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NUMERICAL SOLUTION OF THE BARENBLATT -
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"WHITE NOISE" IN SPACES OF DIFFERENTIAL FORMS
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The paper is devoted to the search for numerical solutions to the Cauchy problem for
the linear stochastic Barenblatt — Zheltov — Kochina equation in space of smooth differential
forms on a torus. Based on the previously obtained results on the type of analytical solution
to the stochastic version of the Barenblatt — Zheltov — Kochina equation in spaces of smooth
differential forms on smooth compact Riemannian manifolds without boundary, we choose
several terms from the analytical solution in order to construct graphs of the numerical
solution for various values of the coefficients and the inhomogeneous term. Since these
equations are Sobolev type equations with a degenerate operator at the derivative, we can
solve various initial-boundary value problems using the theory of degenerate analytic groups
and semigroups of resolving operators. In the deterministic case, the solution is based on the
phase subspace of the original space. In spaces of differential forms, we use the invariant
form of the Laplacian, i.e. the Laplace — Beltrami operator. The phase space method is
also used in non-deterministic case, but we use the Nelson — Gliklikh derivative due to the
non-differentiability of "white noise" in the usual sense. In this paper, a two-dimensional
torus plays the role of a smooth compact oriented Riemannian manifold without boundary.
Numerical solutions are found using the Galerkin method and are presented for several fixed
time points as graphs of the coefficients of differential forms obtained in Maple.

Keywords: Sobolev type equation; Nelson—Gliklikh derivative;  Laplace—Beltrami
operator.

Introduction

In its initial statement [1|, the Barenblatt — Zheltov — Kochina equation
A=Ay = aAu+ f

simulates the pressure of a viscoelastic fluid filtered in a fractured porous medium. There
exist other physical interpretations of this equation [2], [3]. Different types (including cases
of different functional spaces) of initial boundary value problems for this equation were
solved by reducing to abstract Sobolev type equations (with noninvertible operator at
derivative) [4]

Lu = Mu+ f. (1)

In turn, the abstract Sobolev type equation with operators L, M € L(LL;4l) is reduced to
the equivalent system on splitting spaces

U=Wapug=3"a3" (2)

by the phase space method proposed by G. A. Sviridyuk. Recently, in the Chelyabinsk
scientific school of Sobolev type equations, various results were obtained for the
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Barenblatt — Zheltov — Kochina equation, in particular, in spaces of differential forms
defined on a Riemannian manifold without boundary [5], [6], and, for the stochastic version
[15], [16] of this equation, in the space of differential K-"noises" 7], [8]. Note that in this
case we use the invariant generalization of the Laplace operator in spaces of differential
forms, i.e. the Laplace — Beltrami operator 9], and differentiability of, generally speaking,
just continuous stochastic processes in the sense of Nelson — Gliklikh [10], which is extended
to the Sobolev type equations [11].

The actual problem is to find numerical solutions to Sobolev type equations [17]. The
aim of this paper is to obtain and analyze a numerical solution to the Cauchy problem

u(0) = wo, (3)

for equation (1) on a two-dimensional torus, which we use as an example of a Riemannian
manifold. To this end, we use a numerical algorithm based on the Galerkin approximation
method in order to carry out computational experiments for some set of initial parameters
of the Barenblatt — Zheltov — Kochina equation in Maple. The results are presented in the
form of sets of time-fixed values of the coefficients of differential forms.

The paper consists of Introduction, three sections, Conclusion, and References.
Section 1 contains preliminary information and describes spaces of differential K - "noises"
[7], [8]. Section 2 describes an example for the Barenblatt — Zheltov — Kochina equation
on a torus. In Section 3, we use the Galerkin approximation method in order to construct
a numerical solution to the Cauchy problem. References do not pretend to be complete,
but only meet the preferences of the author.

