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EXPONENTIAL DICHOTOMIES OF A NON-CLASSICAL
EQUATION IN SPACES OF DIFFERENTIAL FORMS
ON A TWO-DIMENSIONAL TORUS WITH "NOISES"

0. G. Kitaeva, South Ural State University, Chelyabinsk, Russian Federation,
kitaecavaog@susu.ru,

We study the stability of solutions to the linear stochastic Barenblatt — Zheltov —
Cochina equation in spaces of smooth differential forms defined on a two-dimensional torus.
We show the existence of stable and unstable invariant spaces of solutions in spaces of
"noises" for various parameters characterizing the medium and properties of the fluid.
Also, we prove the existence of exponential dichotomies of solutions, which consist in the
splitting of the phase space into a direct sum of two invariant spaces. Moreover, solutions
starting in one of these spaces increase exponentially, remaining in this space, and solutions
starting in another space decrease exponentially, also remaining in this space. We construct
an algorithm to find stable and unstable solutions to the stochastic Barenblatt — Zheltov —
Cochina equation on one of the maps of a two-dimensional torus. The algorithm takes into
account that the initial data belong to the phase space. The algorithm is implemented in
the Maple environment. For various values of the parameters included in the Barenblatt —
Zheltov — Cochina equation, we present graphs of exponentially stable and exponentially
unstable solutions that belong to stable and unstable invariant spaces. Also, we present the
graphs of solutions having exponential dichotomy.

Keywords: Sobolev type equation; stochastic equations; differential forms; exponential

dichotomies.

Introduction

The Barenblatt — Zheltov — Cochina equation
A=Ay = aAu+ f (1)

simulates the dynamics of the pressure of a fluid filtered in a fractured porous medium. The
real parameters a and A characterize the medium and properties of the fluid, respectively,
and the function f = f(x) presents an external influence.

In [1], in order to study the initial — boundary value problems for the Barenblatt —
Zheltov — Cochina equation, equation (1) is reduced to the Cauchy problem

u(0) = ug (2)
for the linear Sobolev type equation
Lu= Mu+ f (3)

in the suitable function spaces. The paper [2]| was the first to consider dichotomies of
solutions to homogeneous Sobolev type equation (1), where the operator M is relatively
spectrally bounded. The paper [3| proves the existence of invariant spaces of equation (1)
in spaces of differential forms defined on smooth Riemannian manifolds without boundary.
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The numerical solution of equation (1) was started in [4]. The paper [5] considers equation
(1) on graphs. The paper [6] is devoted to the study of the asymptotic stability of the
Barenblatt — Zheltov — Cochina equation in the sense of Lyapunov. Here the Lyapunov
function method is applied, and a computational experiment based on the Galerkin method
is constructed.

The study of the stochastic Sobolev type equations

L= Mn + Nw, (4)

where 1 = n(t) is the desired stochastic process, 1 is its Nelson — Gliklikh derivative 7],
is presented, for example, in [8] — [12]. The paper [13| considers high-order stochastic
Sobolev type equations, the paper [14] considers the multipoint problem for equation (4).
The paper [15] proves the existence of solutions to equation (4) in the space of differential
forms. The paper [16] considers the question on the existence of exponential dichotomies
of these solutions.

The aim of this work is to construct an algorithm to find stable and unstable solutions
to stochastic equation (4) in the space of differential forms on a two-dimensional torus. In
addition to Introduction and References, the article consists of two sections. In Section 1,
we construct spaces of random K-variables and K-"noises" on a two-dimensional torus, and
consider the stable and unstable invariant spaces of the stochastic Barenblatt — Zheltov —
Cochina equation in space of differential forms. In Section 2, we construct a numerical
algorithm, and present the graphs of solutions in cases where solutions are exponentially
stable, exponentially unstable, and in cases where there exist exponential dichotomies.

