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The article is an overview and contains a brief history of the theory of optimal
dynamic measurements as one of the paradigms in Metrology. The introduction contains
the main provisions of the paradigmatic concept of T. Kuhn and its criticism by
P. Feyerabend from anarchist point of view. The conclusion about the coexistence of
conflicting paradigms within the same science is made. In the first part, a mathematical
model of measuring transducer is described and the conditions for the existence of a unique
precise optimal dynamic measurement are given. In the second part, various approximate
optimal measurements are proposed and the conditions for convergence of the sequence
of approximate dynamic measurements to the precise optimal measurement are specified.
The third part contains an approach to the study of a stochastic mathematical model of a
measuring transducer based on the Nelson — Gliklikh derivative of the stochastic process.
In the conclusion, the ways of further possible research are outlined. The list of publications
contains all available sources related to the issue.
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Acronyms and Abbreviations

CSOM - computer simulation of optimal measurements
MBOM — mathematical basis of optimal measurements
MM — mathematical model

MT — measuring transducer

NMOM — numerical methods of optimal measurements
OM - optimal measurement

OMP — optimal measurements paradigm

SMM - stochastic mathematical model
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Introduction

The term "paradigm" was introduced into scientific usage by T. Kuhn. In his
fundamental treatise [26] the paradigm is understood as a set of theoretical and
methodological prerequisites that determine scientific research at the historical stage. The
paradigm is the basis for choosing problems, as well as a model for solving research
problems. The paradigm allows us to solve problems that arise in research work, to
fix changes in the data structure that occur as a result of the scientific revolution. For
example, the Ptolemy geocentric model of the Universe that existed for more than one
and a half thousand years was eventually replaced by the Copernicus heliocentric model
of the Universe. The scientific revolution that took place changed not only the methods
of calculating the movement of planets in their orbits, but also posed a number of new
problems, the study of which led to a radical break in the scientific worldview.

Thus, the development of science according to T. Kun occurs as a uniform progressive
movement only within one of the paradigms. Paradigms change each other during scientific
revolutions, as a result of which the entire building of science is rebuilt from the foundation
to the spire on the roof. P. Feyerabend [12| made a reasonable criticism of this concept. He
admits simultaneous existence of several, perhaps even mutually exclusive, paradigms in
science. For example, Newton’s mechanics was not cancelled after the emergence of general
theory of relativity or quantum mechanics. It just turns out that the theory of relativity
is more accurate at describing the movement of objects at high speeds than Newtonian
mechanics, and quantum mechanics is more accurate at describing the interaction of very
small objects. All three theories are based on mutually exclusive principles. Therefore,
P. Feyerabend requires the introduction of the principle of incommensurability into
scientific usage, according to which none of the paradigms can be criticized from the
positions of another paradigm.

Briefly recalling the current understanding of paradigms in science and their
interaction, we will proceed to the presentation of the paradigm of optimal measurements.
Within this paradigm, we study the processes of restoration of the input signal that is
distorted by both flaws of the measuring transducer (for example, its inertia, resonances
in circuits or degradation as a result of operation) and external influences (for example,
incoming white noise). OMP is represented by three mutually exclusive parts. In the first
part, which is called MBOM, MM of MT is constructed, the problem of finding OM is set,
and the conditions for unique solvability of this problem are given. This solution is called
a precise solution. In the second part, which is called NMOM, algorithms for construction
of approximate solutions to the problem of finding OM are constructed and conditions for
convergence of approximate solutions to a precise solution are formulated. Finally, in the
third part of OMP, which is called CSOM, the codes are created based on the algorithms
of the second part of OMP, checking procedures are performed to debug these codes, and
finally a numerical experiment is set to restore the distorted measurement obtained during
natural experiments.

