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NUMERICAL RESEARCH

OF THE BARENBLATT-ZHELTOV-KOCHINA MODEL
ON THE INTERVAL WITH WENTZELL BOUNDARY
CONDITIONS

N. S. Goncharov, South Ural State University, Chelyabinsk, Russian Federation,
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In terms of numerical research, we study the Barenblatt—Zheltov—Kochina model, which
describes dynamics of pressure of a filtered fluid in a fractured-porous medium with the
general Wentzell boundary conditions. Based on the theoretical results associated with
Galerkin method, we develop an algorithm and implement the numerical solution of the
Cauchy—Wentzell problem on the interval [0, 1]. In particular, we examine the asymptotic
approximation of the spectrum of the one-dimensional Laplace operator and present result of
a computational experiment. In the paper, these problems are solved under the assumption
that the initial space is a contraction of the space L2(0,1).

Keywords: Barenblatt-Zheltov-Kochina equation; Wentzell boundary conditions;
numerical research; Galerkin method.

Introduction

Let us consider the Cauchy—Wentzell problem

u(z,0) = vo(x), = € [0,1]
Uz (0, ) + apuy (0, 1) + ayu(0,t) =0, (1)
uacac(Lt) + 60“x(17t) + ﬁlu(Lt) =0

for the Barenblatt—Zheltov—Kochina equation on the interval [0, 1]
M (2, 1) = Upge (T, 1) = Qe (2, t) + f(x,t), (x,t) €[0,1] x Ry, (2)

which describes dynamics of pressure of a filtered fluid in a fractured-porous medium.
Here o and \ are the material parameters characterizing the environment; the parameter
a € Ry; the function f = f(x,t) plays the role of external loading.

The purpose of this work is to show new approach to solve of problem (1)-(2) with
the Wentzell boundary conditions. Namely, according to the modified Galerkin method,
describe the solution to the Cauchy—Wentzel problem. Except Introduction, Conclusion
and the References, the article contains four sections. Analytical research of the Barenblatt-
Zheltov—Kochina model is given in Section 1. The algorithm for the numerical solution
to the this model is presented in Section 2. The ideas of computational implementation
are described in Section 3. The result of a computational experiment on resolvability of
the Cauchy—Wentzell problem in the Barenblatt—Zheltova—Kochina model are given in
Section 4.
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1. Analytical Research of the Barenblatt—Zheltov—-Kochina Model

In this section, we recall the main results proved in the paper [1] necessary for further
numerical solution of problem (1)—(2). Let us consider the differential operator

Au(z) = u'(z), x€l0,1] (3)
with the general Wentzell boundary conditions
Au(0) + apu'(0) + aqu(0) = 0, (4)

Au(1) + Bou' (1) + Bru(1l) = 0. (5)
By formulas (3)—(5) we define the linear operator A : dom A C § — §. Here § is the space

(L2[0,1], dx' ® nds}{o 1}) with the norm
©0.1) ’

1
HUH§=/\u(x)IdeﬂL??o\U(O)!Q+?71\U(1)!27
0

where dx is the Lebesque measure on the interval (0,1); ds is the point measure at the
boundary; 79 = _Lal, m = 6_11’ where a1 < 0 < 31 are positive weights. The full construction
of the space § is given in [2]. Also, we consider the linear manifold dom A = {u € C?[0,1] :
conditions (4), (5) are fulfilled} as the domain of the operator A.

Then the operator A has the following properties.

Lemma 1. Let the operator A be defined by formulas (3)—(5). Then

(i) dom A = {u € C?[0,1] : conditions (4),(5) are fulfilled} is a Banach space with
regard to the norm ||lul|czpg 45

(11) dom A is densely embedded in §;

(i1i) A € L(domA;F).

Moreover, the following Theorem 1 confirms the existence of solution to problem (1)—
(2).

Theorem 1. Suppose that the linear operator A satisfies the conditions of Lemma 1, and
f €5 is a fizred vector. Then

(i) if X\ & o(A), then for any vy € domA and f € §F there exists the unique solution
u € C*(R;domA) to problem (1)—(2), which has the form

(e 9]

L e 2N < foor >
) = S < g o) + 3 (1) LI
k=1 k=1

(ii) if X € o(A), then for any f € F and

voe‘ﬁf:{uedomA:@)\<u,g0k Se=— < f, 0k >g,)\k:)\}
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there exists the unique solution u € C*(R;By) to problem (1)—~(2), and the solution has
the form

1 oy,
u(z,t) = —— < f, ok >3 (@) + Z eX M < (), ok >3 pr(@)+

a

A=Ak AENK
a2 < >
> ()
Oé/\k;

AEAK

2. The Algorithm for the Numerical Solution of the Barenblatt—
Zheltova—Kochina Model

It is necessary to find an approximate solution using the modify Galerkin method,
since the Barenblatt-Zheltov—Kochina model may be degenerate. Let us construct Galerkin
approximations solution to the Cauchy—Wentzell problem in the following form:

M) =

?7(]}, t) = uN(xu t) = uk(t)(pk(x>a (6>

k=1

where {¢x : k € N} are eigenfunctions of the one-dimensional Laplace operator A and
correspond to its eigenvalues, orthonormal by the norm < -,- >z, which are numbered in
non-increasing order taking into account the multiplicity.

