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ON ONE METHOD OF CALCULATING MOVING
BOUNDARIES IN EULER COORDINATES
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The paper presents a method for calculating a moving boundary in Euler coordinates
as an application to studies of gas flows in areas with an impermeable wall. The method
is based on a combination of the Eulerian grid and one Lagrangian border cell formed
by the combination of two cells adjacent directly to the moving border. Reconstruction of
the entire computational domain is not required. This fact has a significant impact on the
computational performance. We describe the algorithm for combination of cells, present
the calculation of thermodynamic parameters, and justify the expression for the internal
energy of the combined interval. The method was verified using an analytical solution to
the problem of a converging shock wave in a vessel with an impermeable wall. Finally, we
compare the entropy functions of the analytical and numerical solutions.
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Introduction

Liquid and gas flows with moving boundaries are widespread in various technological
processes and are of great importance in industry. The following several types of devices
can be distinguished: high-speed explosive closures designed to shut off steel pipelines
in the nuclear, oil, and gas industries [1]; conservation ampoules used to obtain new
materials (compaction of metal or ceramic powders by shock waves) [2]; explosion-proof
chambers designed to localize the effects of the explosion; ammunition of fragmentation
and cumulative principles of action [3, 4|. The work of many gas-dynamic devices is often
associated with the deformation of the working body, which in most cases is made of
metal and has a shape close to plane, cylindrical or spherical. Under such a specific effect
as shock-wave loading, the study of dynamic processes in spherical and cylindrical shells
is a complex and actual problem. Along with studies of processes occurring in shells under
radial compression, it is equally important to study processes occurring during radial
tension, which are realized when shells expand under the action of explosive loads.

In experiments, the shell is deformed under the action of explosion product located
on its outer surface. In the ideal case, an uniformly distributed load impulse compresses
all shell elements to the axis of symmetry with the same initial velocity until all kinetic
energy is expended on the work of elastic and plastic deformation. Therefore, as a result
of the radial deformation of the shell, we obtain a shell with smaller external and internal
radii and a larger thickness.

An experimental study of such problems involves considerable difficulties and costs.
Therefore, an actual problem is the development of physical and mathematical models and
a numerical algorithm that can reliably describe the flow of a liquid or gas with moving
impermeable boundaries.
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In the overwhelming majority of cases, Lagrangian methods are used for such problems
[5, 6]. Namely, the cells of the computational grid move together with the liquid and,
therefore, there is no need to select contact boundaries in a special way. However, with
sufficiently considerable deformations of the substance, there is a strong distortion of the
grid cells, which causes a decrease in both the accuracy of calculations and the time step.
And in some cases, there is a loss of the metric proximity of neighboring nodes of the
Lagrangian grid. These shortcomings are removed by using the algorithms that support
the convexity of cells, uneven grids, or the procedure of reconstruction of a grid [7].

In the Euler methods [5, 8], the nodes of the computational grid are fixed and do not
change during the calculation. As a result, flows with considerable deformations can be
investigated. In order to construct grids that take into account the shape of the boundaries
of the computational domain or its mobility, one can use methods of constructing adaptive
grids, where there are moving grids that are rigidly connected with the movement of
the boundary [9-13]. However, such methods lead to a significant complication of the
computational algorithm and an increase in the computational time.

There exists a number of Lagrangian — Euler methods that use a combination of the
Lagrangian and Euler grid [14]. In this paper, we propose a modification of the method
[15] based on a combination of the Eulerian grid and one Lagrangian boundary cell formed
by the union of two cells adjacent directly to the moving boundary. Therefore, the main
calculation is carried out on an Eulerian grid, and the reconstruction of boundary cells does
not require large expenditures of computer time. In contrast to [15], we propose to calculate
the internal energy of the combined interval instead of the total energy. The proposed
approach does not lead to oscillations of the solution at the boundary. The method is also
generalized to the case of cylindrical and spherical symmetry in the one-dimensional case.
Let us show the essence of the method by the example of such a modification of the Harlow
method as the method of large particles (MLP) [§].

1. Method of Large Particles

The main idea of the MLP is to split the system of Euler equations according to
physical processes [8]. At each time step, the values are calculated in three stages. Let us
briefly describe the MLP in the one-dimensional case and the changes associated with the
generalization for all types of symmetry.

Consider the movement of an ideal liquid in the one-dimensional case. As the initial
equations, we take the Euler differential equations in divergent form (the equations of
continuity, momentum, and energy):

dp ) -

o + div(pv) =0 (1.1)
opv ,
5t + div(pvv) = —grad(p) (1.2)
c?ap_tE + div(pEv) = —div(pv). (1.3)

Here p is the density, £ = ¢ + 0, 5v? is the total specific energy, ¢ is the internal energy, p
is the pressure, v is the velocity. In order to close system (1.1)—(1.3), we use the equation
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of state of an ideal gas in the following form:

b= (7 - 1)p€7

where 7 is the adiabatic exponent.