1. Exponential Dichotomies of the Stochastic Barenblatt -—
Zheltov — Cochina Equation in Spaces of Differential Forms

On the two-dimensional torus 7% = [0,1] x [0, 1], consider the following space of
differential forms F? = E4(T?), ¢ =0,1,2:

a = E @h,igdxil A dl'iQ,

11 <i2

where a;, ;, € C, ¢ = 0,1,2. In particular, the space of 0-forms E°(R?) is the space of
functions of two variables. Define the Laplace — Beltrami operator A : E4 — E9 by the
equality A = dd + db, where d : E9 — E9! is the operator of external differentiation,
§: Bl — E17Y § = (=1)%3 x dx, x : B9 — E?7%is the Hodge operator. Taking into
account the splitting (see [17])

B =A(EY) @ H™ = dé(E9) @ §d(E9) & HT, (5)

we obtain that the equation Aw = a has a solution w € EY exactly when the ¢-form « is
orthogonal to the space of harmonic forms H% = {w € E?: Aw = 0}.
In spaces E9, ¢ = 0,1, 2, define the scalar product by the formulas

<a,b>0:/a/\*b,

T2
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<a,b>1=<a,b>y)+ < Aa,b >,
< a,b>y=<a,b> + < Aa, Ab >,

and denote the corresponding norm by || - ||;. Denote by H} the completions of the lineal
E9 with respect to the norm || - ||;, [ = 0, 1,2. Note that we have continuous and dense
embeddings Hj C H{ C H{.

On the two-dimensional torus 72, define the spaces of K-variables and K-"noises".
Let 2 = (92, A,P) be a complete probability space, R be set of real numbers endowed
with a Borel g-algebra. A measurable mapping & : 2 — R is called a random variable. A
set of random variables with zero mathematical expectation and finite dispersion forms
the Hilbert space Ly with the scalar product (&1,&) = E&&s. Let Ag be a o-subalgebra
of the o-algebra A. Construct the subspace L9 C Ly of random variables measurable with
respect to the o-subalgebra Aj of the o-algebra A. A conditional expectation E(£|Ap) of
the random variable ¢ is called TI¢, where IT : Ly — L3 is an orthoprojector. A measurable
mapping 7 : R x ) — R is called a stochastic process, and a function n(t,-), t € J, is called
a tragectory of the stochastic process. The stochastic process 7 is called continuous, if a.s.
(almost sure) all its trajectories are continuous (i.e., the trajectories 7(-,w) are continuous
for a.a. (almost all) w € Q). A set of continuous stochastic processes forms a Banach space,
which we denote by the symbol CLs,.

Fix n € CLg and t € J, denote E] = E(-|N}"), where N, is a o-algebra generated by
the random variable 7(t).

Definition 1. Let n € CLy. By a Nelson — Gliklikh derivative 7% of the stochastic process
1 at the pointt € J we mean a random variable

5:%( i E?(n(HAtw)—n(tw))Jr lim w(n(t-)—n(t—ﬁtw)))

A0+ At At

if the limit exists in the sense of a uniform metric on R.

Denote by C'Ly, | € N the space of stochastic processes whose trajectories are a.s.
differentiable by Nelson — Gliklikh on J up to the order [ inclusive. The spaces C'Ly are
called the spaces of differentiable "noises”.

Next, we construct the space of random K-variables in H}', where the basis
{¢r} is formed by the eigenfunctions of the Laplace — Beltrami operator, which are
orthonormalized by < ;- >;, 1 =0,1,2. Let K = {\;} be a monotone sequence such that
>~ A < +oco. Denote by Hf, Lo, [ = 0, 1,2, the Hilbert space, which is the completion of

k=1
the linear span of random K-variables

n=> Mpr (6)
k=1
with respect to the norm
g, = Y D&, (7)
k=1

where the sequence of random variables {£} C Lo, D& < const, k € N.
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Let the interval J = (¢,7) C R. The map 7 : (¢,7) — Hfi Ly defined by the formula

n(t) =Y Méilt)or, (8)
k=1

where a sequence {{} C CLs, is called a continuous stochastic K-process, if the series on
the right-hand side converges uniformly on any compact set in J with respect to the norm
| - [lcL,, and the trajectories of the process n = n(t) are a.s. continuous. A continuous
stochastic K-process nn = n(t) is called a continuously differentiable by Nelson — Gliklikh
on J, if the series

0 (1) =3 M & (1) (9)

converges uniformly on any compact set in J with respect to the norm || - ||cr,, and the

trajectories of the process =1 (t) are a.s. continuous. Let C(J, HjxLy) be the space of
continuous stochastic K-processes, and CZ(H?KLQ) be the space of stochastic K-processes
that are continuously differentiable up to the order [ € N.