Substitute approximate solution (6) to equation (2) and take the scalar product of
equation (2) and eigenfunctions ¢ () with respect to < -,- >5 . We obtain the following
system:

(A =Aur(t) = aw () + f1(1),

(A= Xo)uh(t) = aus(t) + folt), (7)

(A = An)uiy(t) = aun(t) + fn(t).

Depending on the parameters A , we have algebraic or first-order differential equations
in the system (7). Let us consider these conditions in more details.

(i) A ¢ o(A). Due to this fact, the mathematical model is non-degenerate, and all
the equations in the resulting system are ordinary differential equations of the first order.
For the solvability this system with respect to uy(t), we take the scalar product of initial
condition (1) and eigenfunctions ¢y (x) with respect to < -, - >5 . Then, we solve the system
(7) with appropriate initial conditions and find the coefficients u(t) in the approximate
solution u(z,t).

(ii) A € o(A). Without loss of generality suppose that A = \,,, = -+ = A, where r
is the multiplicity of the root. Then, some of equations are algebraic, and some equations
are ordinary differential equations of the first order. Let us consider separately systems
composed of algebraic equations and differential equations of the first order. Note that
the solution to the original problem exists, according to Theorem 1, if the initial function
vo(x) belongs to the phase space

PBr= {uEdomA:a)\<u,g0k Se=— < f,px >3,)\k:)\}.
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3. The Computational Implementation of the Numerical Solution
to the Barenblatt—Zheltova—Kochina Model
Since the Galerkin method is not of most interest, we describe the main ideas, in the

author’ view, associated with implementation of a numerical solution.The block diagram
of the algorithm is shown in Figure 1 .

" Beginning program ]

!

Input of parametars &, a, N,
fix,t) and initial data u0

The solution of the differential o Wiy, O
l equations with appropriate Mo g ecizmng LheTtriancmon =
_ - nitial data or I Thearer)
Constructing the solive in the
form of Galerkin sum
‘J' The solution
homogeneous
Subslitution of approximate differential equations
solution in the equation

Y

Y

-~ k=1 ., The solution of
= algebraic equations

k4 J
Scalar multiplication of e
equations and initial data to ,L,
eigenfunctions
Substitution of found

coefficients

Tie ocutput of the solutio
Mo @ Yos and its graph

2 (2) )
‘ End of program J

Fig. 1. Block diagram of the algorithm

Remark 1. Due to the fact that we are the first to consider this problem, we describe
the asymptotic approximation of eigenvalues. The paper [1| shows that the operator A has
a discrete, finite multiplicity spectrum with the unique limit point at —oo. Consider the
case of A < 0. The transcendental equation has the following form

A, + cot(v/—\,) — Bov=An V)\;)‘" + f—icot( —\n)

aov/=An 1+ meot(\/—)\n) + f—i
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Substitute x = v/—\,,, for A,, < 0 and have the alternative form
cot(r) = K (z),

where 5 5 s
K(z) = l-@ - gtir+5
—Qo + a;—gl + Bo — a;;—?)
Due to the fact that tan(x) - cot(z) = 1, we have tan(x) = . Therefore,

+arct ! €z
Tn =1n+arctan| —— |, n .
K(x)

Applying the method of asymptotic iterations we have

Ty ~ TN+ (M) —|—O(i3).
™ n
2
)\nw—<7rn+ (M> —|—O(i3>> :
™m n

Consider the case of A > 0. In this case the existence of solution depends on the
Wentzell boundary conditions. If the transcendental equation has the form

A agVA+ar e A+ BV A+ Bi)
)\—Oéo\/X"‘Oél A_BO\/X‘i‘ﬁl

and is solvable, we add A in set of eigenvalues.