The first stage, i.e. the Euler stage, involves neglecting all the effects associated with
the movement of the unit cell (there is no mass flow through the cell boundaries), and
takes into account only the effects of liquid acceleration due to pressure. At this stage,
intermediate values of velocity and energy of the flow are determined [8]. Taking into
account these assumptions, we obtain that the terms of the equations having the form
div(ppv), where

¢ =(Lv, E),

are taken equal to zero. Then, it follows from the continuity equation that rho = const,
therefore, in the remaining equations, the density can be taken out from under the

differential sign:
Ov

gy = —9rad(p) (1.4)
paa—lf = —div(pv). (1.5)

Write equations (1.4)—(1.5) in the general case for plane, cylindrical, and spherical
symmetry:

ov  Op
T s 1.
"ot *ar (16)
oF 1 or*~pu
Pot * re=l o or 0, (1)

where « is the type of symmetry. Namely, the equations describe movements with plane,
cylindrical, and spherical symmetry, for @« = 1, a = 2, and a = 3, respectively.

Now we consider the finite-difference approximations of the first order of equations
(1.6)—(1.7) at the time ¢™:
p?+1/2 - p?f1/2 g

1.
I (18)

’l~)l':?)i—

a—1_n n a=1_n n
o g 1 (Ti+1/2) Dit1/2Viv12 — (Tifl/Q) Di—1/2Vi—1)2 g
i 7 (Ti)afl Ar p? ’

(1.9)

where r; is the coordinate of the center of the i-th cell at the time ¢". The quantities
¢ = (v,p,r) with fractional indices are considered to be related to the cell face and are
determined as follows: —_—
n Pi T Pir1
Pit1/2 = 9 = (1.10)

At the second stage, i.e. the Lagrangian stage, we calculate mass flows through the
boundaries of the Euler cells. Formulas for calculating mass flows follow from continuity
equation (2.1), which, as a result of approximation, takes the form

n n a—1 pn ~n n a—1 p ~n

J2) 1 (ri+1/2> Piv12Vit1/2 — (Tifl/Q) Pi—1/2Yi-1/2
At (rm)*t Ar

n+1
Pi

— 0. (1.11)
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Rewrite (1.11) in the form

P ()T Ar = g ()T Ar — AM jy + AME ), (1.12)

where
n n a—1 n ~n
AM 1y = (Tih12)” 7 < Pilyaje >< 0yyyn > AL (1.13)

The quantities given in angle brackets are considered to be set at the cell boundary. In
this paper, in order to calculate the mass flow, we use the first-order formulas taking into
account the flow direction:

AM" “nion
n YitUiii/.on a—1 ~n ~n
P~ (Tz‘+1/2) At, o7+ o7, <O0.

"@?M?*l(r" Y IAL, 40, >0
_ ) PiT 3 i+1/2 v Ui i+1
2

At the third stage, i.e. the final stage, the final values of the parameters p, X = (v, E)
in the cell are calculated by the formulas obtained from (1.12):

AMP XPAM?
Za_l k 7 XinJrl _ in + 21 7 — k )
(ry)"  Ar pi () Ar

7

P =pl +

2. Method for Calculating the Moving Boundary

The algorithm for calculating the moving boundary is based on the representation
of the boundary cell as Lagrangian-Euler one [15]. Obviously, movement of the boundary
involves a compression of the cell, which leads to a decrease in the time step, and when,
under compression to an infinitely small value, leads to a loss of stability of the method.
In order to solve this problem, it is advisable to combine two cells adjacent to the moving
boundary into one cell. Therefore, the combined cell is larger than the remaining cells of
the Eulerian grid, and this fact does not affect the stability of the method. As soon as the
size of the combined cell reduces to the size of the minimum cell of the main Eulerian grid
when the boundary is moved, the cell is combined with the next one, etc. The procedure
of combination of cells is advisable to carry out before the Euler stage.

