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OF ONE GRANBERG MODEL

E. I. Nazarova, South Ural State University, Chelyabinsk, Russian Federation,
nazarovaei@susu.ru

The active development of methods for solving inhomogeneous systems of differential
equations with a degenerate matrix with a derivative is primarily associated with a wide
range of applied problems. Optimal control to solutions of these problems is also an
important area of research. The article considers the problem on optimal control to solutions
of the non-stationary Granberg model. The main methods of the study are methods of the
theory of degenerate (semi) groups and optimal control for Sobolev type equations. The
given example of solving the problem from the monograph written by A. G. Granberg
illustrates the advantages of the applied methods for solving. Namely, the methods do not
require the introduction of assumptions that were applied earlier and do not correspond to
real situations when solving such problems. Also, as an example, we give an exact solution
to the optimal control problem in which the planned values of economic indicators are
taken in the form of a second-order polynomial with a control action in the form of a third-
order polynomial. In addition, we propose an algorithm for numerically solving the optimal
control problem under consideration.

Keywords: Leontief type equations; algorithm for the numerical solution; Granberg
model; optimal control; non-stationary model.

Introduction

Let L and M be square matrices of order n, det L = 0, then the system
Li=Mz+ f (1)

represents the degenerate balance model of W. W. Leontief in the monetary form [1].
Here x = col (x1,...,2,) and & = col (i1, ..., T,) are the vector functions of gross output
volume and its growth, respectively; L is the matrix of unit capital costs, M =1 — A,
and A is the matrix of unit direct costs; f is the vector function that determines the final
demand.

Systems of the form (1) under the condition det L = 0 take place in various fields of
knowledge, for example, in problems of hydrodynamics [2], metrology [3], etc., see also [4].
Note that the condition of degeneracy of the system, det L = 0, is one of the distinguishing
features of balance models of the economy, since resources of a certain type cannot be
stored [1]. Moreover, note that balance models often have a non-stationary form, i.e. the
matrices included in system (1) depend on time (see, for example, [5]). W. W. Leontief
was the first to study systems of the form (1) unresolved with respect to the derivative.
At the same time, such systems represent a special case of Sobolev type equations [6].

In the work of any economic system, control is necessary for the effective achievement
of goals. In the 60s of the XX century, A. G. Granberg proposed to construct optimization
intersectoral interregional models while considering models of a regional and national
economy. However, even W. W. Leontief spoke about the possibility of applying balance
models to an enterprise. The work of A. V. Keller [7] provides an example of a balance
model for an enterprise.
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Methods for solving inhomogeneous systems of differential equations with a degenerate
matrix in the derivative are most actively and successfully developed in the framework of
the scientific school headed by G. A. Sviridyuk [8, 9].

The papers [10, 11| consider various types of optimal control problems for the
degenerate balance dynamic Leontief-type models

Li = Mz + f + Bu, (2)

(L = M) L) ((0) = 20) = 0, (3)

including the optimal control problem with the quality functional

Z/HCQ: (u,t) H dt+Z/ (Nu'D(t), ulD (t))dt, (4)

where the matrix M is (L, p)-regular, p € {0} UN, § = 0,p + 1, Cxz(u,t) are the actual
values of economic indicators, yo(t) = (yo1(t),-..,Yon(t)) are the planned values of the
same indicators without spasmodic changes, ||-|| and (-) are the norm and scalar product
in R", respectively, C is a square matrix of order n, and N, are symmetric positive defined
matrices. System (2) takes into account the control action on the system (the vector
function Bu), i.e., as a result of solving the problem, we determine the control value u and
the gross output volume z required to achieve the planned indicators yo = Cxy(t).

The main purpose of this article is the numerical study to the optimal control problem
with functional (4) to solutions of one non-stationary Granberg model [4]. In order for this
we use the results of the paper [12].