Consequently,

Y

Remark 2. In order to find the solutions to the transcendental equations we use, for
example, the method of moving chords.
double f(double x)

return F(x); //here we substitute the function

}

double method chord(double x_ prev, double x curr, double e¢)

{
double x next;
double i=0;
x_next=x_curr—f(x_curr)*(x_prev—x_curr)/(f(x_prev)—f(x_curr));
while (fabs (x_next—x_curr)>e)

i+

X_Prev=x_ CuIT;

X _curr=x_next;
x_next=x_curr—f(x_curr)*(x_prev—x_curr)/(f(x_prev)—f(x_curr));

cout<<"N="<<i<<endl;
return x_next;

int main ()

double x0=6.1;

double x1=3.2;

double e=0.5E—-T7;

double x=method chord(x0,x1,e);
cout <<"X="<<x<<endl;

return 0;
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Remark 3. Since the required eigenfunctions are not orthonormal, we find them applying
the Gram-Schmidt orthogonalization method using the scalar product with respect to
< -,- >3 . The implementation of scalar product is presented below.

float f1(float x)

{
return 0.2082614333x( cos (5.928333984+x)-+6.434378310+sin (5.928333984xx));
}
float f2(float x)
{

return 0.2082614333x( cos (5.928333984%x)+6.434378310%sin (5.928333984xx));

float g(float x){
return f1(x)*f2(x);
}

float integrate(float a, float b, int n){
float h, tempp;

float trap int = (g(a)+g(b))/2.0;
tempp = a;
h= (b—a) / n

for (tempp= ath; tempp < b; tempp+=h){
cout <<tempp<<endl;
trap int += g(tempp);

}
return trap int * h;
}
float scal ()
{
return integrate (0,1 , 10)+f1(0)*xf2(0)/3.04+f2(1)*xf1(1)/6.0;
}
int main ()
{
double rezscal=scal ();
cout<<"scal="<<rezscal <<endl;
return 0;
}

4. The Result of a Computational Experiment on Resolvability
of the Cauchy—Wentzell Problem in the Barenblatt—Zheltov—
Kochina Model

Example 1. Let us consider the Cauchy—Wentzell problem for the equation
Mg (2,1) = Upge (2, 1) = Qe (2, t) + f(x,t), (2,1) € [0,1] x Ry, (8)
where A =1, a =1, f(z,t) = sin(x) + cos(z),
u(z,0) = sin(z),
Uz (0, 8) + u,(0,2) — 3u(0,t) = 0,
Uz (1, 1) — ug (1, 1) + 6u(l,t) = 0.

Let N = 6, then the approximate solution have the following form:

u(z,t) = ug(z, t) =

u(t)pr(). (9)

B
Il o
—
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Solve the Sturm-Liouville problem and find the basis functions ¢ (z) in decomposition
(9). Using the method of moving chords for the transcendental equations of the
corresponding form

1+3-5-18_ 1
cot(z) = x - Tt P r= A Ay <0

A+VA-3 PO VA+E)
A—vVA=3 A+VA+E6)

find and write the eigenfunctions of the one-dimensional Laplace operator.
We have the eigenvalues

>0

A\ = —a? = —35.14514947,
Ay = 3 —84.71034130,
A3 = —x3 = —153.8532547,
Ay = i —242.7027758,
\s = —x2 = —351.2803151,
A = 5.39027.

Let us find ¢y (x) and construct an orthonormal basis using the Gram-Schmidt method.
Substitute approximate solution (9) to equation (8) and take the scalar product of equation
(8) and eigenfunctions ¢y (x) with respect to < -,- >z . We obtain the following system:

(36.14514947u, (¢) + 35.14514947uy (£) — 0.8269934837 = 0,
85.71034130u(t) + 84.71034130us() + 0.4628025921 = 0,
154.8532547u4(t) + 153.8532547us(t) — 0.1585809892 = 0, (10
243.7027758u/,(t) + 242.7027758u,(t) + 0.2327184742 = 0,

352.2803151ug(t) + 351.2803151us(t) — 0.1438824946 = 0,
—4.39027ug(t) — 5.39027ug(t) + 1.100046897 = 0.

\

Due to the fact that A ¢ o(A), the mathematical model is non-degenerate, and,
according to the algorithm, all the equations in the resulting system are ordinary
differential equations of the first order. Let us solve the system (10) with the initial
conditions

u1(0) = —0.2424361874,
u2(0) = 0.1553935266,
uz(0) = —0.1527659262,
u4(0) = 0.7822663760,
us(0) = —0.1135077380,
ug(0) = 0.6048383102.

— — — — — —

and find the Galerkin coeflicients
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uy () = 0.2353080002 — 0.2447892674 - ¢~ 0-9723337705¢
us(t) = —0.5463354119 + 0.1608568807 - ¢~ 933327964
us(t) = 0.1030728856 — 0.1537966551 - ¢~ 099351227331,
uy(t) = —0.9588620214 + 0.7918549962 - ¢~ 0-9958966409¢
us(t) = 0.4095945273 — 0.1139173325 - ¢~ 09971613515
ug(t) = 0.2040801105 + 0.4007581997 - ¢~ 227770424

Substituting the Galerkin coefficients to representation (9) and obtain an approximate

solution to the original problem. The graph of the solution is shown in Figure 2.