Consider the relations for obtaining new parameters of the combined cell in the general
case, when the cell sizes are not equal. Calculate the lengths of the intervals by the following
formulas [16]:

Ary == ((r)" = (r)%), Arg==2((r)" = (rs1)*),  Are = Arg+ Ary,

1, a=1
where s, = 2, o =2 , the indices «L», «R», and «C» correspond to the left,
A, a=3

right, and combined cell, respectively. Then the masses, momenta, and energies of these
intervals are as follows:

AMyp = prAry, AKp =v AMp, AQp = E AMy,

AMR = pRA’I“R, AKR = URAMR, AQR = ERAMR.
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Denote the mass concentrations of the intervals AMpgr and AM;, in the combined interval
by SL and gR, where gL:AML/(AML—l—AMR), SR:AMR/(AML—FAMR)
The mass concentrations &, and &g satisfy the condition

o+ér=1 (2.1)

The values of the density, velocity, and specific total energy of the combined cell are found
by the laws of conservation of mass, momentum, and energy:

pc = (AML + AMR)/Arc, (22)
Vo = (AKL+AKR)/(AML+AMR), (23)

Let us consider the change in kinetic energy during the transition from the quantities
determined for the intervals AMpz and AM} to the quantities determined for the combined
interval AMp + AM;p,. The sum of the kinetic energies of the intervals AMp and AM is
equal to

Q=05 (vVRAMp +vi AM;) . (2.5)

The kinetic energy of the combined interval is determined by its velocity ve according to
the formula
Qc = 0,50 (AMp + AMp) . (2.6)

Excess kinetic energy
AQ=Q—Qo (2.7)

is transformed to internal energy. Let us show that this excess kinetic energy is always
positive. Substitute (2.5) and (2.6) into (2.7). As a result, we obtain

AQ = 0,5 (vEAMp + vi AMp, — v (AMg + AMy)) .

Transform the expression AQ as follows. Factor out AMgr and AM; and substitute
expression of vo in terms of the velocities of the intervals AMp and AM;:

ve = vrER + v (2.8)
Using (2.8), we rewrite AQ in the form

AQ = 0,5 (AMR + AML) (U%gR + U%f[, — Vo (vRﬁR + ULfL)) . (29)

Transform the expression in the bracket by adding the following quantity equal to zero:

A= — vc (vp€r + vr&r) +vE (Er +£1L) .

Indeed, this quantity is equal to zero by virtue of (2.1) and (2.8). Finally, the value of
excess kinetic energy takes the form

AQ = O,5 (AMR -+ AML) (fR(UR — Uc)2 + gL(UL - Uc)2) .
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The internal energy of the combined interval AMpgr + AMj consists of the sum of the
internal energies of the intervals AMpg and AM and the excess kinetic energy

Ec (AMR+AMR) :€RAMR+€LAML+AQ. (210)

Substitute AQ in (2.9) and divide by AMy + AM;. Then, the expression for the internal
energy of the combined interval takes the form

ec =& (er+0,5(vp —ve)?) + & (0 4 0,5(v — ve)?) -

The pressure is found by p¢, ec and the equation of state.

Generally speaking, the applied method is a method of transferring (recalculating)
quantities from one spatial (old) grid to another (new, not necessarily Euler) grid. Suppose
that the cell of the «<new» grid of size r contains N intervals of the «old» grid in which the
solution has already found, that is, the values Ary, pr, vg, Pi, € are known. Let us write
the formulas in general form. It is important that the values Ar, satisfy the condition

N
Ar = Z Ary,.
k=1

The masses of the intervals of the «old» grid and the mass of the interval of the «new»

N
cell are determined using the equations AMy = ppAr,, AM = > AM,.
k=1

Then volumetric and mass concentrations are as follows:
T Ar P AMS

ay (2.11)

N N
It follows from (2.10) that ay and & satisfy the conditions: Y ap =1, > & =1.
k=1 k=1
The laws of conservation of mass, momentum, and energy involve the following

equations for determining the average values in the new cell:

N N N
P:Zakpka UZkavk, 522&: (24 +0,5(v, — v)?).
= =1 =

Pressure is determined by the equation of state.

As soon as the size of the combined cell is reduced to the size of the minimum cell
of the main Eulerian grid, the cell is combined with the next one, etc. At each time step
before the Eulerian stage begins, the parameters of the combined (Lagrangian) cell are
recalculated according to the formulas for the isentropic flow, when the moving boundary
is moved:

Pcy = pPc 7(Ar0a)a Ucy = pcaqu(ATCb)a = Ucp
¢ (ATCb)a ’ Pca(ATCb)a 7
v aN v 2
PCa (ATCa) ) uCa
Dcy = Pch =pcev| 7= | + E€ca =€ (pcasPca), Fca=¢ccet+ —,
(pCb) ((ATCa) ( ) 2

where the indices «b» and «a» denote the parameters of the combined cell before and after
compression, respectively.