1. Statement of the Problem

In the problem on optimal control to the solutions of the non-stationary Granberg
model, we consider the degenerate dynamic balance model

Li(t) = a(t)Mxz(t) + u(t), (5)

where L and M are square matrices of order n, and, perhaps, det L = 0, the matrix M is
(L, p)-regular, p € {0} UN, a: [0,7] = Ry, w:[0,7] = R™ u = (uy,...,u,) is the vector
function that characterizes the quantitative indicators associated with the behavior of end
consumers, and u is such that

p+1

Z/Huw Pt <. (6)

d = const, n is the number of branches of the economic system; z(u) € x, u € Uy, x is the
space of solutions, 4 is the space of controls, sy C U is a closed convex subset, which is
the set of admissible controls satisfying (6). Moreover, the space of controls

U={ue Ly ((0,7);R") : u®t) e L, ((0,7);R™), pe{0}UN},
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the space of solutions
X ={xeLy((0,7);R"): & € Ly ((0,7) ; R™)}.

In the space 4, we consider the compact convex set Ly, which is the set of admissible
controls.

Therefore, it is necessary to determine the optimal value v = col (vy,...,v,) € Uy,
which is necessary to achieve the minimum difference between the actual and the desired
values of economic indicators, i.e. such that

J(v) = min J(u) =

ucily

_ y(() )(t) ) 29: OfT (N, ula ) (q)(t)>dt) ’ (7)

1 7
= o (Z JCe
moreover, z(v) must satisfy both the degenerate balance model (5) and the Showalter-
Sidorov condition (3).

According to the economic sense of the corresponding terms in the balance model, we
add the conditions

where w; is the minimum required amount of the volume of products or services of the
i-th type of activity;
(u); <0. 9)

2. Granberg Model

Dynamic intersectoral models are detailed analogs of the models of reproduction of
the social product and national income, generalize statistical balance and optimization
intersectoral models, and are used as a theoretical and methodological basis for applied
dynamic models with intersectoral balance matrices [4]. In the general case, economical
dynamic models describe the development paths of a set of indicators characterizing the
state of an economic object (enterprise, industry, ...) depending on time. The initial state
of an economic system, i.e. the input state u = wu(t), is transformed to the output state
y = y(t), while the transformation operator can be the transfer function W(s) = % of
the complex variable s under some initial conditions.

The dynamic model of V. V. Leontief is given by the system of linear differential
equations of the first order with constant coefficients, which is unresolved with respect to
derivatives and has the form [4]

X(t) = AX(t) + BX(t) + C(t), (10)

where X (t) is the column vector of production volumes; X (t) is the column vector of
absolute production increases; C(t) is the column vector of consumption including non-
productive accumulation; A is the matrix of coefficients of direct material cost, including
the costs of reimbursement of disposal and capital repairs of fixed production assets; B
is the matrix of coefficients of capital intensity of production increases, i.e. the cost of
production accumulation per unit of increase in the corresponding types of products.
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In further considerations, it was assumed that the matrix A is indecomposable, and the
matrix B is non-degenerate. However, as the author himself points out, these assumptions
are unacceptably artificial, since the real matrices A are decomposable, and the matrices B
have zero rows, in particular, by industries that produce only consumer goods. Therefore,
we consider equation (10) and find its solution in the general case. Let L = B, M =1— A,
u(t) = —C(t). We obtain the Leontief type system

Li(t) = Mxz(t) + u(t) (11)
under the initial conditions
P (x(0) — ) = 0. (12)

In addition, we assume the presence of non-stationarity in the system, i.e. consider the
equation of the form

Li(t) = a(t)Mxz(t) + u(t), (13)

where a(t) is a scalar continuous function; L and M are square matrices of order n,
and, perhaps, det L =0, the matrix M is (L,p)-regular, p € {0} UN, w:[0,7] - R™;

x=col(xy,...,x,)and & = col (&1, ...,4,) are the vector functions of production volumes
and their rate of change, respectively; u = (uy,...,u,) is the vector function of control;
" .

Moreover, the economic sense of the corresponding terms in the balance model imposes
the condition

zi(t) >w; >0, i=1,n, (14)

where w; is the minimum required amount of production volume of the i-th industry.

Let the national economy in the context of three industries (production of tools,
production of objects of labor, production of consumer goods) be characterized by the
following matrices of material consumption and capital intensity:

0.100 1,116 0.075 1.5 1.6 09
A= 10500 0.548 0.425 ], B=|0 0 0 (15)
0 0 0 0O 0 0

with the initial values of production volumes z1(0) = 18, x2(0) = 50, x3(0) = 32.
Hereinafter, we take zero values as the minimum required amount of production volume
of each industry, i.e.

