MSC 60H30 DOI: 10.14529/jcem190305

NUMERICAL RESEARCH FOR THE START CONTROL
AND FINAL OBSERVATION PROBLEM IN MODEL

OF THE DISTRIBUTION OF POTENTIALS

IN A CRYSTALLINE SEMICONDUCTOR

K. V. Vasiuchkova, South Ural State University, Chelyabinsk, Russian Federation,
vasiuchkovakv@susu.ru

The article considers the numerical research of the mathematical model of control of
potential distribution in a crystalline semiconductor. This model based on the problem of
start control and final observation by weak generalized solutions of mathematical model
of potential distribution in a crystalline semiconductor. This model belongs to the class
of mathematical models based on semilinear Sobolev type equations with p-coercive and
s-monotonous operators. We have shown the existence and uniqueness of a weak generalized
solution of the investigated model with the initial condition of Showalter—Sidorov and found
sufficient conditions the existence of a solution to the problem of start control and final
observation. We construct the algorithm of the numerical method to solve the problem
of start control and final observation for the model of control potential distribution in
a crystalline semiconductor, based on method of decomposition and method of Galerkin.
Computational experiments are given.
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Introduction

At the present stage of development, application, industry of electronic computers
leave to important studying physics of semiconductor. Since full-scale experiments is
difficult, so mathematical modelling [1-4] is an important role in the study of these
processes. We can control many processes occurring in semiconductor-type substances, by
changing the parameters of environmental (for example, the magnitude of the magnetic
field) and the internal environment (for example, temperature, chemical composition
semiconductor). The study of the rational state of the system and finding an optimal
law of control for these systems are important practical problem in field of numerical
modelling processes [5-8|. For this, we are developing various mathematical, algorithmic
and software. Purpose of this article is a research of the mathematical model of distribution
control potentials in a crystalline semiconductor, based on the problem starting control
and final observation

J(@(T),u) = Ila(T) —asl's + QA =)ul's —inf, 9e(0,1) (1)
WQ) WO

i 1 ()

by weak generalized solutions of the mathematical model of the distribution of potential
in a crystalline semiconductor, based on the Sobolev type equation

(A — A)a, — a1 Az — apdiv(|Vz|* V) = y (2)
with the initial the Showalter—Sidorov condition

(A —A)(x(s,0) —u(s)) =0, s€Q (3)
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with the Dirichlet condition

x(s,t) =0, (s,t) €00 x R,. (4)

In the considered problem of start control and final observation (1) is: J(x(7T),u)
is a specially constructed target functional; u € .4, g is a closed and convex set in
the space of controls i, function xy = z(s) is the required state which, the system has
to achieve with a minimum initial exposure to the passage of time ¢ = T. In equation
(2) the function x = x(s,t) describes the potential electric field, a given function y(s,t)
characterizes the external influence, for example, the influence of an external magnetic
field, and the parameters A € R, a; as € R,  C R™ is a bounded domain with boundary
0f) xnacca C*.

Note that equation (2) is a multidimensional generalization of model onedimensional
equations describing waves of Rossby. This is traveling waves generated in the atmospheres
of planets and in the oceans in moderate widths mouths. Since these equations are model,
they are also suitable to describe the processes occurring in semiconductors. Mathematical
model of process distribution potential in a crystalline semiconductor are first presented
in [1]. And in the case a; = 1, a3 = 1 it was shown that in the presence of current
sources of free charges or negativity of differential conductivity there is a breakdown
of semiconductors (because potential energy of a system exceeds kinetic). In [9] the
generalized equation of the form

(A — A)z; — a1 Ax — apdiv(|Vz|* Vi) + aslz[P 22 = f, p>2.

is investigated. Here A € R, a; as € R a3 € {0} UR,. This article [9] also shows the
existence of a quasi-stationary trajectory based on the phase space method. This approach
is one of the main methods for studying equations of this type. This method was first
proposed in the work G.A. Sviridyuk. Later, this approach to the study of semilinear
Sobolev type equations was used in studies of various models of mathematical physics
[10, 11]. In this article we will investigate the equation (2), which belongs to the class
of semilinear Sobolev type equations with p-coercive and s-monotonic operators. Note
that the coercive operator is strongly p-coercive, and the s-monotonic operator is strictly
monotonous.