Consider the question on the stability of equation (1) in the spaces H{yLs. Denote

L=(O\+A), M=aA, (10)

where A is the Laplace — Beltrami operator. Consider the stochastic equation with
differential forms .
L n= Mn (11)

with the Cauchy condition
1(0) = no. (12)

Definition 2. The set P C Hix Lo is called a phase space of equation (11), if

(i) a.s. each trajectory of the solution ¢ = ((t) to equation (11) belongs to B, i.e.
C(t) e B,t € Ry, for a.a. trajectories;

(i1) there exists a unique solution to problem (11), (12) for a.a. {y € B.

Theorem 1. [15] For any o € R\ {0}, A € R\ {0}, no € HixLo, there exists the unique
solution n = n(t) to problem (11), (12), and the solution has the form

n(t)=>' [exp (Aoflylt) (Z M (2, 901)2<Pl>] : (13)

=1

Definition 3. The subspace IxLy C Hiy Ly is called an invariant space of equation (11),
if the solution to problem (11), (12) n € C'(R;IxLy) for any ny € IxLo.

Definition 4. The solutions n = n(t) to equation (11) have exponential dichotomy, if
(i) the phase space B of equation (11) splits into the direct sum of two invariant spaces
(i.e. P =T Lo & 1Ly ), and
(1) there exist the constants Ny, € Ry v, € Ry k = 1,2, such that

In*(O)llu < Niem Il (s) o for s>t
IOl < Noe™ =2 (s)[w  for t >,
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where nt = n'(t) € IiLy and n? = n?(t) € IxLy for all t € R. The space IjitLy (IgLy) is
called a stable (unstable) invariant space of equation (11).

Theorem 2. (i) The solutions n = n(t) to problem (11), (12) have exponential
dichotomies for any o € R, A € R_, ng € Hji Lo.

(ii) The phase space of problem (11), (12) coincides with a stable invariant space for
any o € R_ and A\ € Ry, and the phase space of problem (11), (12) coincides with an
unstable invariant space for any a, A € R,

2. Computational Experiment

On the two-dimensional torus 7% = [0, 1] x [0, 1], consider the map ® : S — U, where
U C T? and S is the inside of the square with vertices at the points (0,0), (0,1), (1,0),
and (1,1). Similarly to Section 1, we construct spaces of random K-variables SxLs on the
map S, namely, in the space Ly(S). Elements of this space are presented by the vectors

¢ = > M&ror, where {x} is the basis in the space La(.S).
k=1

Ifin(t) is a solution to equation (11) in the space of random K-variables on the two-
dimensional torus Hi Lo, then ((¢t) = ®[n(t)] is a solution to equation

(A= A) (= aAC (14)

defined in the space Sk Ly. The converse statement is also true. Namely, if () is a solution
to equation (14), then n(t) = ®~1[((¢)] is a solution to equation (11). Therefore, if solutions
to equation (14) are exponentially stable (unstable) (in the sense of Definition 4), then
solutions to equation (11) are exponentially stable (unstable).

Remark 1. The region on the torus corresponding to the considered map does not cover
the entire gluing line, which is two intersecting circles, i.e. the "meridian" and "parallel"
of the torus. The interiors of the squares S; — S; form an atlas. Here S; has vertices
at the points (0.5,0), (0.5,1), (1.5,0), and (1.5,1), Sy has vertices at the points (0,0.5),
(1,0.5), (0,1.5), and (1,1.5), S3 has vertices at the points (0.5,0.5), (1.5,0.5), (0.5,1.5), and
(1.5,1.5), Sy has vertices at the points (1,1), (1.5,1), (1,0.5), and (1.5,1.5). In order to
study the stability of solutions to equation (11), it suffices to consider only one map.

