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The goal of this paper is to tabulate all prime knots in the thickened surface of genus

2 having diagrams with at most 4 crossings. First, we introduce definition of prime knot

in the thickened surface of genus 2. Second, we construct a table of prime knots. To this

end, we use the table of prime knot projections in the surface of genus 2 to construct a

preliminary set of diagrams. In order to remove duplicates and prove that all the rest knots

are inequivalent, as well as to prove that all tabulated knots admit no destabilisations, we

propose an invariant called the Kauffman bracket frame, which is a simplification of the

generalized Kauffman bracket polynomial. The idea is to take into account only the order

and values of coefficients and disregard the degrees of one of the variables. However, the

proposed simplification is more compact, and at the same time is not weaker than the

original generalized Kauffman bracket polynomial in the sense of, for example, tabulation

of prime knots up to complexity 4 inclusively. Finally, we prove that each tabulated knot

can not be represented as a connected sum under the hypothesis that the complexity of a

connected sum is not less than the sum of complexities of the terms that form the sum.
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Introduction

During last 150 years, many researchers study the problem to construct complete
tables of knots and links arranged with respect to some their numerical characteristics.
Most of the constructed tables consider knots and links in the 3-dimensional sphere, see
[5, 11, 16]. Recently, increasing interest in the theory of global knots (i.e., knots in arbitrary
3-manifolds) leads to tabulation of knots in manifolds different from the 3-dimensional
sphere. Note tables of links in the projective space [6], knots in the solid torus [8], knots
in the thickened Klein bottle [15], as well as prime knots in the lens spaces [9]. Note that,
in the knot theory, recent tables include only the so-called prime objects, which can not
be obtained by some known operations from already tabulated objects. Virtual knots and
knots in the thickened surfaces have been of particular interest during the last 20 years.
Therefore, some tables of such knots were also constructed. In particular, the works [10]
and [17] present perfect tables of virtual knots arranged with respect to number of classical
crossing and construct a list of some properties of each knot. However, these tables are
constructed without taking into account primeness and such important property of a knot
as the genus determined by the minimal genus of the thickened surface which can contain
the given knot. The natural idea is to classify virtual knots taking into account both
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parameters, i.e. not only number of classical crossings, but also the genus of a knot, see
the papers [1] and [2] for tables of prime knots and links in the thickened torus. In a sense,
such tables can be considered as tables of prime virtual knots and links of genus 1.

In this paper, we classify prime knots in the thickened surface of genus 2. To this end,
we use the result of the first step [4], i.e. a table of prime knot projections in the surface
of genus 2 having at most 4 crossings, in order to construct a table of prime diagrams,
i.e. table of prime knots. In order to remove duplicates and prove that all the rest knots
are inequivalent, as well as to prove that all tabulated knots admit no destabilisations,
we propose an invariant called the Kauffman bracket frame, which is a simplification of
the generalized Kauffman bracket polynomial. The idea is to take into account only the
order and values of coefficients and disregard the degrees of one of the variables. However,
the proposed simplification is more compact, and at the same time is not weaker than the
original generalized Kauffman bracket polynomial in the sense of, for example, tabulation
of prime knots up to complexity 4 inclusively. Finally, we prove that each tabulated knot
can not be represented as a connected sum under the hypothesis that the complexity of a
connected sum is not less than the sum of complexities of the terms that form the sum. In
addition, we construct one-to-one correspondence of the tabulated knots and some virtual
knots of genus 2 given in [10].

The paper is organized as follows. Section 1 gives some required definitions. In Section
2, we describe some modifications of the Kauffman bracket and, in particular, introduce the
so-called Kauffman bracket frame. Finally, Section 3 presents main ideas of the tabulation
of prime knots in the thickened surface of genus 2 and proves the main theorem that there
exist no more than 75 pairwise inequivalent prime such knots having diagrams with at
most 4 crossings.

The author is grateful to V.V. Tarkaev and Ph.G. Korablev for useful discussions.

1. Definitions

A direct product of two copies of an 1-dimensional sphere S1 is called a 2-dimensional
torus T = S1 × S1. Further, for shortness, we refer to a 2-dimensional torus T as a torus T .

A surface F o with a hole is obtained from the original surface F by removing the
interior of a 2-dimensional disk D2. Further, for shortness, we refer to a 2-dimensional
disk D2 as a disk D2. Fig. 1(a) shows an example: a torus T o with a hole is obtained from
a torus T by removing the interior of a disk D2. Hereinafter, we write o to show that a
surface has one hole, oo to show that a surface has two holes.

By a 2-dimensional surface T2 of genus 2 we mean a surface formed by gluing of two
copies of a torus T o with a hole constructed by identifying their holes. Here each torus T o

is called a handle of a 2-dimensional surface T2 of genus 2. In other words, a 2-dimensional
surface T2 of genus 2 is a connected sum of two copies of a torus T . Further, for shortness,
we refer to a 2-dimensional surface T2 of genus 2 as a surface T2.

A simple closed curve C ⊂ T2 is said to be cut, if the complement T2\C consists of
two components, and noncut, if the complement T2\C consists of the unique component.