The problem of start control and final observation simulates the situation when the
moment of result observation is separated in time from the start influence, i.e. control.
The problem (1) — —(4) describes process to find the initial distribution potential u(s)
in a semicrystalline semiconductor, at which under the action of a direct electric current
y(s,t) after a time t = T they will take the required distribution z(s,T’). In the case
of a nonlinear equation, searching start control is difficult. One approach to solving this
problem is the method of decomposition [12,13|. This method allows to linearize the initial
equation and to transfer the phenomenon of nonlinearity to the functional. Therefore, the
numerical scheme to find the approximate solution to the problem of start control and final
observation is simplified. In [8] proved the existence and uniqueness of the start control
and final observation for parabolic equations. In [5] sufficient conditions for the solvability
problem of the start control and final observation for one abstract quasilinear of Sobolev
type equation in a weak generalized case were obtained, and the solvability problem of start
control and final observation for the model of Barenblatt—Guilman is proved. Analytical
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and numerical research problem of start control and final observation for one class Sobolev
type equations with the Showalter—Sidorov condition presents in [7].

The article is organized as follows. The first paragraph presents a reduction of the
problem (1) — —(4) to the abstract problem, based on a semilinear Sobolev type equation.
To this end, we construct the function spaces and show the basic properties of the
operators, establish an existence of the weak generalized solution to the problem (2)——(4).
Also, we study the problem of start control and final observation (1) — —(4) and present
the sufficient conditions for the existence of solution to the considered problem. In order
to study the question of existence and uniqueness of the weak generalized solution to the
problem (1) — —(4), we use the monotonicity method and the Galerkin method. In the
second paragraph we present the algorithm of numerical method to find the start control
and final observation to the model of potential distribution in a crystalline semiconductor,
based on the method of decomposition, method of Ritz, method of penalty and method
of Galerkin. The results of computation experiments are given.

1. Analytical Research of the Problem of Start Control
and Final Observation

Let us consider the functional spaces 9 = W} (), B = Wy (Q), H =L(), defined in
the domain €2. Let 6* u 91" be dual spaces to B and N, elative to the scalar product < -, - >
in H, respectively. According to the Sobolev theorem there exist dense and continuous
embeddings

N B — H— B — N (5)
Define operators L, M, N:

< Lx,y >= /()\xy + V- Vy)ds, Vz,ye€ B,
Q

< Mz,y >= al/Vx-Vyds, Vx,y € ‘B,
Q

< N(x),y >= ay / |Vz|*Vx - Vyds, Y,y € MN.
9)

Remark 1. In what follows, we will consider s-monotonic and p-coercive operators. An
operator N is called s-monotonic if < N;Cy,y >> 0 Vx,y € 9. We also note that if
operator N is the s-monotonic then operator N is strong monotonic [14]. An operator N
is called p-coercive [14], if 3 C,CN u 3 p > 2 such that < N(z),x >> Cy || « ||P and
| N(z) [|«< CN || z ||P7* Vo € M. It should be noted, that from p-coercive operator
follows its strong coercivity.

Let {¢r} be a sequence of eigenfunctions of the homogeneous Dirichlet problem for the
operator (—A) in the domain €, and {)\;} be the corresponding sequence of eigenvalues,
numbered in non-decreasing order taking into account their multiplicity.

Lemma 1. (i) For all X > —)\; operator L € L (B,B*) is self-adjoint, Fredholm and
non-negative defined operator.
(ii) For all a1 € Ry operator M € L (9B,B*) is s-monotonic u 2-coercive operator.
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(iii) For all ay € Ry operator N € C® (M, N*) is s-monotonic u 4-coercive operator.

Proof. Statement (i) is a classical result, since

< Ly > =] [0+ V- Fo)as| <A1y B+ IR Clly T vwe s
Q

The proof of statements (i7), (i7i) is similar to [9]. O

By constructing the operators, the initial-boundary value problem (3), (4) for equation (2)
is reduced to the Showalter—Sidorov problem

L(x(s,0) —u(s)) =0 (6)
for the semilinear Sobolev type equation
Li+ Mx+ N(z) =y, kerL # {0}. (7)

Let us search for the approximate solutions to the problem (2) — (4) in the form

m

™ (s, t) = Z a;(t)pi(s), m > dim ker L, (8)

i=1

where the coefficients a; = a;(t), i =1, ..., m, are determined by the system of equations

/()\xtgoi—i—Vx-VgOi) ds+/<a1Vx-chi+a2\Vx\2Vx-Vg0i> ds = /ygpi ds 9)

and the conditions
[ (5,0) = sl ds = = [[F(an(s.0) = u(s)) - Var(olds. (10

Construct the set
comL={xeB: <x,p>=0 Vpcker L\{0}}
and consider the space
X ={z |2 € L(0,T;coimL) N Ly(0,T;N)}.