1. Sobolev Type Equations in the Deterministic Case and
Differential K-"Noises" on Differential Form Spaces

Let 4 and § be Banach spaces, and the operators L, M € L(WF) (ie.,
the operators are linear and continuous). Consider the L-resolvent set pl(M) =
{peC:(uL— M)t e L(F;W} and L-spectrum oX(M) = C\ p*(M) of the operator
M. If L-spectrum o*(M) of the operator M is bounded, then the operator M is called
(L, 0)-bounded. If the operator M is (L, o)-bounded, then there exist the projectors

— L L _ L L
P=gm | BulM)dpe £A). @ =52 /LM(M)du € L(3).
K y

Here R)(M) = (uL — M)™'L and L;(M) = L(uL — M)™' are the right
and the left L-resolvents of the operator M, respectively, and the closed contour
v C C bounds the domain containing o*(M). Set U°(U') = ker P(imP),
F°(F) = ker Q(im@) and denote by Li(Mj,) the restriction of the operator L(M) on
Uk k=0,1.

Theorem 1. [4] (Sviridyuk’s splitting theorem)
Let the operator M be (L, o)-bounded. Then
(i) the operators Li(My) € L(W*;F%), k=0,1;
(ii) there exist the operators My " € L(F%U0) and L7 € L(FHUY).
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Construct the operators H = Mj' Ly € L(U°), S = Ly'M; € L£(4'). Under the
conditions of the theorem,

(WL = M) == HE M (T = Q)+ Y " S* 1L
k=0 k=1

for all u € p%(M). The operator M is called (L,p)-bounded, p € {0} UN, if co is a
removable singular point (i.e. H = Q,p = 0) or a pole of the order p € N (i.e. H? # O,
HP*' = Q) of L-resolvents (uL — M)~" of the operator M.

A vector function u € C*°(R; ) is a solution to equation (1), if u satisfies the equation
on R. A solution u to equation (1) is a solution to problem (1), (3), if u satisfies condition

(3).

Theorem 2. [4] For the (L,p)-bounded operator M, p € {0} UN and for any initial
up € P C U and f € C®(R; W), for problem (1),(3) there exist analytic resolving groups
of operators of the form

1 1
Ut = e RE(M)etdp € L(U), F' = 5 Ly (M)e'dp € L(F), (4)
~ v

and the solution has the form

u(t) = Ulug + —ZHpMol%(t) +/UtSQfds.

q=0 0

Let Q = (2,S,P) be a complete probability space with the probability measure P
associated with the o-algebra S of subsets of the set 2. Denote by R the set of real
numbers endowed with the structure of o-algebra. Then the mapping y : § — R is called
a random variable. The set of random variables {x} with zero mathematical expectation
(Ex = 0) and finite dispersion (Dx < +oc) forms the Hilbert space Ly with the scalar
product (x1, x2) = Ex1x2 and the norm ||x||L,. Let So be a o-subalgebra of the o-algebra
S. Construct the subspace LY C Ly of random variables measurable with respect to Sp.
Denote by II : Ly — L9 the orthoprojector. Consider the random variable x € Ls, then
ITy is called a conditional expectation and is denoted by E(x|Sy).

For some interval J C R, the measurable mapping 1 : 3 x & — R is called a stochastic
process, and the random variable n(-,w) is called a section of the stochastic process, and
the function n(t,-), t € J is called a trajectory of the stochastic process. The stochastic
process n = 1(t, ) is called continuous, if a.s. (almost sure), i.e. for a.a. (almost all) w € S,
the trajectories 1(t,w) are continuous functions. The set {n = n(t,w)} of all continuous
stochastic processes with values in Ly forms the Banach space CLy with the norm

Inllcr, = sup(Dn(t, w))*/2.
ted

Fix an arbitrary stochastic process n € CL,.

Definition 1. A random variable

0 (w) = 1( lim E! (”(HA“)_”(W) ol E (n(t,-)—n(t—At,-)))

2 \ At=0+ At At—0+ At
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is called the Nelson — Gliklikh derivative of the stochastic process n at the point t € 7, if
the limit exists in the sense of a uniform metric on R.
Here E} = E(-|N/"), and N;' C S is a o-algebra generated by the random variable

n(t,w).