Recall that the intersection number of two oriented curves is defined as a sum of signs
of their intersection points. Here we say that an intersection point has the sign «+1» if
the rotation from the direction of the first curve to the direction of the second curve is
counterclockwise. Otherwise the intersection point has the sign «−1».
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Fig. 1. (a) A torus T o with a hole and a disk D2, (b) a surface T2 endowed with oriented pairs
«meridian-longitude» of its handles

For two fixed oriented pairs «meridian-longitude» of handles of the surface T2

(throughout the paper, see Fig. 1(b)) and any oriented noncut curve C ⊂ T2, we calculate
the numbers a and c (respectively, b and d) as intersection numbers of the curve C and
the corresponding meridian (respectively, longitude) of the surface T2 and say that the
curve C has the homology class (a, b, c, d). Since direction of orientation of C is arbitrary,
we consider homology classes (a, b, c, d) and (−a,−b,−c,−d) to be equal. Geometrically,
C goes a times along the longitude and b times along the meridian of the left handle of
the surface T2, and c times along the longitude and d times along the meridian of the
right handle of the surface T2. The signs of the numbers a, b, c, d are positive, if the the
direction of orientation of C coincides with the direction of the corresponding longitude
or meridian. Note that, in contrast to the case of the torus T , where the greatest common
divisor gcd(a, b) = 1, there exist noncut curves such that gcd(a, b) 6= 1 or gcd(c, d) 6= 1.
For example, we can consider the curve having homology class (2, 1, 0,−2).

Consider a surface T2 and an interval I = [0, 1]. By a thickened surface of genus 2 we
mean a 3-dimensional manifold homeomorphic to the direct product T2 × I.

A smooth embedding of a simple closed curve in the interior of T2 × I is called a knot
in T2 × I and denoted by K ⊂ T2 × I. Two knots K1 ⊂ T × I and K2 ⊂ T × I are said to
be equivalent, if there exists a homeomorphism of T × I onto itself that takes K1 to K2.

As in the classical case, knots in T2 × I can be given by their diagrams. A diagram
D ⊂ T2 of a knot K ⊂ T2 × I is defined by analogy with the diagram of the classical knot
except that the knot is projected into the surface T2 instead of the plane.

Let D ⊂ T2 be a knot diagram. We say that a noncut curve C ⊂ T2 is a cancellation
curve for the pair (D, T2), if an intersection of C and D is empty. In order to perform
destabilization of the surface T2, it is enough to cut T2 along a cancellation curve C and
glue each obtained component of the boundary by a disk D2. Fig. 2 shows a torus T as a
result of destabilization of the surface T2 of genus 2.

Fig. 2. Destabilization of the surface T2 of genus 2

We consider the following types of knots in T2 × I (compare with the types of knot
projections in the surface T2 given in [4]).
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A knot K ⊂ T2×I is said to be essential, if any diagram of K admits no destabilization.
In other words, any annulus A, which is isotopic to C × I ⊂ T2 × I, where C ⊂ T2 is
a noncut curve, has nonempty intersection with K.

A knot K ⊂ T2 × I is said to be trivial, if K has a diagram without crossings.
A knot K ⊂ T2 × I is said to be composite, if at least one of the following three

conditions (a), (b), or (c) holds.
(a) K is a connected sum of nontrivial knots K1 ⊂ T2×I and K2 ⊂ S3, which is defined

by analogy with the classical connected sum of two classical knots in the 3-dimensional
sphere S3. Namely, in T2 × I (respectively, S3), remove an open 3-dimensional ball B3

that intersects K1 (respectively, K2) by an unknotted arc. As a result, both knots K1

and K2 are transformed to knotted arcs. Then, glue the resulting thickened surfaces (a
thickened surface T o

2 × I with a hole and a thickened disk D2 × I) into one new T2 × I by
a homeomorphism that identifies the obtained spherical boundaries such that endpoints
of different knotted arcs are glued pairwise.

(b) K is a circular connected sum of nontrivial knots K1 ⊂ T2 × I and K2 ⊂ T × I,
which is defined by analogy with the circular connected sum introduced by S.V. Matveev
in [14]. Namely, consider K1 and K2 to be such that there exist annuli A1 ⊂ T2 × I

and A2 ⊂ T × I, where Ai is isotopic to Ci × I (here Ci is a noncut curve in T2 or T ,
respectively), and Ai intersects Ki transversally at exactly one point, i = 1, 2. Cut T2 × I

along A1 and T × I along A2. As a result, both knots K1 and K2 are transformed to
knotted arcs. Then, glue the resulting thickened surfaces (a thickened torus T oo × I with
two holes and a thickened annulus A× I) into one new T2 × I by a homeomorphism that
identifies the obtained annular boundaries such that endpoints of different knotted arcs
are glued pairwise.

(c) K is a connected sum of two nontrivial knots K1 ⊂ T × I and K2 ⊂ T × I defined
as follows. In each T × I, remove a thickened disk D2× I, where D2 ⊂ T , that intersects a
knot by an unknotted arc. As a result, both knots K1 and K2 are transformed to knotted
arcs. Then, glue the resulting thickened surfaces (two copies of a thickened torus T o × I

with a hole) into one new T2×I by a homeomorphism that identifies the obtained annular
boundaries such that endpoints of different knotted arcs are glued pairwise.