Then
1.5 1.6 09 0.9 -0.116 —-0.075
L=10 0 0], M=1-0.5 0452 —0.425]|, (16)
0O 0 0 0 0 1

and det(uL — M) = 1.478; — 0.3488. The matrix M is L-regular, and the L-resolvent of
the matrix M has a removable singular point at oo, therefore, p = 0 and the matrix M is
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(L, 0)-regular. The vector function of production volumes takes the form [12]

x(u,t) = lim zg(u,t) =
k—o0
-1 k
t) 1
— Tim |-M1 (1 - Q) LY L— >
o T=Quom * 2

+ / L—%M / a(¢)d¢ _IL (L—% )_l(kLﬂM))u(s)ds

For the given initial values of production volumes, substitute all the data in
formula (17) and take the limit for &k — co. We have

21 (u,t) = % (1, 083us(t) + 0, T36us(1))
xo(u,t) = —1.0152@(12(75— 0.126us (1) + 84.875 exp (% ta(()d() +
0

(18)

¢ 872 ¢ 5 4035 2779
+ [ exp (— a({)d{) gul(s) + 5912u2(5) + 5912u3(3)) ds,

u3(t)

a(t)

x3(u,t) =

3. Optimal Control

Let L, M, and C' be square matrices of order n, and, perhaps, det L = 0, the matrix
M be (L, p)-regular, p € {0} UN be the order of pole of the L-resolvent of the matrix M
at the point oo, u: [0,7] = R™ a: [0,7] = R,.

Consider the Leontief type system

Li =aMzx + u, (19)

where x = (z1,...,2,) and & = (&y,...,4&,) are the vector functions of production
volumes and their rate of change, respectively; L and M are matrices representing the
mutual influence of the rates of change in production volumes and production volumes,
respectively; the matrix C' characterizes the relationship between the observed and planned
values of production volumes; u = (uq,...,u,) is the vector function of controls; n is the
number of state system parameters; N, are symmetric positive defined matrices.

Fix 7 € R, and consider the space of solutions

x={z € Ly ((0,7),R") : & € Ly ((0,7),R™)},

space of controls  $h={u € Ly ((0,7),R") : u®*D € Ly ((0,7),R"™)},

and space of observations ) = C|[x]|. Note that not always 2 = x, but always Q) is
isomorphic to some subspace in y. In U, consider the compact and convex subset iUy,
which is the set of admissable controls. By admissible controls we mean the controls such
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that

p+1
/Hu(q )P dt < d.

q= 00

where d = const is the maximum admissable value of the vector function of controls.
Consider the problem on optimal control to solutions of the non-stationary Granberg
model.

It is necessary to find the vector function v € iy minimizing the value of the functional

Z/HC’x u, t) H dt+2/ (N,u® (), ul® (¢))dt, (20)

1.e.

J(v) = min J(u), (21)

u€ily

such that the vector function z(v) € x satisfies system (2.14) almost everywhere on
(0,7) and, for some 7y € R™ and a € p*(M), the vector function z(v) € x satisfies
the Showalter - Sidorov condition

(L — M)~' L) (2(0) — 29) = 0, (22)

where || - || is the Euclidean norm of the space R™, and yo(t) = col (yo1(t), - - ., yon(t)) are
the planned values of production volumes at the certain point in time ¢.

Definition 1. A vector function u € Uy satisfying (20) is called an admissible control of
problem (19)—(22) under the condition that z(u) € x satisfies (19) and (22).

By construction, the functional (20) is continuous and strongly convex on iy, then
there exists the unique minimum point of the functional on .

Definition 2. A vector function v € iy satisfying (21) is called an optimal control of
problem (19)—(22), if z(v) € x satisfies (19) and (22).

Theorem 1. [12| Let the matriz M be (L,p)-reqular, p € {0} UN, 7 € R, det M # 0.
Then for any xo € R", yo € Y there exists the unique solution v € Uy to problem (19)—(22),

which is the optimal control, moreover, x(v) satisfies system (19) under initial condition
(22) and has the form

e, 1) = lim (1) = lim [— SO (1 - QL) M (I-Qy) (&ii) %+
t —1\ K q: t —1\k . (23)
+ L—%M/a(()d( L |z +/ L—%M/a(()d( L (L—% ) Qru(s)ds |,

0

1 d . . .
where Wﬁ means that we apply the given operator q times successively,
a

