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A NUMERICAL ALGORITHM FOR SOLVING INVERSE
FILTRATION PROBLEMS WITH THE POINTWISE
OVERDETERMINATION
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The inverse problems of recovering the right-hand side in a pseudoparabolic equations
of filtration with the use of the pointwise overdetermination are studied. We expose
some existence and uniqueness theorems which are the base of an numerical algorithm
of recovering the right-hand side (the source function) and a solution. The problem is
well-posed and the stability estimates hold. It can be reduced to a Volterra-type integral
equation, where the operator has a small norm for small time segments. The finite element
method is used to reduce the problem to a system of ordinary differential equations which
is solved by the finite difference method. The idea of the predictor-corrector method is
employed in the algorithm. The results of numerical experiments are presented. They show
a good convergence of an approximate solutions to a solution.

Keywords: inverse problem; pseudoparabolic equation; filtration; fissured rock;
numerical solution.

Introduction

In the present article we consider an inverse problem of recovering the right-hand
side in a Sobolev-type equation of the third order. These equations belong to the
class of equation unsolvable with respect to higher derivatives. The systematical study
of equations of this class began with the S. L. Sobolev articles (see [1]). Afterwards,
S. L. Sobolev’s results were generalized by many authors. We can refer to the known
results by S. A. Galpern, S. G. Krein, M. I. Vishik, R. Schowalter, T. 1. Zelenyak,
G. V. Demidenko, S. I. Uspenskii, and many other authors (see the bibliography in [2]). The
most known third order Sobolev-type models are the equation of Rossby waves [3| proposed
by C. G. Rossby in 1939 and the filtration theory equations derived by G. I. Barenblatt,
Iu. P. Zheltov and I. N. Kochina [4] in 1960. The latter model is written as

ury — nAuyy — kAuy =0, (1)

where the parameter k£ corresponds to the piezo-conductivity of fissured rock and u is the
pressure. The dimensionless coefficient « characterizes the intensity of the liquid transfer
between the blocks and fissures. More general models can include nonlinearities arising
from fluid type (a liquid or a gas), concentration (porosity, absorption or saturation) and
the exchange rate [5].

General equations of the form (1) can be written as follows:

L(t,z,D)u; — M(t,x,D)u = f,(x,t) € Q =G x (0,T), (2)

where L, M are second order operators and G is a bounded domain in R™. The equation (2)
is furnished with initial and boundary conditions of the form

u(0,2) = ug(x), Ruls = g(t,z), (3)
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with Ru = w or Ru = Y, vi(t,z)u,, + o(t,x)u (other boundary conditions are also
possible). We look for the right-hand side f of the form

f= Zqz'(t)fi(t,flf) + ot x), fi € Loo(0, T Ly(G)), (4)

Our problem is stated as follows: find the functions {¢;(t)}/_; and a solution u to the
problem (2)-(3) such that

u(tv yi) = ¢i(t)7 (Z =12, ., T)? (5>

where y; are arbitrary points lying in G and f;(t, z) are given functions.

Sobolev-type equations of the form (2) with various differential operators L; and Lo
of even order in the spacial variables also arise in the mathematical models of the heat
conduction, wave processes, quasistationary processes in semiconductors and magnetics, in
the models for filtration of the two-phase flow in porous media with the dynamic capillary
pressure (see [7, 36|, [6] and the bibliography therein). Detailed bibliography and the
results concerning the solvability of direct problems for Sobolev-type equations and their
abstract analogs can be found, for instance, in [9, 8, 10, 38, 37|. The first results devoted
to inverse problems for pseudoparabolic equations were obtained in [11], where an inverse
problems of recovering an unknown source f of a special form in (2) is considered. Large
number of results is exposed in the monographs [13], [12]). The problems of recovering
coefficients, in particular, the coefficients k(¢) and 7 are studied in [16, 17, 18|, where
integral overdetermination conditions are used. The problem (1)-(5) is considered in [19,
20, 21] and it is proven that this problem is uniquely solvable under natural conditions
for the data. Closed results on recovering the right-hand side of the form f(¢)g(x) (the
function f(¢) is not known) are exposed in [14, 15] even for more general classes of the
equations. Exposition of numerical methods for solving inverse problem can be found,
for instance, in [22, 23|. We can refer also to the articles [25, 28, 27, 30, 31, 32, 29, 39|
devoted to different numerical methods of solving boundary value problems for Sobolev-
type equations. At the same time, the number of articles devoted to numerical solving
inverse problems for Sobolev-type equations is rather limited (see, for instance, |33, 32, 34].
Most of the articles are devoted to different model problems. Some numerical methods for
solving filtration problems of the form (2)-(5) but for simpler models are presented in [24].
Here the Sobolev-type equation for the pressure is replaced with a parabolic one.