A knot K ⊂ T2 × I is said to be prime, if K is essential and noncomposite.
The natural idea is to tabulate only prime knots. Indeed, nonessential knots correspond

to knots that can be found in already existing tables of knots in the 3-dimensional sphere
S3 [11], [16], [5], thickened annulus A× I (solid torus) [8], or thickened torus T × I [1]. In
their turn, composite knots correspond to knots, which can be constructed using already
known knots by connected sums described in types (a)− (c).

2. Generalizations of the Kauffman Bracket

Recall a definition of the surface bracket polynomial 〈·〉 proposed in [7], which is a
generalisation of the Kauffman bracket [13] (see also [12] for the original version called the
Jones polynomial). Such an invariant is enough to prove that the main part of tabulated
knots are inequivalent, see Subsection 3.2. Moreover, in Subsection 3.3, we consider this
invariant as a tool to prove impossibility to realize any of tabulated knots as a knot in the
thickened surface having smaller genus.

Let F = T1#T2# . . .#Tm be a surface constructed as a connected sum of m copies of
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a torus T , and D be a diagram of a knot K in the thickened surface F × I. For a fixed
representation of a knot diagram D, we refer to the surface-knot pair, (F,K), to indicate
a specific choice of the surface F and embedding of the knot K.

Endow each angle of each crossing of D with a marker A or B according to the rule
given in the center of Fig. 3(a). Each state s of the diagram D is defined by a combination
of ways to smooth each crossing of D such as to join together either two angles endowed
with a marker A, or two angles endowed with a marker B, see Fig. 3(a) on the left and
right, respectively. By a surface-state pair, (F, s), we mean a collection of disjoint simple
closed curves in the surface F obtained as a result of smoothing according to the state s.

Obviously, if the diagram D has n crossings, then there exist exactly 2n states of D.
Therefore, we obtain 2n surface-state pairs, denoted {(F, s1), ..., (F, s2n)}, by assignment
of smoothing type. We denote the collection of all surface-state pairs as (F, S).

Fig. 3. (a) A- and B-smoothings of a crossing, (b) rules to define the sign ε(i) of the i-th crossing

The formula of the surface bracket polynomial 〈·〉 [7] is as follows:

〈(F,K)〉 =
2n∑

i=1

aα(si)−β(si)(−a2 − a−2)γ(si)[si]. (1)

Here α(si) and β(si) are the numbers of markers A and B in the given state si, while
γ(si) is the number of cut curves in the surface obtained by smoothing according to the
state si, and [si] represents a formal sum of the disjoint noncut curves in the surface-state
pair (F, si). Note that [si] may be regarded either as a formal sum of homology classes in
the surface F or as a sum of isotopy classes in the surface F mod orientation preserving
homeomorphisms of F . The sum is taken over all 2n surface-state pairs (F, si) ∈ (F, S).

The surface bracket polynomial 〈·〉 [7] is invariant under the Reidemeister moves Ω2

and Ω3. As usual, in order to obtain a complete invariant (i.e., under the Reidemeister
move Ω1 as well), it is enough to use the writhe w(D) as follows:

X̃ (D) = (−a)−3w(D)
2n∑

i=1

aα(si)−β(si)(−a2 − a−2)γ(si)[si], (2)

where w(D) is the writhe of an oriented knot diagram D with n crossings, i.e. the sum

w(D) =
n∑

i=1

ε(i) over all crossings of D, where ε(i) is the sign of the i-th crossing of D

defined by the rules given in Fig. 3(b).
Associate each formal sum [si] of the disjoint noncut curves in the surface-state pair

(F, si) with a product of the corresponding variables yj , which take values in homology
classes (aj , bj, cj, dj) of the noncut curves that form [si], see Table 1. Then, (2) takes the
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form

X̃ (D) = (−a)−3w(D)
2n∑

i=1

aα(si)−β(si)(−a2 − a−2)γ(si)
∏

j

y
δj(si)
j , (3)

where δj(si) is the number of noncut curves having the homology class (aj, bj , cj, dj)
associated with the variable yj, see Table 1.

Table 1

Values of the variables yj in terms of homology classes (aj , bj , cj, dj) of noncut curves in T2

y1 = (0, 0, 0, 1)
y2 = (0, 0, 1, 0)
y3 = (0, 0, 1, 1)
y4 = (0, 0, 1,−1)
y5 = (0, 0, 1, 2)
y6 = (0, 0, 2,−1)
y7 = (0, 1, 0, 0)
y8 = (0, 1, 0,−1)
y9 = (0, 1, 1, 0)
y10 = (0, 1,−1, 0)
y11 = (0, 1, 1, 1)
y12 = (0, 1, 1,−1)
y13 = (0, 1,−1, 1)
y14 = (0,−1, 1, 1)
y15 = (0, 1, 1, 2)
y16 = (0, 1, 1,−2)
y17 = (0,−1, 1, 2)

y18 = (0, 1,−2, 0)
y19 = (0,−2, 0, 1)
y20 = (0, 2, 1,−1)
y21 = (1, 0, 0, 0)
y22 = (1, 0, 0, 1)
y23 = (1, 0, 0,−1)
y24 = (1, 0, 0,−2)
y25 = (1, 0, 1, 0)
y26 = (1, 0,−1, 0)
y27 = (1, 0, 1, 1)
y28 = (1, 0, 1,−1)
y29 = (1, 0, 2, 0)
y30 = (1, 1, 0, 0)
y31 = (1,−1, 0, 0)
y32 = (1, 1, 0, 1)
y33 = (1, 1, 0,−1)
y34 = (1,−1, 0, 1)