Definition 1. A wvector-valued function x € X for T € R, s called a weak generalized
solution to the Showalter—Sidorov problem (2) — (4), if it satisfies

T

/([LZ—:E, g]+[M+N(x),g]> dt =0, (e,

[L(2(0) — u),¢] = 0.
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Theorem 1. Let A > —)\{, aj,as € Ry, then for anyu € N and y € Lg(O,T; 2M*) there
exists a unique solution x € X to problem (2) — (4).

As a result of the reduction of the problem (2) — (4) to the problem (6) — (7) this
theorem is a consequence |15, Theorem 1]|. The Theorem 1 shows the convergence of the
Galerkin approximations (8) to the weak generalization solution to problem (2) — (4). We
construct the control space U = 91 and we choose ,; C il is nonempty, closed, convex
set.

Definition 2. A pair (Z(T), @) € M xWUyq is called a solution to the problem (1) — (4), if

J(@(T),u) = ol J(@(T), u),

where the pairs (T,u) € X X Uyq satisfy to the problem (2) — (4) in the weak generalized
case.

Theorem 2. Let A\ > —\y, aj,as € Ry, then for anyu € N uy € L%(O,T; MN*) there
exists a unique weak generalized solution (Z(T'), @) to the problem (1) — (4).

Proof. Let {un,} C Uyq is a sequence such that,

li = inf
i, Jlm) = BE ()
then
||ttm]|n < const, ¥m € N. (12)

From (12) (move to a subsequence if necessary) we choose a weakly converging sequence
u™ — @ in M. According to the Mazur theorem, the point @ € LU,4. Let 2™ = x(u™) be a
weakly generalized solution to the problem

d
L£xm + Mz™ + N(2™) =y, (13)
L(z™(0) —u™) = 0. (14)
Let norm |z|*> = < Lz,x > in coim L. Multiply the equation (2) by 2™ (t) and integrate by
(0,t). By virtue of 4-coercivity of N operator for any constant ¢, so that 2 Cy — 1o > 0,
5
we get

4
3.dr + |ul?, Cy > 0.

e (OF + € [ el dr <& [ ot

In view of the reflexivity of the spaces L4(0,7;9) and L i (0,T;91) there are weak limits:
™ — & x-weakly in L (0, T; coim L);

2™ — Z weakly in Ly(0,T;N);
d d ., . .
L%xm — Lax weakly in Lo (0, T B*);

N(z™) = pweakly in L4 (0,T;9T).
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Since the operator N is 4-coercive, we obtain

[ (¥, am) dr < [ING)

0

T
o [z o dr < CV [ [la™ |Gl | dr,
0

and hence N(z™) are limited in La (0, 7;91"). Turn to the limit in the state equation (13)
and condition (14), we get

£
Ld—jf +Mi+N@E) =y, L(#0) —a) = 0.

The proof of the equality N(2™) = pu is based on the method of monotonicity

in consequence of s-monotonicity of operators M, N [2,12,15|. Then, z = Z(a) u

liminf J(u,,) > J(@). Hence, @ is start control to the problem (1)—(4). O

Some physical processes are described by complex mathematical models and it is
not always possible to find analytical solutions. Therefore, the construction numerical
algorithms for solving problems is becoming increasingly relevant. Theorem 1 and
Theorem 2 establish the existence of a solution, but do not describe the method for finding
it. In order to linearize the equation (2) we need to introduce and to find an additional
vector-valued function z(s,t) = v(s,t) for a numerical research of the mathematical model
of process distribution potential in a semicrystalline semiconductor. Then problem (1)—(4)
is equivalent to the following problem

Li+ Mz + N@v) =y, z(u,v)=uv, (15)
z(0) = u, (16)

Jo(x(T),v(T),u) = 0 - I||x(T) — aflly +

(1= ) - Oo(T) — 2% + (1—9)ulll — inf, 6,0 € (0,1). (17)

Theorem 3. Let A\ > —)\q, aj,as € Ry, then for anyu € N and y € L%(O,T;‘ﬁ*) there
exists a solution to the problem (15), (16).