Let us construct an algorithm to study the stability of solutions to equation (14).

Step 1. Set the coefficients o # 0, A # 0, the square S = [0, 1] x [0, 1], the interval
of change of the time parameter ¢ from 0 to 7', the number n; of partitions of the given
interval, and calculate the step in t: h; = nl

Step 2. In the space Ly(5), define basis functions by the function ¢ = sin(mx)cos(ny).
K
Step 3. Construct the vector {y = ) k—lzé‘k(pk, where & is a random variable «~ N (0, 1)

k=1
(i.e., & is a random variable with normal distribution, zero mathematical expectation, and
dispersion equal to unity).
Step 4. Find the relative spectrum pu;, = /\Ci)\fk’ where \, = —k2.
Step 5. Check that the relative spectrum belongs to the phase space. If ({y, ¢)r, # 0,
then then the program displays a message that there exist no solutions and stops the work.
Otherwise, go to the next step.
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Step 6. If A > 0 and o > 0, then the program displays a message that the solution
is stable, constructs the solution (Example 1) based on formula (13), and stops the work.
Otherwise, i.e. for A > 0 and « < 0, the program displays a message that the solution is
unstable, constructs the solution (Example 2) based on formula (13), and stops the work.

Step 8. If A < 0 and there exists k such that A = \g, then find the number n = k.
Otherwise, find the maximum value k at which A\, > )\, and set n to be equal to this
maximum value.

Step 9. If o > 0, then stable solutions are constructed in the cycle from 1 to n—1, and
unstable solutions are constructed in the cycle from n + 1 to M (Example 3). Otherwise,
unstable solutions are constructed in the cycle from 1 to n — 1, and stable solutions are
constructed in the cycle from n + 1 to M (Example 4).

Example 1. The solutions to problem (11), (12) are exponentially stable for A = 4,
a = 5. Fig. 1 shows the graphs of the solution for t = 0, 1.5 with the step 0.5,

Fig. 1. Exponential stability of solutions for A = 4, a = 5, t € [0, 1.5] with the step 0.5
(gold color — t = 0, green color — t = 0.5, blue color — ¢ = 1, violet color — t = 1.5).

and Fig. 2 shows the graphs of the solution for ¢ € [0, 3] in the section y = 0.5.
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201

Fig. 2. Exponential stability of solutions for A =4, a = 5, ¢t € [0, 3] in the section y = 0.5.

Example 2. The solutions to problem (11), (12) are exponentially unstable for A = —4,
a = 0.5. Fig. 3 shows the graph of the solution for ¢ € [0, 3] in the section y = 0.5.

Fig. 3. Exponential unstability of solutions for A = 4, « = =5, ¢t € [0, 3] in the section
y = 0.5.
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Example 3. The solutions to problem (11), (12) have exponential dichotomy for A = —4,
a = 0.5. The solutions

n—1 M
Cr(t) =) et (Z Ak (@k, 901)L2901> (15)
=1 k=1
belong to a stable invariant space, and the solutions
K M
C(t)=> e <Z A&k (@ @l)Lz‘Pl) (16)
I=n+1 k=1

belong to an unstable invariant space. Fig. 4 shows the graph of the solution for ¢ € [0, 7]
in the section y = 0.5.

Fig. 4. Exponential dichotomies for A = —4, a = 0.5, ¢t € [0, 3] in the section y = 0.5.

Example 4. The solutions to problem (11), (12) have exponential dichotomy for A = —4,
a = —0.5. The solutions

() = o (Z Akﬁk(%ﬂl)h@l) (17)

k=1
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belong to an unstable invariant space, and the solutions

Gty =) e (Z A (Pr; <Pz)L2<Pl> (18)

l=n+1 k=1

belong to a stable invariant space. Fig. 5 shows the graph of the solution for ¢ € [0, 7] in
the section y = 0.5.