We use the theoretical results exposed in [19, 20, 21|, where the existence and
uniqueness theory as well as the stability estimates for solutions can be found, describe
numerical methods applicable to a wide class of inverse problems with the pointwise
ovedetermination of the form (2)-(5), and present the results of numerical experiments.

1. Preliminaries

We consider a general inverse problem on recovering functions occurring into the
right-hand side of the equation. We assume that

L= aj(t,x)0., + Y _ ai(t,z)0s, + ao(t, )
=1

1,7=1
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and the operator M is representable as

Mu = Z bij (L, T) Uz, + Z bi(t, x)uy, + bo(t, x)u,

ij=1 i=1

Put (u,v) = [, u(x)v(z) de. All function spaces as well as coefficients of the equations are
assumed to be real.

We employ the Sobolev spaces W:(G) and Holder spaces C*(G) (see the definitions
in [35]). The symbol L,(0,7; H) (H is a Banach space) stands for the space of strongly
measurable functions defined on [0, 7] with values in H. Given an interval J = (0,7") and
a domain G € R", put @ = (0,7) x G and W;*(Q) = W} (J; Lp,(G)) N L,(J; W3 (G)).
Respectively, W) *(S) = W] (J; L,(I')) N L,(J; W3(T')) (S = (0,T) x 0G). Similarly, we

can define the Holder spaces C™*(Q).
Next, we describe the condition on the data of the problem. We assume that the
operator L is elliptic, i. e., there exists a constant 6 > 0 such that

m

Z a;;&& > 0olé]? VEER", V (t,z) € Q. (6)

ij=1
Fix a parameter p > n and assume that

bij € Loo(Q), bi, by € Lo (0,T; L,y (G)), (7)

aij € O(Q)v i, Qo € O([()?T]aLp(G)) (27.7 = 1727 “7”); (8>

a) ao(t,z) < 0 a.e. (almost everywhere) in @ in the case of the Dirichlet boundary
conditions and a) < 0 a.e. in @ and aJ < 0 a.e. in some neighborhood about S in the case
of the oblique derivative problem:;

Vi Yit, O, Oy € 01/2’1(§), 1=1,2,...,n. 9)

;i (0) = uo(y;) (i=1,2,..,1), R(0,z, D)uo|r = g(0, z). (10)

Let sp = 2 — 1/p in the case of the Dirichlet boundary conditions and sy = 1 —1/p
otherwise. Construct a matrix B with the rows

L_lfl(t7 yj)? vy L_lfr(ta y])
where j = 1,2, ...,r and assume that the there exists a constant dy > 0 such that
|det B| > 0o Vt € [0,T]. (11)

Here L™!f; is a solution U; to the problem LU; = f;, U;|i—o = 0, RU;|s = 0.
The following theorem follows from the results in [20], [21].

Theorem 1. Let the conditions (6)-(11) be fulfilled and let
fO € Lp(Q)a fz € Loo(oaT; Lp(G))a UO(.CE) € W;(G>7

gt € Lp(0, T;W2(G)), ¢ € W) (0,T),i=1,2,....r, p>n.
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Then there ezists a unique solution to (u,q, ..., q.) the problem (2)-(5) such that
u € WZ}(O,T; W;(G’)), ¢(t) € L,(0,T) (i =1,2,...,7).