MBOM appeared relatively recently, in [36, 37] the problem of restoration of
measurement distorted by inertia of MT was first set and studied. The Leontief-type
system that appeared in the remote control theory was taken as MM of MT. Almost
simultaneously with the emergence of MBOM, NMOM |[18, 38] appeared, based on
numerical methods for solving optimal control problems for Leontief-type systems [48].
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Soon MM of MT was reconstructed [21,22] in order to restore measurements distorted not
only by inertia of MT, but also by resonances in its circuits. Finally, MM of MT was once
again upgraded to include interference caused by degradation of MT [19,39]. Note the first
reviews of the history and development of MBOM and NMOM |[31,40,41], as well as their
solid mathematical foundation [20,42].

In parallel with the deterministic theory of optimal measurements, the stochastic
theory of optimal measurements emerged [43| and developed [44] in the framework of
OMP. It is based on the concept of Nelson — Gliklikh derivative [15]. To date, the Nelson-
Gliclich derivative has been sufficiently well studied in various aspects [8-11,47|, and
therefore naturally fits into OMP. It is based on the concept of "white noise" which is
understood as the Nelson-Gliklikh derivative of the Wiener process. Stochastic MM of
MT provides "white noise" not only as an external interference, but also possibly as
occurring inside MT [45]. We also note recently appeared CSOM [46,49]. In conclusion of
a brief overview of the history of OMP indicate currently existing paradigms in dynamic
measurements [13,17,25,29,30, 35].

1. Precise Optimal Measurement

Let L and M be square matrices of order n, f(t) = col(fi(t), fa(t), ..., fu(t)) be some
vector function. Consider a linear inhomogeneous equation of the form

Li(t) = Mx(t) + f(t),

and assume the possibility of detL = 0. Note that V. Leontief [27] was the
first to study such equations. Therefore, we will call these equations Leontief type
equations, considering the terms "differential-algebraic equations" [4], "algebra-differential
systems" [28], "descriptor systems" [1] as synonyms.

By MM of MT we mean a Leontief type system of the form

Li(t) = a(t)Mz(t) + Du(t), y(t) =b(t)Nx(t) + Fu(t) (1)

where D, N, F are square matrices of order n, x(t) = col(z1(t), z2(t), ..., z,(1)), y(t) =
col(y1(t), ya(t), ..., yn(t)) and u(t) = col(ui(t), ua(t),...,U,(t)) are vector-functions, a(t)
and b(t) are functions. Here the matrices L, M, D, N and F describe the construction
of MT, the vector-function & = x(t) describes the state of MT, the functions a = a(t)
and b = b(t) describe the degradation of MT in long-term operation (for example, when
operating in near-earth space), the vector function u = wu(t) corresponds to the input
signal (measurement), the vector function y = y(t) corresponds to the output signal
(observation). The measurement and the observation in MM (1) have the same dimensions,
but in practice the dimension of observation may be smaller.

The matrix M is called regular with respect to the matriz L (briefly, L-reqular), if
there exists @ € C such that det(aL — M) # 0. It is clear that such a number @ € C
exists if det L # 0. However, a careful analysis of real MT |23, 23] shows that the case
det L = 0 is quite common. So let the matrix M be L-regular, then [40, ch.12| there are
such non-degenerate matrices A and B of order n that

0 0 0
BLA = diag{J,,,Jps>- - -+ Jpps In-m}, BMA = diag{l,, S},
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1
0
where J, is Jordan cell of order p; with zeros on the main diagonal, Zpk =m, [, is

k=1
a unit matrix of order k, S is a square matrix of order n — m. Take the number p =

max{pi, pa, ..., p} and call the L-regular matrix M (L, p)-regular.
So, let the matrix M be (L,p)-regular, p € {0,1,...,n}, set the initial Showalter —
Sidorov condition [41,45]
lim [R;(M)]P((t) — @) = 0, (2)

t—0+

where R%(M) = (uL — M)™'L is the right L-resolvent of the matriz M, and zo € R" is
some vector. Fix the number 7 € R, and consider the space of measurements

U= {u € Ly((0,7); R") : ul? € Ly((0,7); R™)},
the space of observations ) = Ly((0,7); R™) and the state space X = 9).