If the Nelson — Gliklikh derivatives 7 (,w) of the stochastic process (-, w) there exist

for a.a. points of the interval J, then there exists the Nelson — Gliklikh derivative 7% (-,w) on
the interval J (a.s. on J). Denote the set of continuous stochastic processes with continuous

Nelson — Glicklikh derivatives 7€ CLy(J) by C'Ly(7J). By induction, we can define Banach
spaces C'Ly(J (”) [ € N, of the stochastic processes having continuous Nelson — Glicklikh
derivatives on J up to the order [ € N inclusively.

The norms of these spaces have the form

. 1/2
o, = sup (ZD e w>) |
€3\

where n°= 7. Since "white noise" belongs to all the spaces C'Ly (Ry), I € {0} UN, then
these spaces are called the spaces of "noises”.
We also use the spaces of random K-variables. Let space $) be a separable Hilbert space

with an orthonormal basis {p;}, a monotone sequence K = {\.} C R, (Z A < +00),
and a sequence {{x} = & (w) C Ly of random variables with norm H§k||L2 S C' for one

C € Ry and for all k£ € N. We define a $)-valued random K-variable {(w) = Z Mk (W) g
k=1
Complete the linear span of the set {A\&rpx} with the norm

1/2
H’?HHKL2 (Z )‘2ka>

and call the result by a space of ($-valued) random K-variables. Denote the space by
HgkL,. The obtained space HkL, is a Hilbert space and contains a random K-variable
¢ = &(w) € HkL,. Similar, a Banach space of ($)-valued) K-"noises" is defined as a
completion of the linear span of the set {A\&rpx} with the norm

00 l 1/2
[ T— (z 23 D nz) |
€3 \k=1  m=1

where a sequence {n;} C C'Ly, | € {0} UN. The vector n(t,w) = > \umi(t,w)er belongs
k=1

to the space C!(J;HkL,), if the elements of the sequence of vectors {n;} C C'Ly and

all the Nelson — Gliklikh derivatives of these elements of the sequence up to the order

[ € {0} UN inclusively are uniformly bounded with respect to the existing norm || - |y, -

Further, in the spaces of K-"noises", we determine the coefficients of differential forms

given on a manifold without boundary. Let M,; be a smooth connected oriented compact
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Riemannian manifold without boundary of the class C° and of dimension d. On the
manifold My, consider the vector space E9(My) of the ¢-forms

a(xy, ..., x,) = E iy sin,iq (X5 ooy T )iy Ny Ao N diy

where a;, ..., (T1, ..., 2n) € C% (My), ¢ = {0,1,...,d}. On the space £, define the scalar
product
(a,b)g = /a/\ *b,
My

where * is the Hodge operator that establishes a linear isomorphism of ¢g-forms and (p—q)-
forms on My, but (possible) up to a sign by virtue of xx = (—1)‘1(7’_9). In the spaces F, the
manifold (My) is defined by the formula A = d§+dd, where d is the external differentiation
operator, § = (—1)™*+D+1 4 dx is the Laplace — Beltrami operator. Introduce the following
two scalar products:

(a,b); = (a,b)o + (Aa,b)o, (a,b)2 = (a,b); + (Aa, Ab)o.

Denote by H{, k = 0, 1,2 a Hilbert space obtained by completion of E? in the norm || - ||,
induced by the scalar product (-,-)x, £ =0,1,2, ¢ € {0,1,...,d}. The obtained separable
Hilbert space H}! has a basis of the eigenfunctions of the Laplace — Beltrami operator, be
orthonormal with respect to the scalar product (-, ), £ =0,1,2..

Spaces of random K-variables defined on the manifold M,;: UL, = H{i L, and
FxLy; = Hi Ly, where K = {\;} is a monotone sequence of eigenvalues of the Green
operator (the eigenvalues are inverted to the eigenvalues of the Laplace — Beltrami

operator). The elements of these spaces are the vectors o = Z Meror and B = Z A&y,

respectively, where {¢} and {i}} are eigenvectors of the operator orthonormal with
respect to (-, ) and (-, )s.

Consider the spaces of K-"noises" C'(J;H L,) and C'((J;Hi Ly), | € {0} UN,
q€{0,1,....,d}, T C R is an interval.