y35 = (−1, 1, 0, 1)
y36 = (1, 1, 1, 0)
y37 = (1, 1,−1, 0)
y38 = (1,−1, 1, 0)
y39 = (−1, 1, 1, 0)
y40 = (1, 1, 1, 1)
y41 = (1, 1, 1,−1)
y42 = (1, 1,−1, 1)
y43 = (1,−1, 1, 1)
y44 = (1, 1,−1,−1)
y45 = (1,−1, 1,−1)
y46 = (1, 1, 1,−2)
y47 = (1,−1, 1, 2)
y48 = (1,−1, 1,−2)
y49 = (1, 1, 2,−1)
y50 = (1, 2, 0, 0)
y51 = (1, 2, 0,−1)

y52 = (1, 2, 0,−2)
y53 = (1,−2, 2, 0)
y54 = (2, 1, 0, 0)
y55 = (2,−1, 0, 0)
y56 = (2, 1, 0,−1)
y57 = (2, 1, 0,−2)
y58 = (−2, 1, 1, 0)
y59 = (2,−1, 1, 0)
y60 = (2, 1, 1, 1)
y61 = (2, 1, 1,−1)
y62 = (2,−1, 1, 1)
y63 = (−2, 1, 1, 1)
y64 = (2,−1, 1,−1)
y65 = (2,−1, 1, 2)
y66 = (2,−1, 1,−2)
y67 = (2,−2, 1, 1)
y68 = (2, 2, 2,−1)

For shortness, we propose to use the following simplification of (3).
Let us order terms of (3) in nondecreasing order of the powers of the variable a and

collect terms having the same power of the variable a, i.e. represent (3) as
∑
m

Pma
m, where

Pm is a polynomial in the variables yj. Then, we associate the polynomial (3) with an
ordered set of nonzero polynomials Pm in the variables yj, which is called the Kauffman

bracket frame F (·). For example, X̃ (D) = −2a−8y12 − a−12y62 − a−8y3y7 − a−6y4y7 is
associated with F (D) = (−y62,−2y12 − y3y7,−y4y7).

We say that the Kauffman bracket frames F (D1) and F (D2) are inverted to each other,
if the elements of F (D1) are the corresponding elements of F (D2), where the polynomials
Pm are taken in reverse order. This transformation of the Kauffman bracket frames is
called an inversion. For example, F (D1) = (−y62,−2y12 − y3y7,−y4y7) is inverted to
F (D2) = (−y4y7,−2y12 − y3y7,−y62).

By virtue of the arguments similar to those given in [3] for another simplification of
the generalised Kauffman bracket polynomial called the Kauffman bracket skeleton, the
following lemma is true.

Lemma 1. The Kauffman bracket frame F (·) considered up to inversion, multiplication
by −1, and changes of variables yj associated with changes of the corresponding
homology classes of noncut curves in the surface T2 generated by orientation preserving
homeomorphisms of T2 is an invariant of knots in the thickened surface T2× I of genus 2.
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3. Table of Prime Knots

Theorem 1. In the thickened surface of genus 2, there exist no more than 75 pairwise
inequivalent prime knots having diagrams with at most 4 crossings, see Figs. 4 – 5.

Fig. 4. Diagrams 31 – 33, 41 – 437 of prime knots in the thickened surface T2 × I
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Fig. 5. Diagrams 438 – 472 of prime knots in the thickened surface T2 × I

Theorem 1 is proved by three steps described in Subsections 3.1 – 3.3. In addition,
we construct one-to-one correspondence of the tabulated knots and some virtual knots of
genus 2 given in [10]. Namely, in Figs. 4 – 5, each tabulated knot is provided with both a
number in our table and a number in the table presented in [10].

3.1. Construction of a Preliminary List of Diagrams on Prime Projections

Let us convert each projection constructed in [4] to the set of corresponding diagrams.
To this end, enumerate all possible ways to consider each crossing of a projection to be
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either an over- or undercrossing of a diagram. Obviously, there are 2n diagrams on each
projection with n crossings. Therefore, direct construction by tabulated 14 projections [4]
leads to 23 + 13 · 24 = 216 diagrams. However, we can significantly reduce this procedure
by the following ideas [1].

First, the simultaneous switching of all crossings convert any diagram to the equivalent
one. Therefore, we can fix the type of a crossing of each projection and, consequently, to
halve the set of diagrams on the projection.

Second, if a diagram is based on a projection having biangle face, then both crossings
of the face have the same type. Otherwise, we can reduce the number of crossings by the
second Reidemeister move Ω2.