Proof. The proof of the Theorem follows from Theorem 1, if § = y — N(v) €
(0,T;91%). O
The penalty method is applicable. Then the problem (15) — (17) is equivalent to the
following problem:

L

ol

Li+ Mz + N(v) =y, z(u,v)=uv, (18)
z(0) = u, (19)

J5(@(T), 0(T),u) = 0 - 9||a(T) — x5 +
+(1 = 0) - o(T) = aylly + (L= D)ully + relle — vl — inf, 0,9 € (0,1),

where the penalty parameter r. — 400 if £ — +0.

Definition 3. A triple (2(T),0(T),u) € 9N x N X Uyq is called a solution to the problem
of start control and final observation (18) — (20), if

Jo(@(T),0(T),a) = inf - Jg(x(T),v(T), u),

(@(T),0(T),u)
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where the triple (z,v,u) € X x X X HUyq satisfies (18),(19) in the weak generalized case.

Theorem 4. Let A > —)\q, aj,as € Ry, then for any y € L%(O,T; M) there exists a
solution (z., v, ue) to the problem (18) — (20), moreover u.(T) — w(T), x(T) — z(T') for
e — +0.

Proof. Let {u"} C 4,4 is sequence, such that

lim Jg(ul') = inf J(u),

m—00 u€qq

then it follows from (20) that
|ult||;m < const, ¥Ym € N. (21)

From (21) (move to a subsequence if necessary) we choose a weakly converging sequence
u® = u B M. According to the Mazur theorem, the point @ € H,4.

Let 2" = (v, ul") is be a weakly generalized solution to the problem

Lgal + Mzl + N(u') =y, af' =L,

L{a(0) — u) =

£

(22)

Then, by virtue of reasoning similar to the evidence of Theorem 2 follows that

N@) € L%(O,T;‘ﬂ*), Mz € Ly(0,T;98).

£

and going to the limit in (22) get

dz

L
dt

+Mz+pu=y, L(z(0)—a)=0.

From the fact that the functional (20) by construction is continuous, limited and
coercive, it follows that

|v/7e(@l — v*)|| Lo, < const, Vm € N. (23)
Since the penalty parameter r. — 400 if € — +0, then from (23) follows
' — vl - 08 Ly(0,T;H). (24)
By virtue of (24) and the second equation (22), we obtain

— I B LQ(O,T, H),
— T B LQ(O,T, H)

T
v

(25)

"33

From (26) we obtain that u = N(v). Hence & = (0, @) and liminf J (u,, vy,) > J (4, 0).
So (a(T),0(T), ) there is a solution to the problem (18) — (20).
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2. Algorithm of the Numerical Method to Find the Start Control
and Final Observation

Based on the theoretical results obtained in the previous paragraphs, we develop
an algorithm to find the approximate solution to the problem of start control and final
observation for the mathematical model of control of potential distribution in a crystalline
semiconductor on the basis of the modified decomposition method, method of Galerkin and
method of Ritz. Let ¢ be a spectrum of the operator (—A) with the homogeneous Dirichlet
condition, and {\;} be a set of the eigenvalues numbered in non-decreasing order and {¢; }
be a family of the corresponding eigenfunctions, which are orthonormalized relatively
to the scalar product < ;- > in Ly(€). Next, we will seek an approximate solution to
the control problem (1) — (4) using the Galerkin method, method of decomposition and
method of penalty described in [13]. Applying the penalty method, we proceed to consider
the control problem (18) — (20), where the proximity of the approximate solutions Z and ©
is achieved by introducing a new functional in the form (20), where the penalty parameter
is r. — +o00 at ¢ — 04. Using the method of Galerkin, an approximate solution of Z, v, u
of the control problem (18) — (20) we’ll be looking in the form

B(s,t) =D ai(t)pils), =Y upils), (s, t) =D vi(t)ei(s), (26)
i=1 i=1 i=1
where m € N, such that m > [, where [ = dim ker L. It is in order to take into account the
effects of the degenerate equation.
To find the unknown coefficients, we create system of differential equation