2. Solution of the Stochastic Variant of the Barenblatt — Zheltov —
Kochina Equation on the Torus

Consider the homogeneous Barenblatt — Zheltov — Kochina equation
(A —A)uy = aAu (5)

and the Cauchy problem
u(0) = uo (6)
We can [5], [7] to reduce (5), (6) to problem (1), (3). To this end, we define the operators

L=A=A)=(A+dj+dd), M = aA = a(dd + id) (7)
and consider the stochastic equation

L = Mn (8)
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with the condition
n(0) —no = 0. (9)

Theorem 3. [8] Let the operator M be (L, p)-bounded, p € {0} UN. Then for any ny €
UkLy a.s. there exists the unique solution n € C'(J; UkLy) to Cauchy problem (9) for
equation (8) of the form u(t) = Ulug.

Let us consider the application of the obtained results to the Barenblatt — Zheltov —
Kochina equation in the spaces of K-"noises defined on a smooth compact Riemannian
oriented manifold without boundary. As such a manifold, we consider the two-dimensional
torus T? = [0, 27] x [0, 7] and consider the stochastic variant of the Barenblatt — Zheltov
— Kochina equation

A+ A)uy = aAw. (10)
Define the operators L and M by the formulas

L=(\+d§+dd),M = a(ds + id). (11)

For the two-dimensional torus with coordinates 1, x5, taking into account the general
representation of the Laplace — Beltrami operator on the manifold M, with the Riemannian
metric g

N

bVl

we obtain the Laplace — Beltrami operator in the form

(aigijaj)a

Aq2 = (87°02, — 4wy, 0y, + 02,).
The eigenvalues \; are

2 2
A= min max 472 |3 (1 + 2%) - 201022—7; + 6—22
ECZ2,|E|=k+1 (c1,c2)CE m T T

Therefore, we have a non-negative, non-decreasing, finite multiple, converging only to co
sequence of eigenvalues {\;}, and the sequence of corresponding eigenfunctions {p} forms
the necessary orthonormal basis in (' = Hlx Ly, where Hi Ly is a subspace HY Ly
obtained by the Hodge — Kodair splitting [9], be orthogonal to harmonic forms for A # A.

Since the dimension of the manifold is d = 2, we have solutions of two types. The first
type takes place for O-forms (and 2-forms isomorphic to them), and the second type takes
place for 1-forms.

The relative spectrum of the Barenblatt — Zheltov — Kochina equation has the form

R (12

therefore, the operator M is (L, p)-bounded. For the inhomogeneous Barenblatt — Zheltov
— Kochina equation

L= Mn+ f, (13)

it is necessary to find the projections of the inhomogeneity f onto the corresponding
subspaces by the existing projectors @, (I — @), see Theorem 2.
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3. The Numerical Solution of the Stochastic Barenblatt — Zheltov —
Kochina Equation on the Torus
Numerical solution of the Cauchy problem for the Barenblatt — Zheltov — Kochina

equation was carried out in Maple using the operators and variables implemented in Maple.
The solution algorithm is presented by the block diagram given in Fig. 1. The numerical

D

'

Input of the initial data: local coordinates of the manifold M,
the operators L and M by the parameters A and @, the
inhomogeneousterm and the number of splitting steps

Check the homogeneity: f = 0

Project the inhomogeneous part onto the chosen subspace

-
-

Project the Barenblatt = Zheltov - Kochina equation
onto the chosen subspace

k.

Construct a numerical analogue for the equation and compute
its solutions in the chosen subspace

-

v

Dutput of the solution in the form of a graph

= >

Fig. 1. Block diagram of the algorithm

solution was obtained with the given step up to the time 7'= 4. An approximate solution
is obtained by approximating the first three basic functions of the Galerkin method in the
form of product of expansions in cosines of the trigonometric system in the variable x and
in sines of the trigonometric system in the variable y. Random values are introduced using
the randomize procedure. The initial condition is expanded in a series in the eigenvalues
of the Green operator for the Laplace equation, which are inverse with respect to the
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eigenvalues of the Laplace operator. The graphs show the solutions at the time instants
te, k = 1,...,8, by the corresponding colors: green, red, orange, gold, yellow, blue, violet,
black (see Fig. 2).