A solution satisfies the estimate

lullwsorwzey + > g |Lom <
=1

([l follz,@ + gl 0mwso ) + Z [illwro.1))-
=1

This theorem actually justifies the numerical algorithm presented below and the
scheme of the algorithm is taken from its proof.

2. Description of the Algorithm

To simplify the presentation, we describe the idea of the algorithm in the model case.
We rely on some integral identities. Consider the problem

Louy + k(t)Liu = f = f0+ZQi(t)fi(33at)a (12)
e =g, u(0.2) = uo(x), (13)
w(yi, t) = i(t), 1=1,2,...,r, (14)

where
Lou = —div(&o(ﬂf, t)Vut) + bo(.ﬁl?, t) -Vu + Co(.ﬁl?, t)ua

Lyu = —div(ai(z,t)Vu) + by (2,t) - Vu + ¢1 (2, t)u,

and ag, a1, cg, ¢1 are scalar functions and by, by are vector-function of length n. The functions
u and ¢;(t) are unknown. We assume that all conditions of Theorem 1 for the data are
fulfilled. Let ¢ € Ly (0, T; W, (G)) (1/g+1/p = 1) be a test function and let a function u be
a solution to the problem (12), (13) from the class pointed out in Theorem 1. Integrating
by parts in the identity

(Lous, ) + k(1) (Liu, ) = (f, ), ¢ € Ly(0,T5 W, (G)), (15)
we arrive at the equality

a(ug, ) + k()b(u, ¢) = l(p) + ) + Z% (fr: ), (16)

where a(u, p) = (CLOVut,ch) (bo- Vur+cousy, go), b(u, ) = (a1 Vu, Vo) + (b1 - Vu+tcu, ),

Up) = (fosp) +lo(), 1 faogtsé?dr Ly falgsf?dt
Next, we look for a solutlon @i(z,t) (j =1,2,...,r) to the problem
Ly = 0(z —y;), ap% L+ b npjlr = (17)
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where Lj is a formally adjoint to Ly and 0 is the Dirac delta-function. Inserting ¢; in (16),
we obtain that

Ui + k() (0w, 05) — Li(ey)) = Uez) + 2 iy @ () (fr 05)- (18)
Hence, we conclude that
2 ket k() (frs 05) = Vg + k(@) (b(u, ;) — L)) — Upy)- (19)

Note that the definition of ¢; implies that

Z% (fer25) = Y ae() L7 fiulys, 1),
K1

Thus, this expression can be written as R¢ and in view of the condition (11) the
determinant of the matrix R does not vanish. The above integral identities allow us to
construct the iteration procedure realized in the proof of Theorem 1 (see [19]-]21]). Let
7o = R™'Fy, with Fy; = v + k(t)(b(uo, ;) — l1(¢;)) — l(¢;). Given a vector-function g,
we can construct ‘™! as a solution to the problem (12), (13) with ¢ = ¢; and to determine
the next iteration ¢;,; from the equalities

Gis1=R'F;, Fy=(Fq,...,F,),
Fij = e + k() (b(uit1, 05) — ll(%)) [(p5)-
The latter formula almost corresponds to the iteration procedure in the proof of the fixed

point theorem for the operator S constructed in the proof of Theorem 1 in [20], [21], where
it is proven that the process converges.