Theorem 1. [34] Let the matriz M be (L,p)-reqular, p € {0,1,...,N}. Then for any
zg € R", a € C([0,7];R:) N CP((0,7);R;), b € C([0,7];R}) and u € YU there exists
a unique solution y € Y of (1), (2) given by

y(t) = b(t)N(t) + Fu(t), (3)

where

t

o) = X(0)m + [ X(0 )L QDuls)s + 3 Q1) () i ()

t -1 k

1
In (4) X(t,s) = lim L—E/a(r)dTM L is a degenerate flow, i.e.

k—o0
0
X(t,r)X(r,s) = X(t,s) for all ¢, r, s € R such that ¢t > r > s, moreover X(¢,t) # I, for
all t € R;
1\t
L7 = lim (L - EM) Q. Q= lim (kL (L—kM)™)™,

k—o0 k—o0

] —1
Mo—lz lim (EL_M) (I, - @), Lo=L(,—-P),

k—o0

P=1lim (k(L—kM)"'L)™, H=M; "L

k—o0

The main part of our MM of MT is the penalty function

T

J(u) = s/ ly(t) — (0)])2dt + (1 — &) /(Cx(t), 2 (t))dt. (5)
0 0
Here ||-|| and (-, -) are Euclidean norm and inner product in R", y(t) is calculated using (3),

(4), so it depends linearly on u(t). Snce z(t) is calculated using (4) it also depends linearly
on u(t). Using a priori information construct a convex and closed subset of 4y C I, which
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is called a set of admissible measurements. By minimizing the first term of the functional
(5), we reduce the impact of MT inertia on the measurement. And by minimizing the
second term, we reduce the impact of resonances in the MT circuits. (Note that a square
symmetric matrix C' of order n characterizes the mutual influence of resonances in MT
chains). The constant £ € (0,1) takes into account the researcher’s preferences. Finally,
y(t) is an observation obtained as a result of a computational or field experiment. So, the
problem of searching for optimal measurement v(t) is to find the minimum

J(v) = irelg; J(u). (6)

Theorem 2. Let the matriz M be (L,p)-reqular, p € {0,1,...,n}. Then for all xy € R",
a € C([0,7];Ry) N CP((0,7);Ry) uwb e C0,7];R,), there exists a unique v € Ly such
that (6) holds.

A vector-function v = v(t) that exists by Theorem 2, is still called precise optimal
measurement. Strictly speaking, after replacing u(t) = v(t), the function (4) will no longer
be a solution of the system of equations

Li(t) = a(t)Mx(t) + Du(t)

even in a generalized sense. However, when substituting (4) into (3) and replacing u(t) =
v(t), we get a vector function y = y(t), which is called a precise optimal observation.
Note that the vector functions v = v(t) and y = y(t) obtained by applying Theorem 1 and
Theorem 2 are virtual precise optimal measurement and virtual precise optimal observation.
The algorithms for construction of v and y will be proposed in Section 2.

However, before proceeding to the construction of algorithms, let’s make a couple of

comments that will simplify the solution of this problem. First, note that without loss of
t

generality det M # 0. Indeed, by replacing z(t) = exp | « / a(T)dr | z(t) in (1) we get
0
Lz =a(t)(M — aL)z(t) + Dou(t),
w(t) =b(t)Nz(t) + Fo(t),
t t

where v(t) = exp —a/a(T)dT u(t) and w(t) = exp —a/a(T)dT y(t). Re-

0
assigning M — oL to M, we get the required.
Second, instead of solution (4), we will consider a particular solution

(0= [ X017 QDu(s)s + 3 HM@ ) (5 )

which is obtained if we take z¢ € ker[R}(M)]” = ker X (t,0) in (4). By substituting (7) for
(4) in (3) and (5), we can find (6).