3.2. Formation of Equivalence Classes of the Constructed Diagrams

In order to compare the obtained diagrams, we use the software «Wolfram
Mathematica» to calculate the Kauffman bracket frames for all diagrams constructed
in Subsection 3.1. Therefore, we find few tens of groups formed by diagrams having the
same Kauffman bracket frames. Each group includes from 2 to 6 diagrams, and there
exist groups having diagrams on inequivalent projections 44 and 45 [4]. Then, by hand,
we construct sequences of Reidemeister moves, homeomorphisms of the surface of genus
2 onto itself and simultaneous switching of all crossings in order to show that diagrams
having the same Kauffman bracket frame are equivalent. Unexpectedly and fortunately,
with the exception of two pairs (449, 450) and (465, 466) discussed below, the list of the
Kauffman bracket frames presented below is enough to prove that all tabulated knots are
pairwise inequivalent.
F (31) = (−y62,−y11 − y14 − y25y34,−2y12 − y3y7,−y4y7),

F (32) = (−y25y34,−2y12 − y62,−y11 − y14 − y4y7,−y3y7),

F (33) = (−y14,−y12 − y62 − y3y7,−y11 − y25y34 − y4y7,−y12),

F (41) = (y25y26, 2y12 + y62, y11 + y14 + y4y7,−y12 + y3y7,−y11 − y4y7,−y3y7),

F (42) = (y12, y14 + y25y26 + y4y7, y12 + y62 + y3y7, y11 − y4y7,−y12 − y3y7,−y11),

F (43) = (y62, y11 + y14 + y25y26, 2y12 + y3y7,−y11 + y4y7,−y12 − y3y7,−y4y7),

F (44) = (y14, y12 + y62 + y3y7, y11 + y25y26 + y4y7, y12 − y3y7,−y11 − y4y7,−y12),

F (45) = (−y12,−y14 − y4y7, y12 − y13, y14 + y22y36 + y4y7, y12 + y13 + y60, y61),

F (46) = (−y4y7,−y12 − y13,−y14 + y4y7, 2y12 + y13, y14 + y22y36 + y61, y60),

F (47) = (−y14,−y12 − y13, y14 − y4y7, y12 + y13 + y60, y22y36 + y61 + y4y7, y12),

F (48) = (−y13,−y14 − y4y7,−y12 + y13, y14 + y61 + y4y7, 2y12 + y60, y22y36),

F (49) = (y1y56, y54 + y57 + y1y8, y18 + 2y7, y10y2 − y1y8,−2y7,−y10y2),

F (410) = (y54, y18 + y1y56 + y7, y10y2 + y57 + y1y8,−y10y2 − y1y8,−y7),

F (411) = (y18, y10y2 + y54 + y57, y1y56 + 2y7,−y10y2 + y1y8,−2y7,−y1y8),

F (412) = (y30y4 + y44, y10y23 + y3y30 + y41 + y42, y44 + y45 + y40, y43),

F (413) = (y10y23, 2y44 + y45, y3y30 + y41 + y42 + y43, y30y4 + y40),

F (414) = (y30y4, y3y30 + y41 + y42, 2y44 + y45 + y40, y10y23 + y43),

F (415) = (y42, y30y4 + y44 + y45, y10y23 + y3y30 + y41 + y43, y44 + y40),

F (416) = (y3y30, y30y4 + 2y44 + y40, y10y23 + 2y41 + y42 + y43, 2y45,−y41,−y45),

F (417) = (−y41,−y45, 2y41, y30y4 + y44 + 2y45 + y40, y10y23 + y3y30 + y42 + y43, y44),

F (418) = (y11 + y25y34, 2y12 + y62 + y3y7, y14 + y64 + y4y7, y13),

F (419) = (−y4y7,−y12, 2y4y7, 3y12 + y13 + y3y7, y11 + y14 + y25y34 + y64, y62),
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F (420) = (−y12,−y4y7, 2y12, y11 + y25y34 + y64 + 2y4y7, y12 + y13 + y62 + y3y7, y14),
F (421) = (y12, y14 + y25y34 + y4y7, y12 + y13 + y62 + y3y7, y11 + y64),

F (422) = (y31y43, 2y3 + y67, y20 + y4 + y11y7 + y14y7,−y3 + 2y12y7 + y3y
2
7,−y4 + y4y

2
7),

F (423) = (y3, y20 + y31y43 + y11y7 + y14y7, y3 + y67 + 2y12y7 + y3y
2
7, y4 + y4y

2
7,−y3,−y4),

F (424) = (y67, y20 + y4 + y31y43, 2y3 + 2y12y7,−y4 + y11y7 + y14y7 + y4y
2
7,−y3 + y3y

2
7),

F (425) = (y20, y3 + y67 + 2y12y7, y4 + y31y43 + y11y7 + y14y7 + y4y
2
7, y3 + y3y

2
7,−y4,−y3),

F (426) = (y31y43 + y14y7, y3 + y67 + y12y7 + y3y
2
7 , y20 + y11y7 + y4y

2
7, y12y7),

F (427) = (y67 + y12y7, y20 + y31y43 + y14y7 + y4y
2
7, y3 + y12y7 + y3y

2
7, y11y7),

F (428) = (y59, y10 + y23y43 + y2y55, y17 + y23y45 + y58 + y59 + y2y7, y10 + y66 + y9, y16),

F (429) = (y17 + y59 + y2y7, 2y10 + y23y43 + y2y55 + y9, y16 + y23y45 + y58 + y59, y66),

F (430) = (−y10, 3y10, y16 + y17 + y23y45 + y58 + y59 + y2y7, y23y43 + y2y55 + y66 + y9, y59),

F (431) = (y23y43, y17 + y23y45 + 2y59, 2y10 + y2y55 + y66 + y9, y16 + y58 + y2y7),

F (432) = (y17, y10 + y23y43 + y9, y16 + y23y45 + 2y59 + y2y7, y10 + y2y55 + y66, y58),