Therefore, this algorithm for reconstruction of grid only affects the cells adjacent to the
moving boundary, without requiring reconstruction of the entire computational domain.
This fact has a positive effect on the computational performance.
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3. Verification of the Method

In order to evaluate the accuracy of the developed method, we use an analytical
solution to the problem of a converging shock wave in a vessel with an impermeable wall,
which describes cases of plane, cylindrical, and spherical symmetry [17]. Consider a vessel
with an impermeable wall of size o = 1, in which there is a gas with the initial parameters
po=1,v0=0, P =0, =0,7=5/3. At the initial moment of time, the velocity vy = —1
is set at the boundary. At several points in time, the profiles of pressure, velocity, density,
and entropy function are shown in Figs. 1-3.

14 : : : : : 0

12+ 1 I 3 2
107

! A |

e

Fig. 1. Profiles of pressure (A), velocity (B), density (C), and entropy function (D) at
three points in time: 1 at t =0,4; 2 at t = 0,45; 3 at t = 0,5 for the spherical case. Here
the solid and dotted lines denote the analytical and numerical solutions, respectively.
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Fig. 2. Profiles of pressure (A), velocity (B), density (C), and entropy function (D) at
three points in time: 1 at ¢t = 0,45; 2 at ¢t = 0,525; 3 at t = 0,6 for the cylindrical case.
Here the solid and dotted lines denote the analytical and numerical solutions, respectively.
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Fig. 3. Profiles of pressure (A), velocity (B), density (C), and entropy function (D)
at three points in time: 1 at t = 0,5; 2 at t = 0,6; 3 at t = 0,7 for the plane case. Here
the solid and dotted lines denote the analytical and numerical solutions, respectively. The
values AP, Av, Ap, AF are fictitious and introduced to improve the readability of the
graphs.

The numerical and exact solutions are compared for the three types of symmetry.
The profiles of pressure, velocity, and density are consistent with the analytical solution.
The graphs of density show a small entropy trace. However, a comparison of the entropy
functions shows that the relative deviation of the calculated value of the function from the
exact is not more than 0,01% maximum behind the shock wave front.
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Conclusions

The paper presents a method for calculating liquid and gas flows in the presence of
a moving boundary in the computational domain in Euler coordinates. The method was
verified using an analytical solution to the problem of a converging shock wave in a vessel
with an impermeable wall. We show a good convergence of the numerical solution to the
analytical one. The proposed method for calculating the thermodynamic parameters of the
combined interval does not lead to oscillations of the solution at the boundary. Therefore,
the developed software package can be used for numerical simulation of dynamic processes
in shells.

The article was supported by the Government of the Russian Federation (Decree 211
of March 16, 20183), agreement No. 02.A03.21.0011.
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Ob OITHOM METOAE PACYUHETA ITOJABUN>KHbBIX I'PAHUIT
B SMJIEPOBBLIX KOOPJIMHATAX

E. C. Illecmaxosckasn, 5. E. Cmapuxos

B pabore npusomauTcs MeTox pacdera MOABUKHONW I'DAHUILI B 9IJI€POBBIX KOODIMHA-
TaxX B IPWIOXKEHNN K MCCJIEIOBAHUSAM T€IEHUN ra3a B 00/IACTAX C HEIIPOHUIIAEMOI CTEHKOIA.
Mertoj1 ocHOBaH Ha KOMOMHAINU SUIEPOBOl CETKHM M OJHOM JIAarpaHKEBON MPUTPAHUTHON
sTaeiiku, 00pa30BaHHON OO'bEINHEHNEM IBYX sS9€€K, IPUJIETaiONX HEIIOCPEICTBEHHO K 10~
JBUXKHOI rpanuiie. IlepecTpoiika Bceil pacdeTHOil 00J1aCcTU HE TPEOYEeTCsl, YTO OKA3bIBAET
CYIIIECTBEHHOE BJINSHIE HA [IPOM3BOINTEIHLHOCTH pacdeToB. V3/10KeH ajaropurm oObeaume-
HUsl T9YeeK, pacdeT TEPMOJINHAMUIECKIX IaPAMETPOB U 0O0CHOBAHNE BBIPAXKEHUS JIJIsA BHY T-
peHHeil sHepruu 00'beIMHEHHOTO nHTepBaJia. [IpoBeeHa BepuduKalys MeTo/1a, ¢ MOMOIIbIO
AHAJIUTUYECKOrO PelleHns 3a/1a491 O CXOdIIeics yiapHoil BOJIHE B COCY/Ie ¢ HEIIPOHUIIAeMOM
crenkoii. [IpoBejieHO cpaBHEHNE SHTPONUUHBIX (DYHKIUI aHAJIUTUIECKOIO U YUCJIEHHOT'O pe-
IICHNH.

Karouesvie crosa: wucienioili Memod; nodeusichas epanuya; 3GAepossl KOOPOUHAMbL;

MEMOO KPYNHHLT 4ACTUY; CTOOAUAACH YOAPHAA BOAHA.
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