(7)

Theorem 3. Let the matriz M be (L, p)-reqular, p € {0,1,...,n}, and det M # 0. Then
for any xo € ker[RE(M)]P, a € C([0,7];Ry) N CP((0,7);Ry) and b € C([0, =»];Ry), there
exists a unique v € gy such that (6) holds.
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Later the optimal measurement v € iy found by Theorem 3 will be called precise
partial optimal measurement, and optimal observation y = y(t), found by (7) and (3), will
be called precise partial optimal observation.

2. Approximate Particular Optimal Measurements

Let L, M, D, N and F be square matrices of order n, where the matrix M is (L, p)-
regular, p € {0,1,...,n}, and det M # 0. Suppose that the vector xy € ker[Rﬁ(M)]p, and
note that ker[R}(M)]” does not depend on p € C such that det(uL — M) # 0. Construct
an algorithm to find numerically the particular optimal measurement.

2.1. The First Approximation

n
Represent the space U as 4 = P 4l;, where
j=1

U = {u € Ly((0,7);R) : u® € Ly((0,7); R)}.

By construction, the space 4; is Hilbert and separable, j = 1,2,...,n. Denote by {¢;} an
orthonormal sequence of basis functions. It is obvious that the sequence {¢;} can be taken
to be equal in each ;. Construct the finite-dimensional lineal

ko P k_ k
U =span{p; :i=1,2,...,k} and the subset —@ﬂj.
j=1

Find a subset {f = ¥ N Uy. The subset Uf C Ly can be empty. However, in any case,
the subset U5 C 4y is closed and convex. Obviously, some terms of the sequence {85} are
nonempty sets, since the sequence is monotonic and

lim 45 = s
k—o0
Let 4% £ (. Consider the vector uy, € U* and construct the vectors

1 d )q Du(t)

zi(t) = / X(t,s) Ly Qui(s)ds + Y HM™(Q —1,,) (a(t)E o (8)

Y(t) = b(t) Ny (t) + Fug(t). (9)
Substitute x; and gy, into the penalty functional J and find the minimum
J(v) = min J(uyg). (10)
ukeﬂg

If 1% = (), then such a vector vy, exists and is unique by virtue of Theorem 3. If U% = 0,
then we increase the number k in order to obtain U% = () (see the reasoning given above).
The vector vy € U is called the first approzimate particular optimal measurement.

Lemma 1. Let the matriz M be (L, p)-regular, p € {0,1,...,n}, and such that det M # 0.
Let the functions a € C([0,7];Ry) N CP((0,7);Ry) and b € C([0,7];Ry), and the vector
zo € ker[RY(M)]P. Then klim v = .

— 00
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2.2. The Second Approximation

Construct the next approximation. Under conditions of Lemma 1, we can write

P = lim(I(L — IM)7'L)", Q = lim (IL(L — IM)~1)PL
—00

=00

1 -1
L7t = lim (L - —M) Q, H=M"'L(I, — P).

=00 [

Hence

t -1 !

T (t) = /t L— %/a(r)dri\/l L (L - %M) B (IL(L — IM) ™Y )Py (s)ds+

S

+ > HIM((IL(L — IM) ™'Y - 1,,) (a(lt) %) D;(';gt>, (11)

Substituting (11) and (12) into the penalty functional J and taking the minimum of J on
the set 4%, we obtain
J(vg) = min J(uyg).
ukeug

The vector vy € U5 is called the second approximate particular optimal measurement.

Lemma 2. Suppose that conditions of Lemma 1 hold. Then llim UV = V.
— 00

2.3. The Third Approximation

At the last step of the proposed algorithm, we note that the first term (the integral)
and the second term (the sum of derivatives) of (11) can be calculated by any appropriate
method at the discretion of a user. In order to calculate the first term, we can replace the
integral with the Riemann sum or divide the interval [0,¢] by m parts and use Gaussian
quadrature formula. In some cases, the integral can be calculated in explicit form. In
order to calculate the second term, we can replace the derivatives with the differences
and then calculate the sum by one of appropriate methods. Note that, in some cases, the
derivatives can be calculated in explicit form. However, in any case, we obtain approximate
values of the vectors Tyym = T (t) and Yrim = Yrim(t) instead of formulas (11) and (12).
Substituting the values into the penalty functional J and taking the minimum of J on the
set U5, we obtain

J(’Uklm) = min J(uk)
ukeﬁl}g

The vector vg,, € U is called the third approzimate particular optimal measurement.