&

Fig. 2. The graph of the solution with A =2, a=1,f =0

Fig. 2 shows the graphs of the solution in the first eight time cutoffs of the homogeneous
Cauchy problem with A = 2,a = 1. Fig. 3 shows the graphs of the solution in the first
eight time cutoffs of the homogeneous Cauchy problem with A = —2.5, a = 0.5.

Fig. 3. The graph of the solution with A = —=2.5,a =0.5, f =0
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Further, we present a graph of the solution with A = 7, = 0.5 for a homogeneous
equation and inhomogeneous equation with f = 5sin(¢) in Fig. 4 and in Fig. 5, respectively.

Fig.

Fig. 5. The graph of the solution with A =7, = 0.5, f = 5sin(t)
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4. The graph of the solution with A=7,a=0.5, f =0

o
4-4‘.“ o
:‘-‘-—‘ig-;gg\\\tc‘

TN S T
T

ok
-

i)

2 [

2019, vol. 6, no. 4

39



D. E. Shafranov

References

1.

10.

11.

12.

Barenblatt G. 1., Zheltov Yu. P., Kochina I. N. Basic Concepts in the Theory of
Seepage of Homogeneous Fluids in Fissurized Rocks. Journal of Applied Mathematics
and Mechanics, 1960, vol. 24, no. 5, pp. 1286—1303.

Hallaire M. Soil Water Movement in the Film and Vapor Phase Under the Influence of
Evapotranspiration. Water and Its Conduction Insoils. Proceedings of XXX VII Annual
Meeting of the Highway Research Board, Highway Research Board Special Report, 1958,
vol. 40, pp. 88-105.

Chen P. J., Gurtin M. E. On a Theory of Heat Conduction Involving Two
Temperatures. Journal of Applied Mathematics and Physics (ZAMP), 1968, vol. 19,
no. 4, pp. 614-627.

Sviridyuk  G. A. On the General Theory of Operator Semigroups.
Russian ~ Mathematical — Surveys, 1994,  wvol. 49, mno. 4, pp. 47-74.
DOTI: 10.1070/RM1994v049n04ABEH002390

Shafranov D. E., Shvedchikova A. I. The Hoff Equation as a Model of Elastic
Shell. Bulletin of the South Ural State University. Series: Mathematical Modelling,
Programming and Computer Software, 2012, no. 18 (277), issue 12, pp. 77-8l.
(in Russian)

. Shafranov D. E. The Splitting of the Domain of the Definition of the Elliptic

Self-Adjoint Pseudodifferential Operator. Journal of Computation and Engineering
Mathematics, 2015, vol. 2, no. 3, pp. 60-64. DOI: 10.14529/jcem150306.

Shafranov D. E.; Kitaeva O. G. The Barenblatt — Zheltov — Kochina Model with the
Showalter — Sidorov Condition and Additive "White Noise" in Spaces of Differential
Forms on Riemannian Manifolds without Boundary. Global and Stochastic Analysis,
2018, vol. 5, no. 2, pp. 145-159.

Kitaeva O. G., Shafranov D. E., Sviridyuk G. A. Exponential Dichotomies
in Barenblatt—Zheltov—Kochina Model in Spaces of Differential Forms with
"Noise". Bulletin of the South Ural State University. Series:  Mathematical
Modelling, Programming and Computer Software, 2019, vol. 12, no. 2, pp. 47-57.
DOI: 10.14529 /mmp190204

. Warner F. Foundations of Differentiable Manifolds and Lie Groups. N.Y., Springer-

Verlag., 1983, 276 p.