F (433) = (y23y45, y10 + y23y43 + y66, y16 + y17 + y58 + 2y59, y10 + y2y55 + y9, y2y7),

F (434) = (y1y22, y21 + y21y21 + y1y51, 2y1y23 + y2y25 + y50 + y52, y21 + y24 + y29, y53),

F (435) = (y21, y1y22 + y1y23 + y2y25 + y52, y21 + y21y21 + y24 + y29 + y1y51, y1y23 + y50 + y53),

F (436) = (−y21 + y21y21, y1y22 + 2y1y23, 3y21 + y24 + y1y51, y2y25 + y50 + y52 + y53, y29),

F (437) = (y1y23, y21 + y21y21 + y24, y1y22 + y1y23 + y2y25 + y52 + y53, y21 + y29 + y1y51, y50),

F (438) = (y1y51, y1y22 + y1y23 + y50 + y52, 2y21 + y21y21 + y24 + y29, y1y23 + y2y25 + y53),

F (439) = (y52, y21 + y24 + y29 + y1y51, y1y22 + 2y1y23 + y2y25 + y50 + y53, 2y21 + y21y21,−y21),

F (440) = (y1y23, y
2
1y21 + y24 + y1y51, y1y22 + y1y23 + y50 + y52 + y53, 2y21 + y29, y2y25),

F (441) = (y1y22 + y2y25 + y50, 2y21 + y21y21 + y29 + y1y51, 2y1y23 + y52 + y53, y24),

F (442) = (y9, y17+y27y34+y59+y2y7, y10+y28y34+y23y43+y65+y5y7+y9, y15+y16+y17+y59, y9),

F (443) = (y17, y23y43 + y65 + y5y7 + y9, y15 + y17 + y27y34 + 2y59 + y2y7, y10 + y28y34 + 2y9, y16),

F (444) = (y23y43, 2y17 + 2y59, y10 + y28y34 + y65 + y5y7 + 2y9, y15 + y16 + y27y34 + y2y7, y9),

F (445) = (y27y34, y28y34 + y65 + 2y9, y15 + y16 + y17 + 2y59 + y2y7, y10 + y23y43 + y5y7 + y9, y17),

F (446) = (y65, y15 + y17 + y27y34 + y59, y28y34 + y23y43 + y5y7 + 3y9, y16 + y17 + y59 + y2y7, y10),

F (447) = (y28y34, y16 + y27y34 + 2y59, y10 + y23y43 + y65 + 3y9, y15 + 2y17 + y2y7, y5y7),

F (448) = (y30y49, y30y32 + y30y33 + y6 + y68, 2y1 + y19 + y1y
2
30, 2y7y8,−2y1 + y1y

2
7),

F (449) = (y6, y1 + y19 + y30y49, y30y32 + y30y33 + y68 + 2y7y8, y1y
2
30 + y1y

2
7,−y1),

F (450) = (y68, y1 + y19 + y30y49, y30y32 + y30y33 + y6 + 2y7y8, y1y
2
30 + y1y

2
7,−y1),

F (451) = (y19, y6 + y68 + 2y7y8, 2y1 + y30y49 + y1y
2
7 , y30y32 + y30y33,−2y1 + y1y

2
30),

F (452) = (y30y32, y1y
2
30 + y30y49, y30y33 + y6 + y68 + y7y8, y19 + y1y

2
7 , y7y8),

F (453) = (y30y32 + y6 + y7y8, y19 + y1y
2
30 + y30y49 + y1y

2
7, y30y33 + y68 + y7y8),

F (454) = (y36, y21y30 + y38 + y39 + y27y8, 2y2y31 + y36 + y37 + y47 + y28y8, 2y38 + y39 + y46, y48),

F (455) = (y39, 2y2y31 + y36 + y47, y21y30 + 3y38 + y39 + y27y8, y36 + y37 + y48 + y28y8, y46),

F (456) = (y27y8, 2y36 + y47 + y28y8, y21y30 + 3y38 + y39 + y46, 2y2y31 + y37 + y48, y39),

F (457) = (y47, 2y38 + y39 + y27y8, 2y2y31 + 2y36 + y48 + y28y8, y21y30 + y38 + y39 + y46, y37),

F (458) = (y38, y2y31+y36+y37+y28y8, y21y30+y38+2y39+y46+y27y8, y2y31+y36+y47+y48, y38),

F (459) = (y2y31, 2y38+2y39, y2y31+y36+y37+y47+y48+y28y8, y21y30+y38+y46+y27y8, y36),

F (460) = (y28y8, 2y38 + y46 + y27y8, y2y31 + 2y36 + y37 + y47 + y48, y21y30 + y38 + 2y39, y2y31),

F (461) = (y21y30, y2y31 + 2y36 + y37, 2y38 + 2y39 + y46 + y27y8, y2y31 + y47 + y48 + y28y8, y38),

F (462) = (−1,−5 + y214 + y23 + y230 + y233, y1y30y33 + y14y3y7,−4 + 2y21 + 2y27 , y1y7y8),

F (463) = (−3 + y214, y14y3y7,−5 + y21 + y23 + y230 + y233 + 2y27, y1y30y33 + y1y7y8,−2 + y21),