2 1

Fig. 5. Exponential dichotomies for A = —4, a = —0.5, ¢t € [0, 3] in the section y = 0.5.
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SKCITOHEHIIMAJIBHBIE TNXOTOMNN OJHOI'O
HEKJIACCNTYECKOI'O YPABHEHU A B ITPOCTPAHCTBAX
JANOOEPEHIINMAJIBHBIX ®OPM HA JIBYMEPHOM TOPE
C "ITYMAMMN"

O. I Kumaesa

CraTbst OCBSIIIEHA UCCJIEOBAHUIO YCTONYNBOCTH PENIEHU JIMHEHHOTO CTOXAaCTHIECKO-
ro ypasuenus bBapenbiarta — 2Kenrosa — Kounroit B mpocTpamcTBax raakux auddepen-
[UAJBHBIX (DOPM, OINPEJEJIEHHBIX Ha JBYMEPHOM Tope. [loKazaHo CyIlmecTBOBaHUE YCTOMU-
YUBOIO ¥ HEYCTONYMBOIO MHBAPUAHTHBIX IIPOCTPAHCTB PEIIeHWil B IIpoCcTpaHCTBax '"mry-
MOB" IIpH pa3/IMYHBIX [IAPAMETPOB, XapaKTePU3YIOIUX CPely U CBOHCTBa Kujukoctu. /lo-
Ka3aHO CYIIeCTBOBAHUE IKCIIOHEHIIUAJIBHBIX JUXOTOMUI PeIeHni, 3aKIF0UAOIIXCs B Pac-
merieHny (hba30BOTO MPOCTPAHCTBA HA MPAMYIO CYMMY JIBYX MHBAPHUAHTHBIX ITPOCTPAHCTB.
[Ipudem pereHnsi HAYUHAIONIUECS] B OJTHOM U3 STUX MPOCTPAHCTB SKCIIOHEHITUAJIHLHO Pac-
TYT, OCTaBasICh B 3TOM IIPOCTPAHCTBE, & PENIeHNs] HAYMHAIOIINECS B PYTOM [IPOCTPAHCTBE
SKCIIOHEHINAJIBHO yOBIBAIOT, TAKXKE OCTaBasiChb B 3TOM IpocTpaHcTBe. IlocTpoen ajaropurm
HAXOXKJIEHUsI YCTOWYNBBIX U HEYCTOWYMBBLIX PEIeHUil CTOXaCTHIeCKOro ypaBHeHus bapen-
6sarTa — 2Kenroa — KounHoit Ha 0J1HOI U3 KapT AByMEPHOI'O TOPa, B KOTOPOM YYUTHIBAET-
Cs1 TIPUHAJJIEIKHOCTh HAYAJIBHBIX JIAHHBIX (Pa30BOMY MIPOCTPAHCTBY. AJITOPUTM peaTn30BaH
B cpere Maple. IIpu pa3auvHbIX 3HAYEHHWS TapaMeTPOB, BXOJAINX B ypaBHeHme bapen-
onarra — 2Kenropa — Kounnoii, npejcrasiieHbl rpaduKy 3KCIIOHEHIIMAIBHO YCTONINBOTO
U SKCIIOHEHINAJIBHO HEYCTOWYUBOIO PEINeHUi, JIeXKAIUX B YCTONIMBOM M HEYCTONIMBOM
MHBAPUAHTHBIX [IPOCTPAHCTBaX. TaK »Ke IpecTaBjieHbl IPpaUKU PENIeHnil NMEIOITIX IKC-
[MOHEHIAJBHYTO JTUXOTOMUIO.

Karouesvie crosa: ypashenus coboae6ckozo muna; Cmoracmuieckue ypasrenus; dug-

Peperyuarvrvie Gopmol; IKCNOHEHUUANDHBLE OUTOMOMUL.
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