(20)

3. Numerical Algorithm

The algorithm is iterative and relies on the finite element method. We define a
triangulation of G, the mesh nodes, x1, xs, ..., xy, and the corresponding piecewise linear
functions {y;(x)} (thus, ¢;(x;) = d;;, where 0;; is the Kronecker symbol. Without
loss of generality, we can assume that the observation points y; are mesh node w,;
(j = 1,2,...,7r). An approximate solution to (12), (13) is sought in the form u” =
SN @i(t)gi(z). Assume that a(u,p) = (aoVu, Vgp) (bo Vu + cou,go) blu,p) =
(a1Vu, Vo) +(by-Vu+ciu, o), () = (fo, ) +lo(v), b faogtcpdf Lip falgcpdt

The vector-function C(t) = (cl(t),cg(t),...,cN(t))T is a solution to the system of
ordinary differential equations

ACt + k(t)BC = F() + Fl, C(O) = (Uo(l'l), Uo(l'g), cee ,Uo(l'N))T, (21)

where A, B are matrices with the entries a;; = a(y;, i), bij = b(gj, i), and Fy =
(FOl,...,FON)T, F()Z(t) = l((pz) + k(t)ll((pz), F1 = (FH,...,FlN)T, where Flj =
> re1 @k(t)(fr, ;). Thus, the vector F is representable as F; = Rq, where the matrix
R = {r;;} has the entries r;; = (f;, ;). We thus have that

AC, + k(t)BC = Fy + R, C(0) = (ug(z1), uo(x2), . .., uo(zn))?, (22)

2019, vol. 6, no. 3 43



S. N. Shergin

To solve (22), we involve the finite difference method (FDM) (the implicit scheme) and
replace (22) with the finite difference equation

4O LB = Bt Rud Gy = O(0), (23)
where n = 1,2,..., M, 7 = T/M, and Fy,, A,, By, R, are the values of the right-hand
side in (22), and the matrices A, B at nT. We assume here that the approximation ¢, is
a piecewise constant vector-function taking the value ¢, on ((n — 1)7, n7]. Respectively, a
piecewise constant approximation of a solution C'(t) to (21) is a piecewise constant function
equal to the vector C, on the set ((n — 1)7,n7]. An analog of the overdetermination
condition is as follows:

(Cn)mj — (On—l)

T

L =Yu((n—171), j=12,...,1 (24)
where (C',)m; is the m;-th coordinate of the vector C,,. From (24) we have that

Yir((n = 1)7) + kn((An) 7 BaCr)m, — (An) ™ Fon)m, = (An) " RuGa)m,,  (25)

where j = 1,2,...,7. Denote by af; the entries of the matrix (A,)™'R,. We have that
the right-hand side in (25) can be written as 5,¢, and S,, is the matrix with entries
7 = oy, The left-hand side is the vector G, with the coordinates G} = j((n —1)7) +

kn((An) ' BuCh)im, — ((An) "' Fon)m,» 7 = 1,2,...,7. Thus, we can consider the equation
G = Snd. (26)
Next, describe the numerical algorithm. First, we find the vector ¢y from the equality
Go = Sodo, (27)

where the vector G the coordinates G? = 1;:(0) + ko((A0) ' BoCo)m, — ((A0) " Fo,0)m,
(j=1,2,...,7). Next, we put ¢} = ¢ and find the vector C{ from the equality
ct—C,_ ,
A, 4 k. B,Cy = Fy + R.T, Co=C(0), (28)

T

where i = 1 and n = 1. Let G%, be the vector with the coordinates G; = ¥;((n — 1)7) +
kn((Ap) ' BoCl)im, — ((An) " Fon)m,, j = 1,2,..., 7. Next we find the vector ¢ from the
equality

G = Suy ", (29)
where n = 1 and i = 1. Using the vector ¢? in (28) with n = 1 and i = 2 we can find the
vector C? and so on. The process is going on until ||§"" — G| < &, with € > 0 is a given

number. Next, we take C; = Cit', ¢, = ¢**'. Assume that we have found the vectors
Ch1,qn_1- We take ¢! = ¢,,_1 and calculate the vector C! from (28) with i = 1. Define
the vector G} and find the vector ¢ from (29) with ¢ = 1. We repeat the arguments until

¢ — || < e. In this case we put ¢, = ¢!, C,, = C*1. Repeating the arguments we
can calculate all quantities ¢, ¢, ..., ¢y, C1,Co, ..., Cyy.
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4. The Results of Numerical Experiments

In this section we analyze the results of numerical experiments. The characteristics
of the computer are as follows: the processor Intel(R) Core(TM) i3-8100 CPU @ 3.60GHz
3.60GHz, 8.00 GB RAM, the 64-digit operating system Windows 10 Pro.