2020, vol. 7, no. 1 41



A. A. Akimova

F (464) = (y14y3y7,−5 + y214 + y23 + 2y27, y1y7y8,−5 + 2y21 + y230 + y233, y1y30y33),
F (465) = (−1,−4+y21+y214+y230+y27, y1y30y33+y14y3y7+y1y7y8,−4+y21+y23+y233+y27,−1),

F (466) = (−1,−4+y21+y23+y230+y27, y1y30y33+y14y3y7+y1y7y8,−4+y21+y214+y233+y27,−1),

F (467) = (y11, y13 + y63 + 2y3y7, y11 + 2y14 + y26y35 + y3y55 + y4y7, y12 + y13 + y62 + y63, y64),

F (468) = (y63, y11 + y14 + y26y35 + y3y55, 2y13 + y62 + y63 + 2y3y7, y11 + y14 + y64 + y4y7, y12),

F (469) = (y26y35, 2y13 + 2y63, y11 + 2y14 + y3y55 + y64 + y4y7, y12 + y62 + 2y3y7, y11),

F (470) = (y3y7, 2y11 + y14 + y4y7, y12 + 2y13 + y62 + y63 + y3y7, y14 + y26y35 + y3y55 + y64, y63),

F (471) = (y14, y13+y62+y63+y3y7, 2y11+y26y35+y3y55+y64+y4y7, y12+y13+y63+y3y7, y14),

F (472) = (y4y7, y12 + 2y13 + y3y7, 2y11 + 2y14 + y26y35 + y64, y62 + 2y63 + y3y7, y3y55).

Indeed, for shortness, consider all yj to be equal to the same value y and consider only
the first and the last elements of each Kauffman bracket frame taking into account the
inversion. As a result, all the Kauffman bracket frames presented in the list of the Kauffman
bracket frames are divided into 22 groups having from 1 to 13 Kauffman bracket frames.
Within each of the obtained group, it is easy to see that all the Kauffman bracket frames
are pairwise inequivalent in the sense of coefficients and powers of y in the inner elements.

Moreover, the list of the Kauffman bracket frames presented in the list of the Kauffman
bracket frames is enough to show that all tabulated knots admit no destabilisations, see
Subsection 3.3.

As mentioned above, there exist two pairs of the tabulated diagrams having the same
Kauffman bracket frames: (449, 450) and (465, 466). In order to show that diagrams that
form each pair are inequivalent, it is enough to calculate and compare their cabled Jones
polynomials, see the invariants of the virtual knots (4103, 493) and (4107, 498) given in [10],
respectively.

3.3. On Primarily of the Tabulated Knots

In order to prove that a knot is prime, it is enough to show that the knot is essential
and noncomposite.

We use the following two obvious statements in order to show that each of the knots
given in Figs. 4 – 5 is essential, i.e. admits no destabilisation.

Lemma 2. In the surface T2, the intersection number of two noncut curves having
homology classes (a, b, c, d) and (a′, b′, c′, d′) equals to (a · b′ − b · a′) + (c · d′ − d · c′).

Proof. For the torus T , it is well known that the intersection number of two noncut curves
having homology classes (a, b) and (a′, b′) equals to (a · b′ − b · a′). For the surface T2, take
into account that pairs «meridian-longitude» do not intersect each other.

✷

Lemma 3. Suppose that the Kauffman bracket frame F (D) of a knot diagram D ⊂ T2

contains terms corresponding to 4 noncut curves having inequivalent homology classes
(ak, bk, ck, dk), k ∈ {1, 2, 3, 4}, such that the system of 4 linear equations of the form

bk · a− ak · b+ dk · c− ck · d = 0, k ∈ {1, 2, 3, 4},

where a, b, c, d are the variables and ak, bk, ck, dk are known coefficients, has only zero
solution. Then the knot diagram D admits no destabilisation.
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Proof. The system is based on the following two ideas. First, intersection number of two
noncut curves can be calculated according to Lemma 2. Second, intersection number of
the cancellation curve and any of noncut curves involved in the terms of F (D) should be
equal to zero.

✷

Following Lemma 3, for each tabulated diagram D, we construct a set of 4 noncut
curves involved in the Kauffman bracket frame F (D), which is enough to show that there
exists no cancellation curve for the corresponding knot K ⊂ T2 × I. To this end, we use
the following obvious interesting property of the Kauffman bracket frames. Namely, the
Kauffman bracket frames of the tabulated diagrams based on the same projection involve
the same set of the variables yj. Moreover, it turned out that the Kauffman bracket
frames of the tabulated diagrams based on the projections 31, 41, 45, and 413 [4] involve
the variables y11, y12, y14, y62, while the Kauffman bracket frames of diagrams based on the
projections 47 and 49 [4] involve the variables y2, y10, y23, y43, which are enough to show
that the corresponding knots are essential. More precisely, Table 2 give the set of the
variables yj involved in the Kauffman bracket frames that are enough to show that the
corresponding tabulated knots are essential.