< (A= A)ay, 0 > —a; < Az, p; > —ay < div(|Vo]PVo), p; >=<y, p; > (27)
with the Showalter—Sidorov conditions
< (A= A)(z(s,0) —u(s)), p; >=0. (28)

Solve the problem (27),(28) relatively the unknown a;(t), Note that depending on
parameter A, equations in the system can be either differential or algebraic. Consider
these cases in more details:

e If \ ¢ o, then all equations of the system (27) is ordinary differential equations of the
first order. In order to solve this system relatively a;(t), i = 1, ..., m, we find m initial
conditions a;(0) = u;, ¢ =1,..,m, from the initial conditions (28). Further, we solve
the obtained system of the linear differential equations of the first order with the
initial conditions, and express unknown coefficients a;(t) of the approximate solution
Z(s,t) by v;i(t), u;, i=1,..,m.

o If A € o, then the first equation is algebraic, and the rest ones are differential.
Separately, consider the system of differential equations having first order and the
algebraic equation. Using the Showalter — Sidorov conditions, we find (m — 1) initial
conditions. Solve the system of the algebraic and differential equations, and express
the unknown coefficients a;(t), i = 2, .., m of the approximate solution Z(s, t) by v;(t),
and u;, i = 1,..,m. From the algebraic equation we find a;(t) and u; = a1(0). Turn
to search for the minimum of functional. Substitute the obtained decompositions in
the functional.
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Based on method of Ritz , we will search for unknowns v;(t), ¢ = 1,..,m, in the form

S
such that v;(0, N) = 2;(0) = w;, @ = 1 ,m. Let’s move on to finding minimum
functional, we substitute the obtained decomp051t10ns into the functional. We will be
take the coefficients b, so that the functions v;(¢, N) and u;(N) deliver a minimum

functional (20). Thus, the problem reduces to finding the extremum of the function of
several variables.

Example. The problem is to find an approximate solution to the problem of start
control and final observation of the problem (1) — (4) for A = —1; a; =5 a2 = 4; Q =
21 999 1 V2
0,7); T=0,4; 0 = — =——;c=— m=2;, N=3;, 2y = ——= si ;y=0.
( 77T)a ) Iy 557 B 1000) € 200; m ) y Lf 3\/7_1' SlH(S), Yy
On the basis of the developed numerical method to find the start control and final

observation, we turn to an equivalent problem of the start control and final observation:

J(x(T),v(T),u) 999 / — —— sins 4ds—i—
’ ’ 55 1000
999 !
—i—(l ) 1000 /' sin s| ds+ (29)
999 2 2
+1—-— u(s) ds + 200 x(s,t) —v(s,t)| ds dt — inf
1000
0

solutions by the solutions to the problem (2) — (4). Consider the Sturm—-Liouville problem
—X"(z) = \X(x), X(0)=X(m) =0. (30)
The eigenfunctions and eigenvalues of the problem (30) have the form:
wi(s) = \/%sin(is), No=1%1=1,2.
The results of the program "Numerical research of the mathematical model of control
potential distribution in a crystalline semiconductor" calculations are control coefficients
such that the value of the functional J = 0,00000285. Graphs of approximate solution

are shown in Fig. 1. In order to compare the obtained functions Z(s,t), v(s,t) and the

required state z¢(s) we construct the graph of these functions at the moment ¢ = 0,4 (see
Fig. 2).
Moreover, the initial function 4(s) has the form:

2
u(s) = \/j (0, 349395424933796 sin s — 0, 840135401320449 sin 25) .
T

The difference between the required functions (s, t) and o(s,t) is small:

%
(/(/p« s,t) — (s t)\4ds> dt) = 0,0000012365046.
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a) function (s, t) b) function o(s, t)

Fig. 1. The approximate solution Z(s,t), 0(s,t) to the problem (2) — (4)

038
0.6 7

0.4 ’ T

Fig. 2. Functions Z(s;0,4), 9(s;0,4), z¢(s), s € (0,7)

To evaluate the obtained solution of the start control problem and final observation
(1) — (4) we find an approximate solution to the problem of Showalter—Sidorov (2), (3) for
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the original equation (1) with the initial functions u(s). As a result of the program, we
have a numerical solution z(s,t) (see Table 1 and Fig. 3).