Qr = (kLE(M))™,
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Let us find the optimal control to the solutions of the problem considered above. As
the scalar function a(t), we take the linear function a(t) =t on the interval [0;1], and find
the vector function of control u(t) = (uy(t), us(t), us(t)) in the form of a vector function
of polynomials of the third degree

a1t3 + blt
u(t) = | agt® + bt | . (24)
a3t3 + bgt

As the planned values of production volumes, we consider

t—¢?
Yo(t) = 0 ; (25)

N, = I, ¢ = 0,1; the matrix characterizing the relationship between the observed and
planned values of production volumes has the form

1 00
c=[(0o00 (26)
0 00
Substitute (24), (25), (26) and (18) into formula (20). We obtain the functional
1
/ (1,083(ast? + by) + 0, 736(agt® + b) — t + 12)° di+
0
1 1
+ /(2, 166ast+ 1, 472ast —142t)*dt+ /((a1t3+b1t)2—|—(a2t3+b2t)2+(a3t3+b3t)2)dt+ (27)
0 0

1
+/ (3ayt® + b1)? + (3ast® + by)® + (3ast® + bs)?) dt.
0

Therefore, it is necessary to find the coefficients aq, as, as, by, be, b3 in (24) such that
(27) takes the minimum value. Note that (27) is a function of six variables, the minimum
of which can be found by an environment designed to perform various mathematical and
technical calculations on a computer. We obtain

J(v) = 0,281
for
a1 =0,ay = —0,116,a3 = —0,079,b; = 0,b, = 0,127, b3 = 0, 086,
1.e.
0
v(t) = | -0, 11682 + 0, 127t

—0,079¢* + 0, 086¢

Taking into account the form (25), (26), we present a graphic illustration of the first
component of the observed (see Fig. 1) and planned (see Fig. 2) production volumes.
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Fig. 2. Graph of the function yg (v, t)

4. Algorithm for the Numerical Solution of the Problem

In order to find a numerical solution to problem (19)—(22), which exists by virtue of
Theorem 1, we represent the admissible control u € iy as a vector function of polynomials
of degree [ > p:

l l l
Ul = col <Z aljtj, Z (lgjtj, ceey Z (lnjtj> . (28)
7=0 7=0 j=0

Denote by vt the approximate solution to the optimal control problem, where vl is
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the minimum point of the quality functional Ji(u') on LUy (4L,

Z/HC’x ul t t —|—Z/ t), (W) D (t))dt, (29)

and z}, =z, (v}, t) satisfies conditions (19), (22) for k > K, K = max{ki, k»}. The values
k1, ko are determined by the formulas given below, in which A = n.
Denote by Zx(u,t) the numerical solution to problem (19), (22), and

Zr(u,t) = zi(u, t),

if k> K and K = max{ky, k2 }:

‘h ’Z\az\ﬂ
D

ks log| (p+1)"" 41,
’@h p‘ppz

(30)

where «; are the coefficients of the polynomial det(uL — M) of degree (h — p),

Ch,z

Q; = hZZAhza Z:ja

A}, are determinants obtained from the determinant of the matrix L by replacing (h —1)
columns with the corresponding columns of the matrix M, and r is the order number of
the determinant, (h — p) < rankL.

Step 1.

Consider initial data: L, M, C are the matrices, a(t) is the function, which is a
polynomial of degree [y, n is the number of industries under consideration; [ is the
degree of polynomials in representation (28) of the admissible control; Yj is the vector
function of planned production volumes, the elements of which are presented in the form
of polynomials of degree | — I;; d is a ball in the space R'*!, which is taken as the set
of admissible controls 4}; [0;7] is the considered period of time; ¢ is the accuracy with
which the approximate value of the quality functional is calculated; h,uin, hmaes are the
minimum and maximum optimization steps, respectively; ¢ is the coefficient of change in
the optimization step.

Step 2.

Verify the condition det M = 0. If the condition is satisfied, then go to Step 3, otherwise

replace z = eMz.

Step 3.

Divide the interval [0;7] into the points and calculate the values of the necessary
functions at each of these points.

Step 4.

Calculate the values of p, that is the order of pole of the L-resolvent of the matrix M
at the point oo, and determine the matrices N,, ¢ =0,p + 1.
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Step 5.