Gliklikh Yu. E. Global and Stochastic Analysis with Applications to Mathematical
Physics. London, Dordrecht, Heidelberg, N.Y., Springer, 2011, 436 p.
DOI: 10.1007/978-0-85729-163-9

Sviridyuk G. A., Manakova N. A. The Dynamical Models of Sobolev Type with
Showalter—Sidorov Condition and Additive "Noise". Bulletin of the South Ural State
University. Springer, 2014, vol. 7, no. 1, pp. 90-103. DOI: 10.14529/mmp140108

Favini A., Sviridyuk G. A., Zamyshlyaeva A. A. One Class of Sobolev Type Equations
of Higher Order with Additive "White Noise". Communications on Pure and Applied
Analysis, 2016, vol. 15, no. 1, pp. 185-196. DOI: 10.3934/cpaa.2016.15.185

40

Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

13.

14.

15.

16.

17.

Favini A., Sviridyuk G. A., Sagadeeva M. A. Linear Sobolev Type Equations
with Relatively p-Radial Operators in Space of "Noises". Mediterranean Journal of
Mathematics, 2016, vol. 13. no. 6, pp. 4607-4621. DOI: 10.1007/s00009-016-0765-x

Zagrebina S. A., Soldatova E. A., Sviridyuk G. A. The Stochastic Linear Oskolkov
Model of the Oil Transportation by the Pipeline. Springer Proceedings in Mathematics
and Statistics, 2015, vol. 113, pp. 317-325. DOI: 978-3-319-12145-1 20

Shestakov A. L., Sviridyuk G. A. On a New Conception of White Noise. Obozrenie
Prikladnoy 1+ Promyshlennoy Matematiki, 2012, vol. 19, issue 2, pp. 287-288.
(in Russian).

Shestakov A. L., Sviridyuk G. A., Chudyakov Yu. V. Dinamic Measurement in Spaces

of "Noise". Bulletin of the South Ural State University. Series: Computer Technologies,
Automatic Control, Radio Electronics, 2013, vol. 13, no. 2, pp. 4-11. (in Russian).

Sviridyuk G. A., Brychev S. V. Numerical Solution of Systems of Equations of Leontevs
Type. Russian Mathematics (Iz. VUZ), 2003, vol. 47, no. 8, pp. 44-50.

Dmitry E. Shafranov, PhD (Math), Associate Professor, Department of Mathematical

Physic Equations, South Ural State University (Chelyabinsk, Russian Federation),
shafranovde @susu.ru.

Received August 27, 2019

YAK 517.9 DOI: 10.14529/jcem190403

YU CJIEHHOE PEHNIEHVUE YPABHEHUNA BAPEHBJIATTA —
YKEJITOBA - KOUNHON C AAJNTUBHLIM "BEJILIM
MIryMmoM" B ITPOCTPAHCTBAX JNO®PEPEHIINAJIBHBIX
®OPM HA TOPE

. E. Ilagparos

Pabora mocssiineHa MOUCKY YUCAEHHBIX pelreHnii 3ajaun Komm Jjist JIMHERHOTO CTO-
XaCTUIeCKOTO ypaBHeHus bapemnbmarra — 2Kenrosa — KoumHoit B mpocTpaHCcTBe TIaIKnX
nuddeperiuagabHbx GopM Ha Tope. Vcxomst u3 paHee MOJIyUYEeHHBIX Pe3yJIbTATOB [0 BUILY
AHAJTUTUIECKOTO PEIIeHNsI CTOXaCTUIeCKOT BapuaHTa ypapHenns bapendmarra — 2Kemxrosa —
Kouunnoit B npocTparcTBax riaakux auddepeHuaibHbIX (POPM Ha IJIQJIKAX KOMIIAKTHBIX
PUMAHOBBIX MHOT0000pa3usix 6e3 Kpasi U BbIOMpas U3 AHAJUTHIECKOTO PEIEHNsT HECKOJIBKO
CJIArAEMBbIX, CTPOSITCs I'PAGUKK YUCIEHHOIO PENIeHusl i Pa3IndHbIX 3HAUYeHUN Kodhdu-
[IMEHTOB U HEOIHOPOHOI'O WIeHA. JTO YPaBHEHUsI OTHOCUTCS K YPABHEHUSIM CODOJIEBCKOTO
THIA C BBIPOXKJICHHBIM OIEPATOPOM MPH IIPOU3BOIHON, ITO U MO3BOJIUIIO PEIIUTH PA3JINI-
HbIE Ha9aJIbHO-KPAEBbIe 33J[a4H C IIOMOIIBI0 TEOPUH BhIPOXKACHHBIX AHAJTUTAIECKUX IPYII U
MOJIyTPYIII PA3peInaionux onepaTopos. B 1eTepMUHUPOBAHHOM CJIydae pelreHne CTPOUTCS
Ha (Ha30BOM IOJIIPOCTPAHCTBE MCXOIHOIO MMPOCTpaHcTBa. B mpocrpancrBax nuddepenim-
aJIbHBIX (DOPM HCHOJIb3yeTcs nHBapuaHTHas dopma Jjamiacuana — omeparop Jlamraca —