Table 1
Coefficients solution to problem (1) — (4)

t aq (t) a2(t)

0 | 0,348805813 | —0,4215741947
0,1 | 0,268597874 | —0,2762745402
0,2 | 0,207780867 | —0,1827157108
0,3 | 0,161167621 | —0, 12149255395
0,4 || 0,125212306 | —0, 81043204980

0.

0.15

0

0.0%

0.

0.15

0

0.0%

L

Fig. 3. a) An approximate solution Z(s,t) to the problem (1) — (4) at different instants of
time ¢; b) an approximate solution (s, t) to the problem (1) — (4) at different instants of
time ¢

To evaluate (see Table 2) the obtained approximate solution Z(s,t), found using the
method of decomposition and numerical solution of Z(s,t) the initial problem for a given

u(s) were found:
Ati :</ ‘j(satz) - '@(Sati)‘4 dS)
0

So we can conclude that, given the parameters found such an initial initial state of the
system u(s), at which the potential distribution x(s,?) in the crystalline semiconductor
after a predetermined time, close to the desired value of xf(s).

=
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Table 2

Value A, at various points in time

A0,1 A0,2 A0,3 AOA
0,199062 | 0,030231 | 0,034509 | 0,035085

The work was supported by Act 211 Government of the Russian Federation, contract

No. 02.A05.21.0011.
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YN CJIEHHOE NCCJIEJOBAHUE J1JI4 SAJAYN
CTAPTOBOI'O YVIIPABJIEHNA 1 PUTHAJIBHOI'O
HABJIFOAEHNSA B MOAEJIN PACIIPEAEJIEHN A
ITOTEHIINMAJIOB B KPUCTAJIJINMYECKOM
ITOJIVIIPOBOJAHUKE

K. B. Bacrouxosa

CraTbsi MOCBSIIIEHa YUCIEHHOMY HCCIEIOBAHUIO MATEMATHIECKON MOJIEIN yIIPABJICHIS
pacIpe/ieJieHueM IOTEHINAJIOB B KPUCTAJJIMIECKOM IOJIyIIpOoBOIHUKE. JlaHHast MOmeIb oc-
HOBaHa Ha 33J1a9e CTAPTOBOrO YIIPABICHNS W (PUHAJIHLHOTO HADIIOAEHNS CIa0BIMI 0DOOIIEH-
HBIMU PEIIeHUsIMA MATEMATUIECKON MOJIe/IN PACIPeIesIeHNs TOTEHINAJIOB B KPUCTAJLINIE-
CKOM TIOJIyIIpOBOJHUKE. JIaHHAST MOJEJIb OTHOCUTCS K KJIACCY MATEMATHIECKUX MOJEJeid,
OCHOBaHHBIX HA IOJIYJUHEHHBIX YPABHEHUSIX CODOJIEBCKOTO THUIA C P-KOIPIUTUBHBIM U S-

MOHOTOHHBIM OIl€paTOpaMH.
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COMPUTATIONAL MATHEMATICS

Hamu mokazano cyiecTBOBaHNE U €TMHCTBEHHOCTH CJIA00T0 OOOOIIEHHOTO PEIIeHUST UCCIIe-
JyeMoii Mojesu ¢ HadasabHbIM ycsoBueM Illoyosrrepa—CuiopoBa u HaiieHbl JOCTATOYHBIE
YCJIOBUSI CYIIIECTBOBAHUS PEIIeHUs] 38a91 CTAPTOBOIO YIIPABJIEHUsI U (DUHAJIBHOTO HAOJIIO-
nennst. [locTpoeH aJropuT™M YHCIACHHOTO METO/Ia HAXO0XKICHHUS ITPUOINKEHHOTO PEIIeHUSIMI
3a/[a49u CTaPTOBOTO yIIPaBJIeHNs U (PUHAJIBHOIO HAOJIFOIEHUsI UCCIIeyeMO 3a/1a9l HA OCHOBE
METOIOB JEKOMIIO3UIMK U MeToda lanepkuna. IIpuBoasTcs BEIYUCIUTEIbHBIE SKCIEPUMEH-
THI.

Karouesvie caosa: ypasrenus coboae6CK020 MUnNa; 3a0daua CMapmoso2o YnpasieHus U
PUHAAOHO020 HAOAWIEHUA; MAMEMAMUYECKOE MOJEAUPOBAHUE; NPOEKUUOHHBLTL Mmemod [a-
AEPKUHG; MEMOO 0eKOMNOZUUUU.
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