Lemma 3. Suppose that conditions of Lemma 1 hold. Then lim vy, = v.
m—0o0

Proof of this statement depends on the way of approximation of the first and the
second terms of (11). However, the proof is well-known and provides convergence of the
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sequence of the third approximate particular optimal measurements. Therefore, Lemma 1
and Lemma 2 lead to the following statement.

Theorem 4. Suppose that conditions of Lemma 1 hold. Then

lim lim lim vy, = v.
k—o00 l—00 m—o0

3. Stochastic Optimal Measurement

Let Q = (Q, A, P) be a complete probability space with the probability measure P
associated with the o-algebra A of subsets of the set 2, and R be a set of real numbers
endowed with a Borel o-algebra. A measurable mapping & : € — R is called a random
variable.

The set of random variables having zero mathematical expectation E and finite
variances D forms the Hilbert space

Lo = {¢: E{ =0, D < +oo} with an inner product (£;,&) = E& &

and the norm [[{||f, = DE&. In Ly, the vectors £ and 7 are orthogonal to each other
(i.e. (§,m) = 0) if and only if the random variables £ and 7 are uncorrelated. Indeed,
0=cov(§,n) =E&{n = (§,1) =0.

Consider the set 3 C R and the following two mappings. The first, f : J — Lo,
associates each ¢ € J with a random variable ¢ € La. The second, g : Ly x Q@ — R,
associates to each pair ({,w) a point {(w) € R. A mapping n : T x 2 — R of the form
n = n(t,w) = g(f(t),w) is called an (one-dimensional) stochastic process. For each fixed
t € 7, the value of the stochastic process n = n(t,-) is a random variable, i.e. n(t,-) € Lo,
which is called a section of the stochastic process at the point ¢ € J. For each fixed w € (2,
the function n = n(-,w) is called a (sample) trajectory of a random process corresponding
to the elementary outcome w € (). The trajectories are also called implementations or
sample functions of a random process. Usually, when this does not lead to ambiguity, the
dependence of n(t,w) on w is not indicated, and the random process is denoted simply by
n(t).

Let J C R be an interval. The stochastic process n = n(t), t € J, is called continuous,
if a.s. (almost surely) all trajectories of the process are continuous (i.e. for almost all
w € A, the trajectories 7(-,w) are continuous functions). The set of continuous stochastic
processes forms a Banach space denoted by C(J;Lg) with the norm

Inllcr, = sup(Dn(t,w))">.
ted

Let A be a o-subalgebra of the o-algebra A. Construct the subspace L9 C Ly of random
variables measurable with respect to Ay. Denote by II : Ly — L9 the orthoprojector. Let
& € La, then II¢ is called the conditional mathematical expectation of the random variable
¢ and is denoted by E(£|Ap). Fix n € C(J;Lz) and ¢t € J, and denote by N’ the o-algebra
generated by the random variable n(t), and denote E} = E(-|N").
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Example 1. The stochastic process describing the Brownian motion in the Einstein —
Smoluchowski model (see [34])

ng sin Z(2k+1)t, t € {0} UR,

is a continuous stochastic process. Here the coefficients {&, = & (w)} C Lo are pairwise

-2
uncorrelated Gaussian random variables such that D¢, = [g(Qk + 1)} , ke {0}UN.