Table 2

Sets of tabulated knots associated with sets of 4 variables yj

31 – 33, 41 – 44, 418 – 421, 467 – 472: y11, y12, y14, y62 428 – 433, 442 – 447: y2, y10, y23, y43

45 – 48: y7, y12, y14, y22 434 – 441: y2, y21, y50, y52

49 – 411: y2, y7, y8, y54 448 – 453: y6, y7, y8, y49

412 – 417: y3, y23, y41, y45 454 – 461: y2, y8, y21, y27

422 – 427: y3, y11, y20, y43 462 – 466: y3, y7, y8, y30

In order to prove that all 75 tabulated knots are noncomposite, it is enough to show
that each knot can not be represented as a connected sum of the type (a), (b), or (c)
under the hypothesis that the complexity of a connected sum is not less than the sum of
complexities of the terms that form the sum. More precisely, we assume that there exists
no a pair of nontrivial knots such that the connected sum of these knots admits a diagram
having number of crossings, which is smaller than a minimal sum of numbers of crossings of
the diagrams corresponding to both knots formed the pair. Within the considered problem
on tabulation of knots having diagrams with either 3 or 4 crossings, the impossibility of
representation as a connected sum of the type (a), (b), or (c) is obvious. Indeed, for the
connected sums of the types (a) and (b), we note that all nontrivial knots in T × I have
diagrams with at least 2 crossings, while all nontrivial knots in S3 and T2×I have diagrams
with at least 3 crossings. For the connected sum of the type (c), we note that such a sum
can be constructed only in the case then both terms are given by the unique nontrivial
knot 21 [1] in T × I having a diagram with 2 crossings. Due to specific form of 21, the
surface bracket polynomial 〈·〉 of the obtained connected sum admits no surface-state pair
that contains noncut curves having homology classes of the form (0, 0, c, d) or (a, b, 0, 0)
only. As a result, all 75 tabulated knots can not be represented as the connected sum of
the type (c), since the Kauffman bracket frame F (·) of each knot contains at least one
polynomial Pm having at least one term formed only by the variables that belong to the
set {y1, y2, y4, y7, y21, y30}.
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КЛАССИФИКАЦИЯ ПРИМАРНЫХ УЗЛОВ

В УТОЛЩЕННОМ КРЕНДЕЛЕ РОДА 2, ИМЕЮЩИХ

ДИАГРАММЫ С НЕ БОЛЕЕ ЧЕМ 4 ПЕРЕКРЕСТКАМИ

А. А. Акимова

Цель настоящей работы – составить таблицу всех примарных узлов в утолщен-

ном кренделе рода 2, имеющих диаграммы с не более чем 4 перекрестками. Прежде

всего, мы вводим определение примарного узла в утолщенном кренделе рода 2. После

этого, мы строим таблицу примарных узлов в утолщенном кренделе рода 2, имею-

щих диаграммы с не более чем 4 перекрестками. Для этого мы используем таблицу

примарных проекций узлов на кренделе рода 2, чтобы построить предварительный

набор диаграмм. Для того, чтобы удалить дубликаты и доказать, что все оставши-

еся узлы неэквивалентны, а также доказать, что все табличные узлы не допускают

дестабилизации, мы предлагаем инвариант, называемый каркас скобки Кауфмана, ко-

торый является упрощением обобщенного полинома скобки Кауфмана. Идея состоит

в том, чтобы принимать во внимание только порядок и значения коэффициентов и

игнорировать степени одной из переменных. Предлагаемое упрощение является более

компактным и в то же время не слабее, чем исходный обобщенный полином скоб-

ки Кауфмана в смысле, например, табулирования примарных узлов до сложности 4
включительно. На заключительном шаге мы доказываем, что ни один из табулирован-

ных узлов не может быть представлен в виде связной суммы в рамках гипотезы, что

наименьшее число перекрестков связной суммы узлов не меньше суммы наименьших

чисел перекрестков слагаемых.

Ключевые слова: примарный узел; утолщенный крендель рода 2; классификация;

обобщенный полином скобки Кауфмана; каркас скобки Кауфмана.

Литература

1. Akimova, A. A. Classification of Genus 1 Virtual Knots Having at Most Five Classical
Crossings / A. A. Akimova, S. V. Matveev // Journal of Knot Theory and Its
Ramifications. – 2014. – V. 23, № 6. – Article: 1450031, 19 p.

2. Акимова, А. А. Классификация зацеплений малой сложности в утолщенном то-
ре / А. А. Акимова, С. В. Матвеев, В. В. Таркаев // Труды института математики
и механики УрО РАН. – 2017. – Т. 23, № 4. – C. 18–31.

3. Akimova, A. A. Computation of the Kauffman bracket skeleton / A. A. Akimova //
Journal of Computational and Engineering Mathematics. – 2019. – V. 6, № 3. – P. 3–13.

4. Akimova, A. A. Classification of Prime Projections of Knots in the Thickened Torus
of Genus 2 with at most 4 Crossings / A. A. Akimova // Вестник ЮУрГУ. Серия:
Математика. Механика. Физика. – 2020. – V. 12, №. 1. – P. 5–13.

2020, vol. 7, no. 1 45



A. A. Akimova

5. Bar-Natan, D. The Hoste-Thistlethwaite Link Table [Электронный ресурс]. – URL:
http://katlas.org/wiki/Main_Page (дата обращения: 25.07.2018).

6. Дроботухина, Ю. В. Классификация зацеплений в RP 3 с небольшим числом точек
скрещивания / Ю. В. Дроботухина // Зап. научн. сем. ЛОМИ. – 1991. – Т. 193. –
С. 39–63.

7. Dye, H. A. Minimal Surface Representations of Virtual Knots and Links / H. A. Dye,
L. H. Kauffman // Algebraic and Geometric Topology. – 2005. – V. 5. – P. 509–535.
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