Calculate the value of K, starting from which we can find a numerical solution to the
problem such that not to be near the points of the L-spectrum of the operator M.

Step 6.

Determine Z}, Q, and R}:

t -1 7k
1
Zi=|L-M [a@dc| L| .
o)
Qi = [KLE (M)]", (31)
1 k

1 ) 1. \"
R = L—EM/Q(C)dC L (L—EM) .

Note that the value f a(¢)d¢ at the points of division is calculated at Step 3.

Step 7.

As initial value, take u = col(0,...,0), i.e. a;; = 0 in (28), and determine the value of
the vector function of control at each of the points found at Step 3. Then, calculate the
corresponding value of the functional Jy(u’) for the initial u.

Step 8.

Implement the optimization procedure, i.e. find values of the coefficients of the
polynomials in (28) such that the value of functional (29) is minimal.

Step 9.

As a result of the optimization procedure, determine the coefficients of polynomials
in the representation of the admissible control at which the quality functional takes a
minimum value, i.e. calculate the approximate value v} and the value of the quality
functional .J,. Write the answer.

Note that, in view of condition (14), when numerically solving the problem on optimal
control to the solutions of the Granberg model in the considered algorithm, it is necessary
to include a procedure that verifies that this condition is fulfilled, when the components
of the vector function of the production volume are calculated.
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SAJAYA OIITUMAJIBHOI'O VIIPABJIEHUA
PEIIIEH MM OTHOM MOJJIEJINI TPAHBEPTA

E. U. Hasaposa

AKTHUBHOe pa3BUTHE METOJOB PEIIeHUs] HEOJHOPOIHBIX crucTeM JauddepeHnmraabHbIX
YPaBHEHUN C BBIPOXKJAECHHON MaTpuueil IIpu IIPOU3BOAHON CBA3aHO, B IIEPBYIO Oo4epelb, C
[IIPOKUM KPYTOM MPHUKJIAIHBIX 3a1a9. ONTHMAIbHOE YIIPABIEHUE PEIIEHUsIMU ITUX 33189
TaKJKe sIBJIFETCs aKTYaJbHBIM HAIIPABJIEHHEM HUCCIIeI0oBaHuil. B crarbe paccmarpuBaercs
3aJia9a ONTUMAJIBHOTO yIPaBJIEHUs PEIIeHUsIMU HecTarmoHapHoit Mojesu I'panbepra. Oc-
HOBHBIMU METO/IaMU IIPOBEJIEHHOI'0 UCCJIEOBAHUS ABJIAIOTCS MEeTObI TEOPUU BBIPOXK JEHHBIX
(moJty )rpynn 1 ONTHMAJIBHOIO yIIPaBJIeHUs JJIsi ypaBHEHHI cobosieBckoro Tuna. [IpuseieH-
HBII npuMep pertenus 3aua4qn u3 MoHorpaduu A.I'. I'panbepra uIoCTpUpyeT IpenMyIe-
CTBa IPUMEHSIEMBIX METOJIOB PEIleHns, He TPEOYIONNX BBEIEHUS OIYIIEHU, TPUMEHS-
€MbIX paHee U He COOTBETCTBYIOIMINX PEAJbHBIM CHTYAIUSM I[IPU PEIIeHuH 0I00HOTO pOo-
Ja 3a7ad. Takke B KadecTBe NIPUMEPa IMPUBEJICHO TOYHOE PEIICHUE 33141 ONTHUMAJIHLHOTO
YIIpaBJIeHUsI, B KOTOPOIl IIJIAHOBBIE 3HAUEHUsI SKOHOMHYECKUX IOKa3aTesell B3ATbl B BUJIE
IIOJIMHOMa BTOPOI'O IIOPAAKa, IIPU YIIPABJISIONEM BO3JeHCTBUU B BHJE HOJIUHOMA TPETHETO
mopska. Kpome Toro, B paboTe npeiozKeH aJIrOPUTM YUCIEHHOTO PEIeHns! TOCTaBIEHHON
337291 ONITUMAJIbHOI'O YIIPAaBJICHAS.

Karouesvie crosa: ypasrenus Ae0HmMbE6CK020 MUNG; AA0PUMM YUCAEHHO020 DEUEHUSA,

modean I'panbepaa; onmumaivHOE YNPasaeHUe; HECMAUUOHAPHAL MOOEAD.
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