BeﬂpraMI/I. MeTO,H (ba30130r0 IIPOCTPAaHCTBa HCIOJIB3YETCA 1 B HEJACTEPMUHUPOBAHHOM
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ciaydae, HO, B cuty Hemuddepennupyemoctu "6eroro myma" B 0OBIYHOM IIOHMMAHUU, MbI
ucrnoap3yeM nponsojayo Hemabcona — [mmkimxa. [IBymMepHbIi TOp B Halleil crarbe urpa-
€T POoJib IVIAJIKOTO KOMITAKTHOTO OPMEHTHPOBAHHOTO PUMAHOBOIO MHOTO0Opa3usi 6e3 Kpasi.
YucjieHHbIE PeNIeHrs] HAXOJATCA MPU IMOMOIIU METOJa [ alepKuHa U IPEJICTABICHBI JIJs
HECKOJIbKMX (DUKCAPOBAHHBIX MOMEHTOB BpeMeHH, KakK rpacduku kosddunmentos audde-
PEHIMABHBIX (DOPM, TTOIYyUIeHHBIX B cucTeme Maple.

Karoueswie crosa: ypasrenus coboaesckozo muna; npouseodnas Heavcorna — Lnukaiuza;

onepamop Jlanaaca — Beavmpamu.

JImreparypa

1.

10.

Bapentsart, I 1. O6 OCHOBHBIX TIpe/ICTaBIEHUIX B TEOPUU (DUIHTPAIUH KUIKOCTH
B TpemuHoBaTo-opuctsix cpenax / I. U. Bapenbaart, FO. I1. 2Kesrros, 1. H. Koun-
ua // Ilpuknannas maremarnka u Mexanuka. — 1960. — T. 24, Ne 5. — C. 852-864.

. Hallaire, M. Soil Water Movement in the Film and Vapor Phase Under the Influence

of Evapotranspiration. Water and Its Conduction Insoils / M. Hallaire // Proceedings
of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board
Special Report — 1958. — T. 40. — P. 88-105.

Chen, P. J. On a Theory of Heat Conduction Involving Two Temperatures / P. J. Chen,
M. E. Gurtin // Journal of Applied Mathematics and Physics (ZAMP). —1968. - V. 19,
Ne 4, — P. 614-627.

Ceupumiok, I'. A. K obmeit reopun nosyrpynm oneparopos / I'. A. Ceupumioxk //
Venexu marematndeckux Hayk. — 1994, — V. 49, Ne 4. — C. 47-74.

[Madpanos, 1. E. ¥Ypasuenne Xodda kak mogens ynpyroi obosouku / 1. E. Mla-
dbpanos, A. U. lIeeguukosa / Becrauk FOYpI'Y. Cepust: Maremaruueckoe Mojieu-
poBanme u nporpammuposanue. — 2012. — Ne 2. — C. 77-81.

Shafranov, D. E. The Splitting of the Domain of the Definition of the Elliptic Self-
adjoint Pseudodifferential Operator / D. E. Shafranov // Journal of Computation and
Engineering Mathematics. — 2015. — V. 2, Ne 3. — P. 60-64.

