γ0 ∈ (5− 3α− 2β, β), α ≥ β > 0, α + β > 5/3

HA1
holds with 5α + 2β > 6

(z1..zN) ∈
N∏

j=1

X
γj
A1
, γj ∈ (5− 3α− 2β, β), β > γj > γ0, j = 1, 2, . . . , N,
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τ = min{µ, (α+ β + γ − 2)/α},

where µ = min
i=0,1

µi, F ∈ CH0([0, τ ];X), µ0 − 1/2 ∈ [(3 − 2α − β)/α, 1/2)

(g1..gN) ∈
N∏
i=1

C1+µ1([0, τ ],C), µ1 ∈ [(3 − 2α − β)/α, 1). Then for every fixed

δ ∈ Iα,β,τ the identification problem (6)-(8) admits a unique (y, h1..hN ) such that
y ∈ Cδ([0; τ ], D(L1),My ∈ C1+δC[0, τ ];X), y(0) = y0 and fi ∈ Cδ([0, τ ];C), i = 1..N .

4. Examples

Example 1. If L, M are matrices n × n, M singular, L invertible and 0 is a simple
pole for (λI − M)−1, then LM−1 satisfies our condition with α = β = 1 and
(CM;D(A))θ,∞ = (CM ,M(Rn))θ,∞ ≡ rangeM = Xθ

A.
Therefor our condition for the inverse problems became very simple.

Example 2. Let Ω ⊂ R
n, n ∈ N be a bounded open domain with C2 boundary and let

(X, ‖ · ‖X) = (Lp(Ω), ‖ · ‖Lp(Ω)), p ∈ (1,∞). Let m ∈ L∞(Ω) and nonnegative. Let M be
the multiplication operator by m so that M ∈ L(X). Let us consider operator L1

L1u = −
∑

|η1|,|η2|=1

Dη1(aη1,η2D
η2u)− a0u,

u ∈ D(L1) = W 1,p
0 (Ω) ∩W 2,p(Ω).

More generally, one can take Robin B.C.
Here a0, aη1,η2 : Ω → R |ηi| = 1, ηi = (η1..ηn), ηi ∈ (0, 1), i = 1, 2, j = 1..n, a0 ∈ C(Ω),

aη1,η2 = aη2,η1 ∈ C1(Ω), a0(x) ≥ v0, v1|y|
2
Rn ≤

∑
|η1|,|η2|=1 aη1,η2(x)y

η1yη2 ≤ v0|y|
2

∀(x, y) ∈ Ω×Rn, v0, v1, v2 > 0. Then it is shown in Favini and Yagi [16]

‖M(zM − L)−1‖L(x) ≤ C(1 + |z|)−1/p, ∀z ∈ Σ1.

Therefore (HM,L1
) is satisfied with (α, β) = (1; 1/p). We must take p ∈ (1, 4/3)

and our assumptions read L1y0 + f(0) ∈ Xϕ0

A1
, ϕ0 ∈ (3/p′, 1/p), (z1..zN ) ∈

∏N
i=1X

γi
A1

,
γi ∈ (2/p′, 1/p), i = 1, . . . , N , F ∈ CM0([0, τ ];X), M0 − 1/2 ∈ (1/p′, 1/2),

(g1..gN) ∈
N∏
i=1

C1+µ1([0, τ ];C), µ1 ∈ (1/p′, 1), i = 1, . . . , N .

Functionals Φi are defined by Ψi ∈ Lp′(Ω),Φi[u] =
∫
Ω
Ψi(x)u(x)dx.

Values of p larger than 4/3 can be admitted if m is more regular, precisely, ρ-regular,
i.e., m ∈ C1(Ω) and | ▽ m(x)| ≤ Cm(x)ρ, where 0 < ρ ≤ 1, x ∈ Ω. We refer to Favini,
Lorenzi, Tanabe [8], [9], [10].

Example 3. Consider the problem

∂u

∂t
= △(a(x)u) + f(x, t), (x, t) ∈ Ω× (0, τ),

a(x)u(x, t) = 0, (x, t) ∈ ∂Ω× (0, τ),
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u(x, 0) = u0(x),

where a(x) ≥ 0, a(x) > 0 a.e. in Ω.
Changing the unknown u to v = a(x)u we get

∂

∂t

(
v

a(x)

)
= △v + f(x, t),

v(x, t) = 0, (x, t) ∈ ∂Ω × (0, τ),

v

a(x)
(x, 0) = u0(x).

This problem can be handled provided that

a−1 ∈ L1(Ω), if n = 1

a−1 ∈ Lr(Ω)forsome r > 1, if n = 2

a−1 ∈ Ln/2(Ω), if n ≥ 3

We obtain the resolvent estimate

‖M(λM − L)−1‖L(H−1(Ω)) ≤ C(1 + |λ|)−1,

λ ∈ Σ1. Therefore, the previous results apply to

∂y

∂t
= △(a(x)v) +

N∑

i=1

fi(t)zi(x) + F (t, x)

in the space X = H−1(Ω). If one wants to consider X = L2(Ω), other conditions on a(x)
are necessary. See Favini and Yagi, p. 83. Precisely,

a−1 ∈ Lr(Ω)





with r ≥ 2, when n = 1,
with r > 2, when n = 2,
with r ≥ n, when n ≥ 3

Then one verifies that

‖M(λM − L)−1‖L(L2(Ω)) ≤ C|λ|−
2r−n
2r , λ ∈ Σ1.

Moreover, one can also consider

∂u

∂t
= a(x)△u+ f(x, t),

u(x, t) = 0, on ∂Ω× (0, τ),

u(x, 0) = u0(x),

taking either X = H1
0 (Ω) or X = L2(Ω). See Favini and Yagi [16] pp. 81-85. Of course,

application to problems related to

∂u

∂t
= a(x)△u+

m∑

i=1

fi(t)zi + F (t, x)
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follow easily.

Example 4. Our abstract result on the hyperbolic case apply to the concrete examples
considered by A. Skubachevskii [19], [20], [21]. It should be interesting to verify if Feller
semigroups that he considers are in fact weakly parabolic, too.

Example 5. Example of operators L satisfying previous resolvent estimates with β < 1,
α = 1 can be found in Tara, von Wahl [22], [23].

Example 6. Many important examples come from Russian literature. See various papers
G. Sviridyuk and V. Fedorov. In particular, we quote [17] on an inverse problem for linear
Sobolev type equations.

At the end, I want to thank professor Georgy Sviridyuk and Alyona Zamyshlyaeva for
their competence and helpful contribution. Thanks a lot to professor H. Tanabe for his
precious assistance and useful advice.
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