As a result of calculations, we obtain approximate values of a solution (u(x,y,t), ¢(t))
of the problem (12)-(13) at points (1, ts, . ..tx). Here the point (x,y) belongs to the unit
circle centered at (0,0). We present the results of calculations only for the vector-function

—

q.
To solve the problem numerically, we use two meshes for this domain with the number
of nodes N; = 263 and N, = 1015 (Fig. 1).
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a) b)
Fig. 1. Meshes: a) N; = 263; b) Ny = 1015

We consider the equation (12), where r» = 3. We use the following data:

the solution: u(z,y,t) = (22 +1)- (y?> + 1) - (1 +¢);

the initial data: uli—o = (2% + 1) - (y* + 1);

the Neumann boundary conditions: g = 2(t + 1)(y(2* + 1) + x(y* + 1));

the additional information: ¢;(t) = (z? + 1) - (y? + 1) - (1 + ¢);

the unknown function: ¢; = 1,q = t* + 2,q3 = (t — 2)3,

the coefficients: ag = (t+1)(22+1), a; = (*+y+4)/(x*+1), by1 = 23-t, b2 = (z+y)-t,
bii=y2/(t+1),bia=at/(y+1),co=1/(x*+v*+1),c1 =1/(1 +t);

the right-hand side: f=19*— 122>+ 1)t + 1) + z(x®* + 1)(y* + 1) — 2(z* + 1) (2% +
DE+1) =2+ 1) (y*+ 1) (t+ 1)+ 2tx(y* + 1) (z + 2®) — 2ta*(a® + 1) (¢t + 1) — 8t (y? +
D(t+1) +2ty(a® + 1) (z +y) + 2taey(2> + D+ 1)/(y+ 1) —z(#* +2) — 1 — y(t — 2)3.

We will use the Neumann boundary conditions from (16) which are represented as

ou
%h“ = (uzz + uyy) =g.

The additional information (14) is given at the observation point x,,, = (z1, y1) =
(0.3, =0.3), &y, = (22, y2) = (0.1,0), 2, = (x3, y3) = (—0.5,0.5).

All numerical experiments are divided into two groups in dependence on the unknown
functions u, ¢, the boundary conditions, the noise level ¢, the error between iterations e,
the coefficients Qp, a1, bo(l’, t) = (b0,1> b0’2), bl (ZL’, t) = (bl,h b1’2), Cp, C1, and the right—hand
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sides f. If 6 # 0 then the perturbations of the overdetermination data at the moments
of time Atk, k =1,2,...,N (At is a step in time) are defined as follows: ¥y (Atk) =
U (Atk)(1 + §(204 — 1)), where numbers oy, € [0, 1] are determined using the random
number generator of Matlab (the function rand).

First, we compare the results of calculations (Fig. 2) for two meshes mentioned above,
for data without noise, i.e., 6 = 0. Consider the segment [0,7], T = 1, and At = T/N,
N = 100. We take e = 1073 (the error defined by the user).

0 01 0.2 03 04 05 0.6 07 08 09 1 ] 01 0.2 03 04 05 0.6 07 08 09 1

Fig. 2. Results of calculations for the meshes with N=100

Next, we take the same meshes and other parameters but N = 400 and we obtain the
following result (Fig. 3).

0 O.‘l 0.‘2 0.‘3 O.‘A 0.‘5 O.‘G 0.‘7 0.‘8 0‘9 1 i 0 O.‘l 0.‘2 0.‘3 O.‘A 0.‘5 O.‘G 0.‘7 0.‘8 0‘9 1
Fig. 3. Results of calculations for the meshes with N=400

In the following experiments, we add 1 percent random noise for the second mesh with
N =100 and N =400 (Fig. 4).