Shafranov, D. E. The Barenblatt — Zheltov — Kochina Model with the Showalter —
Sidorov Condition and Additive "White Noise" in Spaces of Differential Forms on
Riemannian Manifolds without Boundary / D. E. Shafranov, O. G. Kitaeva // Global
and Stochastic Analysis. — 2018. — V. 5, Ne 2. — P. 145-159.

Kitaeva, O. G. Exponential Dichotomies in Barenblatt — Zheltov — Kochina Model
in Spaces of Differential Forms with "Noise" / O. G. Kitaeva, D. E. Shafranov,
G. A. Sviridyuk / Bectauxk FOVpL'Y. Cepus: Maremaruaeckoe MoJeJUpOBAHEE U
nporpammupoBanue. — 2019. — T. 12, Ne 2. — C. 47-57.

Yopuep, @. OcHoBbl Teopun riaKkux MuOroobpasuit u rpymmn Jlu / ®@. Yopuep. — M.:
Mup, 1987. — 302 c.

Gliklikh, Yu. E. Global and Stochastic Analysis with Applications to Mathematical
Physics / Yu. E. Gliklikh. — London, Dordrecht, Heidelberg, N.Y.: Springer, 2011. —
436 p.

42

Journal of Computational and Engineering Mathematics



COMPUTATIONAL MATHEMATICS

11.

12.

13.

14.

15.

16.

17.

YK,

Sviridyuk, G. A. The Dynamical Models of Sobolev Type with Showalter—Sidorov
Condition and Additive "Noise" / G. A. Sviridyuk, N. A. Manakova // Becranux
HOYpIl'Y. Cepus: Martemarudeckoe MojenpoBaHue u mporpammuposanne. — 2014, —
T. 7, Ne 1. — C. 90-103.

Favini, A. One Class of Sobolev Type Equations of Higher Order with Additive "White
Noise" / A. Favini, G. A. Sviridyuk, A. A. Zamyshlyaeva // Communications on Pure
and Applied Analysis. — 2016. — V. 15, Ne 1. — P. 185-196.

Favini, A. Linear Sobolev Type Equations with Relatively p-Radial Operators in Space
of "Noises" / A. Favini, G. A. Sviridyuk, M. A. Sagadeeva // Mediterranean Journal
of Mathematics. — 2016. — V. 13, Ne 6. — P. 4607-4621.

Zagrebina, S. A. The Stochastic Linear Oskolkov Model of the Oil Transportation
by the Pipeline / S. A. Zagrebina, E. A. Soldatova, G. A. Sviridyuk // Springer
Proceedings in Mathematics and Statistics. — 2015. — V. 113. — P. 317-325.

[ecrakos, A. JI. O HoBoil KoHIenu B 6es10r0 1iyma / A. JI. Illecrakos, I. A. Csu-
pumiok // O6ospeHne TPUKIQIHON U npoMbIieHHON MaremaTuku. — 2012. — T. 19,

Ne 2. — C. 287-288.

[ecrakos, A. JI. Tunamudeckue nsmepenus B npocrpancrsax "mrymos" / A. JI. Ie-
crakoB, I'. A. Ceupumiok, FO. B. Xynskos // Becruuk FOVpI'Y. Cepusi: Komnbiorep-
HbIE€ TEXHOJIOTUU, yIIpaBJIeHre n pajauodiekTporunka. — 2013. — T. 13, Ne 2. — C. 4-11.

Ceupmmiok, . A. Ywucsennoe perenne cucTeM ypaBHEHUI JICOHTHEBCKOTO THIA /
I. A. Cupumiok, C. B. Bperues // Ussecrus Bysos. Maremaruka. — 2003. — Ne 8. —
C. 46-52

Hlagpparos JImumpuii FEeeenvesuw, xkarndudam @Pu3uro-mamemamuieckur Ha-
douenm, douenm Kagpedpv, ypasHernutld mamemamuyveckol dusuru, FOocro-

Ypanrvekuti 2ocydapemeennviti ynusepcumem (2. Yeasbunck, Poccutickan Dedepayus),
shafranovde @susu.ru.

Ilocmynu.na 6 pedaxuyuro 27 asrycra 2019 r.

2019, vol. 6, no. 4 43