Vi
Wiy iy SO
I‘? I"?.. i
: EF AL

Fig. 2. Solution to the problem in Example 1

Example 2. Let us consider the Cauchy—Wentzell problem for the equation
Mg (2, 1) — Ugpe (T, 1) = Qg (2, t) + fx,1), (2,1) € [0,1] x Ry,
where A =0, a =0, f(x,t) = sin(2z),

u(z,0) = cos(x),
Uz (0, ) + uz (0, 1) — 3u(0, 1)
Uge(1,1) — ug(1,8) + 6u(l,t) =

0,

Let N = 6, then the approximate solution have the following form:

NE

u(z,t) = ug(z,t) =Y ur(t)pr(x).

k=1

(11)

(12)

We have the same eigenvalues and the orthonormal basis ¢k (z), since the boundary

conditions are the same as in Example 1.
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Substitute approximate solution (12) to equation (11) and take the scalar product of
equation (11) and eigenfunctions ¢ (x) with respect to < -,- >z . We obtain the following
system:

(35.14514947u (1) — 0.2771233330 = 0,
84.71034130u}(t) + 0.1707707104 = 0,
153.8532547u(t) — 0.1808766246 = 0,
242.7027758u/(t) + 0.08093001826 = 0,
351.2803151u(t) — 0.1369937226 = 0,
—5.39027u}(t) + 0.8120110804 = 0.

\

Due to the fact that A ¢ o(A), the mathematical model is non-degenerate, and,
according to the algorithm, all the equations in the resulting system are ordinary
differential of the first order. Let us solve the system (13) with the initial conditions

(0)

(0)

(0) = —0.581506299,
u4(0) = 0.1544918366,
us(0) = —0.3037475666,

(0)

uy(t) = 0.7885108960 - ¢ + .1597368392,
us(t) = —0.2015936989 - ¢ + .3074090655,
ug(t) = 0.1175643797 - t — 0.5815062990,
uy(t) = —0.3334532042 - t + 0.1544918366,
us(t) = 0.3899840575 - t — 0.3037475666,
ug(t) = 0.1506438602 - ¢t + 0.4952085868.

Substituting the Galerkin coefficients to representation (12) and obtain an approximate
solution to the original problem. The graph of the solution is shown in Figure 3.

Conclusion

We constructed an algorithm and implemented the numerical solution to the Cauchy—
Wentzell problem on the interval [0, 1]. To this end, we used the numerical methods theory,
and the space, the structure of which is specified in [2]. Further, we plan to continue the
results of the paper by applying the Wentzell boundary conditions in directions related to
[10].

The work was supported by Act 211 Government of the Russian Federation, contract
no. 02.A03.21.0011.
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Fig. 3. Solution to the problem in Example 2
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UUNCJIEHHOE NCCJIEJJOBAHUE 3AJIAYN
KOIIIN - BEHTHEJIA JJ14 MOJAEJIN
BAPEHBJIATTA - YKEJITOBA — KOUMHO!

H. C. I'onuapos

B crarbe paccmaTpuBaeTcs YucIeHHOE HCCienoBaHUe Mozen bapenbnarra — 2Kei-
ToBa — Ko4YmMHOIl, KOTOpasi OIUCHIBAET NMHAMUKY JIBUXKEHUsI YKUIKOCTA B TPEIUHOBATO-
opucToii cpejsie. Ha ocHOBe TeopeTndeckux pe3yJbTaToB, CBSI3aHHBIX ¢ METOJ0M lajiepku-
Ha, pa3paboTaH aJrOpUTM W peau3aliis IUCJICHHOTO perenns 3amadn Komm-Benriesmms
Ha orpeske [0, 1]. B gacTHOCTH, paccMATPUBAETCS ACUMIITOTUIECKAS AIIIPOKCUMAIIHSI CIIEK-
Tpa OIHOMEPHOIO oleparopa Jlamiaca u IpuBOAUTCS Pe3y/IbTaT BbIYUCIATEILHOTO IKCIIEe-
puMeHnTa. B pabore 5T1 331891 PEIatoTCs B IIPEIIIOJIOKEHNN, YTO Ha9aIbHOE IPOCTPAHCTBO
ABJIsIeTCs cyykerneM mpoctpancTsa L2(0,1).

Karouesvie caosa: ypasnenue Bapenbaamma — XKeamosa — Kowunoti; 3adava Kowu —
Benwmueas; memod Iareprkuna; wucaenmnoe modeauposanue.
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