Based on the results of numerical experiments for the group of data, we can conclude
that the increase in the number of nodes in 4 times leads to the increase in the calculation
time more than 10 times. It is lead to a significant increase in accuracy. But further
splitting is already useless due to time consuming and low usability.

As we can see the decrease in the variable € does not lead to a significant increase in
the accuracy and decreasing the time of calculations.

46 Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

AR
. - AN T !
2 b oY v 4 B it Kot i A LA

8 L L L L L L L L L 8 L L L L L L L L L
] 01 0.2 03 04 05 0.6 07 08 09 1 ] 01 0.2 03 04 05 0.6 07 08 09 1

Fig. 4. Results of calculations with a random error with different N

Summing up, we can say that the use of a grid with a large number of nodes shows
better accuracy, but the time of the calculation increases by an amount equal to the ratio
of the number of nodes of the grids. Increasing the time step also shows a good result,
especially when adding a random error. Decreasing the variable € leads to an increase in
the computation time, but does not lead to a significant increase in accuracy.

Conclusions

Under consideration is an inverse problem of recovering the right-hand side in a
pseudoparabolic equation. Some theoretical results and stability estimates for solution are
exposed. We propose a numerical algorithm of recovering the right-hand side with the
use of the pointwise overdetermination conditions. A numerical algorithms is based on the
finite element method combined with the finite difference schemes. The results of numerical
experiments show a sufficiently good convergence of the algorithm.

The author was supported by the Russian Foundation for Basic Research and
the government of Khanty-Mansiysk Autonomous Okrug-YuGRA (Grant 18-41-860003,
r_ural_a)
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YUNCJIEHHBIV AJITOPUTM JJI1d HEKOTOPON
OBPATHON 3AJTAYN ®NJIBTPAIINN C TOYEYHBIM
INEPEOIIPEJIEJIEHVEM

C. H. Illepaun

PaccmarpuBaercst obpaTHast 3a/1a9a O BOCCTAHOBJIEHUU IIPABON 9aCTH B IICEBI0OTIAPab0-
JIMYECKOM YPaBHUU (PUJIBTPAILMN C UCIIOJIb30BaAHINEM TOYEYHOTO Iepeorpeeenust. [Ipuso-
JATCA TeopeMbl CYyIIeCTBOBAHUS U €/IMHCTBEHHOCTH, KOTOPbIE SABJISAIOTCH OCHOBOU YMCJIEHHO-
r0 aJIrOPUTMAa BOCCTAHOBJIEHUs IPaBOil acTu ((DYyHKIMU MCTOYHMKA) M DPElIeHUs. 3ajada
SIBJISIETCSI KOPPEKTHOM U MMEET MECTO OIEHKA YCTONIMBOCTH. 3a/1a9a MOYXKET ObITh CBEJICHA
K UHTEIrpaJIbHOMY YpaBHEHUIO Tuia BosbTeppa, rJe onepaTop UMeeT MaJjIyilo HOpMY Ha Ma-
JIBIX TIPOMEXKYTKaX BpeMeHu. VCrob3yeTcss MeToI, KOHEUHBIX 3JIEMEHTOB JIJIsl TOrO, YTOObI
CBECTH 3aJlady K CHCTeMe OOBIKHOBEHHBIX pdepeHnabHbIX YPpaBHEHU, KOTOpasi pe-
IIAEeTCsT METONOM KOHEYHBIX pa3Hocreil. [Ipu mocTpoennn ajropurMa HCIOIb3yeTCH UIest
CXeMBI [IPeUKTOP-KOPPeKTop. IIpeacraBiens pe3yapTaThl YUCIEHHBIX IKCIEPUMEHTOB. Pe-
3YJIbTATHI TOKA3BIBAIOT XOPOIIYIO CXOJUMOCTD aJITOPUTMa K PEIIEHUIO.

Karoueswie caosa: obpammuas 3adava; ncesdonapabosuseckoe ypagnerue; Guivmparus;

MPEUUHOBAMAA CPEIT; HYUCAEHHOE DEWEHUE.
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