Let n € C(J;Ly). By the Nelson — Gliklikh derivative 1 of the stochastic process 1 at
the point t € J we mean a random variable

N _1 : o (N + AL ) —n(t, ) " n(t, ) —n(t — At )

if the limit exists in the sense of uniform metric on R.
If the Nelson — Gliklikh derivatives 7 (t,-) of the stochastic process n(t,-) exist at all

(or almost all) points of the interval J, then the Nelson — Gliklikh derivative 1 (t,-) exists
on J (a.s. on J). The set of continuous stochastic processes having continuous Nelson —

Gliklikh derivatives 7 forms the Banach space C'(J; Ly) with the norm

o 1/2
Inllerw, = Sup (Dn(t,W) +D7 (t,w)) .
te

Further, by induction, we define the Banach spaces C!(J; La), | € N, of stochastic processes

whose trajectories are a.s. differentiable by Nelson — Gliklikh on J up to the order [ €

{0} UN inclusively [16]. In these spaces, the norms are given by the formulas

1/2
R (ZD » w>) |

Here we consider the Nelson — Gliklikh derivative of zero order as the initial random
process, i.e. 71(0) = n. For brevity, the spaces C'(J; L), [ € {0} UN, are called the spaces
of "noises” (see [8-11,47]).

Example 2. The papers [15,16] show that 3 € CYR,;Lz), [ € {0} UN, moreover,
° t

b= e,

Denote by L% the space of n-dimensional random variables, which are called random
n-"variables", i.e. LY = {& : & = col(&1,&s,...,&0), & € Lo,k = 1,n}. By analogy with

the spaces of "noises", construct the spaces of n-"noises” C(J;L%) = @ Ci(J;Ls) and
k=1

YT, L) @Cl ), where Cj,(J;Ly) = C(J;Ly) and CL(J;Ly) = C'(J;Ly), k,

[ € N. In the space C!(J;L1), the norms are given by the formulas

n 1 1/2
Inllowy = (su?ZDn;”(t,w)) , e {0}UN.
k=1 \ &7 j=0
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Example 3. [15,16] The Wiener n-process is given by formula

W (t) = W, (t,w) = col(B(t,w), Ba(t,w), ..., Bu(t,w)),

where [ (t,w) is the Brownian motion, k = 1, n. It is easy to see that W,, € C(R,; L) N
C(R,;L3), where I € Nand R, = {O} UR;.

Consider SMM of MT

o

§ (1) = a(t)ME(t) + Daw(t), n(t) = b(E)NE(E) + Fu(t), (13)

where M, D, N and F are square matrices taken from (1), a = a(t) and b = b(t) are
non-negative functions of a real variable, w = w(t), n = n(t) and £ = £(t) are stochastic
processes simulating measurement, observation and state of MT. Endow SMM of MT (13)
with the initial Showalter — Sidorov condition
L
Jim [REDP(E() — &) = 0. (14)
Theorem 5. Let the matriz M be (L, p)-reqular, p € {0,1,...,n}, and det M # 0. Let the
functions a € C([0,7]; R)NCPTL((0,7);R,) and b € C(]0, 7'] R.). Then, for any & € LY
and w € C([0,7]; L) N CY(0,7); L ) there exists a solution n € C([0,7];L%) to problem
(13), (14) given by
n(t) = b(t)NE(t) + Fw(t), (15)

where

£(t) = X(t, 0)§0+/X(t, s)L;lQDw(s)ds+ZHqul(Q—I[n) (a(lt>%>q l?;g) (16)

0
Here the matrices X (¢,s), Ly, Q, H and M;"' are taken from Section 1, 5 is the

Duw(t)
a(t)

observation n = n(t) is found "along the trajectories", therefore, there is no reason to talk
about uniqueness of such a solution. Consider the penalty functional in this case:

Nelson — Gliklikh derivative of the stochastic n-process . Note that the stochastic

T

—e/w7 gt + (1 - ) (60, €Ot
0
Here 77 = 1)(t) is a stochastic observation on real MT (so maybe virtual observation), C'is

a positively defined symmetric matrix of order n. Denote by CJL} a closed and convex
set in the space C([0, 7]; Ly) N CP((0,7); L}). Find

J(¢)= min J(w). (17)

weCYLY

Corollary 1. Suppose that conditions of Theorem 5 hold. Then, for any & € L}, there
exists ¢ € CHLY such that (17) holds.

Here, as well as above, uniqueness of the stochastic process ( is impossible due to the
"trajectory" nature of the solution of (17).
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Conclusion

The results of Section 3 of this paper are proved similarly to the results of Section 1.

However, there exists another way to restore signals distorted by random noises. This way
was outlined in [34], and we intend to pave the way to our n-dimensional situation. As for
this problem, we will embody the approaches and algorithms proposed here in patents for
inventions. Thankfully, our team has great experience to receive such patents [2,3,5-7].
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TEOPUSA OIITUMAJIBHBIX N3MEPEHUNN KAK HOBAS
ITAPA/ITNTMA METPOJIOI' I

A. JI. Illecmaxos, A. B. Keaaep, A. A. Bamviwasesa, H. A. Manaxosa,
C. A. Baepebuna, I A. Csupudiox

Crarbs HOCUT OO30PHBINA XapaKTep U COAEPYXKUT M3JIOXKEHUE KPATKON MCTOPUU TEOPUU
ONTUMAJILHBIX U3MEPEHM KaK OJIHON U3 MapaJiurM B MeTpoJioruu. Bo BBeIeHUM TPUBOIATCS
OCHOBHBIE TIOJIOYKeHUs apajurMasibHoit koHnennuu T. Kyna u ee kpuruka I1. Qeitepaben-
JIOM C aHAPXUCTCKUX No3uIuii. /leraercs BHIBO, O COCYIIIECTBOBAHUU B pPAMKaX OJHOM HAyKU
MIPOTUBOPEYAIIIX JAPYT C APYTOM MapaaurM. B mepBoil yacTu omucana MaTeMaTHIeCKas MO-
JIeJTh U3MEPUTEILHOTO YCTPONCTBA U TaHbI YCIOBUS CYIIECTBOBAHUS €INHCTBEHHOIO TOYHO-
ro ONTHMAJIBHOIO U3MepeHus. Bo BTOPOIl 4acTu NMpeyIozKEHbI Pa3/InIHble TPUOJIMZKEHHBIE
ONTUMAJIbHbIE U3MEPEHUS U YKA3aHBbI YCJIOBUS CXOIUMOCTHU TIOCJIEIOBATEILHOCTU TTPUOJIN-
2KEHHBIX ONTUMAJILHBIX U3MEPEHUI K TOYHOMY ONTUMAJbHOMY U3MepeHUI0. TpeTbs JacTb
COZIEPAKUT TOAXO, K U3YIEHUIO CTOXACTUIECKON MaTeMaTHIeCKON MOIEN N3MEPUTETHLHOTO
yCTPOICTBa, OCHOBAHHBLIN Ha mpom3BomHoit Hembcona — Immkamxa CTOXaCTHIECKOTO IIPO-
necca. B 3ak/ioyeHnr HaMeJYeHbI IIyTH JaJbHEHRINNX BO3MOXKHBIX HcciemoBanuii. Crmcok
myOJIMKAII COAEPXKUT BCe JIOCTYIIHbIE UCTOYHUKH, OTHOCSINNAECS K JAHHOI IpobieMaTuKe.

Karouesvie crosa: 0emepmunupo8aHHas MATMEMATNULECKAA MOOEAL U3MEDPUMENOHO-
20 yempolicmea; CMoOTACMUYECKAS MAMEMATUYECKAA MOOEAD USMEPUMEAdHO20 YCMPOTi-
CMBG; MOYHOE ONMUMAALHOE OUHAMUNECKOE USMEPEHUE; NPUOAUNCEHHOE ONTMUMAALHOE U3~
MEPEHUE; BBLPOAHCIEHHDIT MOMOK; CNOTACTNUYECKOE ONMUMAALHOE USMEPEHUE; NPOU3BOOHAA
Heavcona — Inukauza; suneposckuti npouecc; <6eavilh wyms .
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