MSC 35Q99 DOI: 10.14529/jcem200104

A NUMERICAL STUDY OF THE OPTIMAL CONTROL
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OF A NERVE IMPULSE IN THE SYSTEM OF NERVES
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The article is devoted to a numerical study of optimal regulation of propagation of
a nerve impulse in the system of nerves, which can be constructed on the basis of the
optimal control problem for degenerate FitzHugh — Nagumo system of equations. This model
belongs to the class of reaction-diffusion models, which model a wide class of processes such
as chemical reactions with diffusion and the propagation of a nerve impulse. In the case of
asymptotic stability of the considered problem and under assumption that the rate of change
of one component significantly exceeds the rate of the others, the model under study can
be reduced to the optimal control problem for a semilinear Sobolev type equation with the
initial Showalter — Sidorov condition. The article develops an algorithm for the numerical
study of the model in the Maple environment. This algorithm is based on the Galerkin
method and the decomposition method, which allows to take into account the phenomenon
of degeneracy of the equation. The article gives an example illustrating the results of the
computational experiment obtained by the two-component model on the two-ribbed graphs.

Keywords: Sobolev type equations; Showalter — Sidorov problem; optimal control
problem.

Introduction

Mathematical model of the propagation of a nerve impulse in a membrane belongs to
the class of reaction-diffusion models, which is a large class of processes [1-4]. For instance,
the study of the Belousov — Zhabotinsky chemical reaction, creating ordered temporal
and /or spatial structures is based on the reaction-diffusion equations. Reaction-diffusion
models describe various chemical and biological processes. In the works [1-4]|, researchers
study only two-component reaction-diffusion models. At the present time, the studies of
more complex temporal and spatial structures lead to research of multicomponent reaction-
diffusion model [5,6]|. Most often, models with only one activator and several inhibitors
are considered [5]. In these models, the multicomponent is usually achieved by increasing
the number of inhibitors. In [5], three- and four-component models (one activator and two
(three) inhibitors were considered) and their stability were studied. The necessity to study
the degenerate case is related to the fact that the rate of change of ones of concentration is
much greater than that of the others. The degenerate system of reaction-diffusion equations
was first studied in the article [7].

A multicomponent model of the propagation of a nerve impulse in the system of nerves
can be defined as a FitzHugh — Nagumo system on the finite connected oriented graph
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G = G(V; &) with the vertex set V = {V;,}}L; and the edge set € = {E;}1<,, i.e.
( V1jt — Q1V1jss + Brivrj + Bravey + -+ A+ BimUmj + (v1;)? = uay,
Vgjt — QaVgjss + Po1V1j + BagVaj + « -+ + BomUm; + (U2j)3 = Ugj,
Ukjt — QpUkjss + Br1v1j + Bravaj + -+« + BemUmj + (Vk)* = g, (1)

— Q1 V(k+1)jss T Be+1)1015 + Brer1)2V25 + ++ + Bl 1)ymUmj = Uk+1)j5

—OmUmjss + /Bmlvlj + /Bm2v2j + -4+ ,Bmmvmj = Umj
for all s € (0,1;), j =1, K,

\

where the positive parameters a;,7 = 1, m, are the diffusion coefficients and the prescribed
functions u;; = w;;(s,t),7 = 1,m,j = 1, K, characterize exterior actions. Each function
v;; = v;;(s, ) satisfies the flow balance condition

Z dijvijs(o,t) — Z dipVirs (1, 1) = 0, (2)

J:E;eE*(Vy) r:E.€E%(V},)

and the continuity condition
vir((), t) == vij(O, t) == Uz‘q(lq, t) == Uin(lny t) (3)

at each vertex Vj, for h = 1,M for all E,,E; € E*(V,) and E,, E, € E“(V;). Here
E*@)(V},) stands for the set of edges starting (ending) at V},.

In the special constructed Banach spaces X and 4, the preimage of degenerate system
(1) is the abstract semilinear Sobolev-type equation

d

ﬁLx + M(x) = u, ker L # {0}. (4)
Here L is a continuous linear operator and M is a smooth nonlinear operator. Endow
equation (4) with the Showalter—Sidorov condition

L(z(0) — z) = 0. (5)

Sobolev-type equations on a graph were studied for the first time in [8|, where sufficient

conditions for the simplicity of a phase manifold of the Hoff equation were found as well.
The mathematical model of optimal regulation of the propagation of a nerve impulse

in the system of nerves can be constructed on the basis of the optimal control problem

J(x,u) — inf (6)

by the solutions to (1) — (3) in the weak generalized sense. Here J(z,u) is a certain
purpose-built quality functional with the control u € U,4, where 4,4 is a closed convex
set in the control space 4. The optimal control problem for linear Sobolev-type equations
with the Cauchy initial condition was originally posed and studied in [9]. That article
initiated a series of studies of optimal control problems for linear Sobolev-type equations
with various initial conditions [10,11]. Sufficient conditions for the existence of a solution to
problem (4), (5), (6) when L is a Fredholm operator were obtained in [12,13]. The optimal
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control problems in various reaction-diffusion models are studied for non-degenerate cases
in the work [14] and for deganerate cases in the works [15, 16]. The optimal control
problem for degenerate two-component FitzHugh—Nagumo model on the domain €2 and the
Showalter—Sidorov problem are considered in [15]. The article [16] proves the existence and
uniqueness of a solution to the Showalter—Sidorov problem in the weak generalized sense
and the existence of optimal control by weak generalized solutions to this problem and finds
sufficient conditions for the existence of optimal control problem for a multicomponent
mathematical model of the propagation of a nerve impulse in system of nerves (1) — (3),
(5), (6).

Our goal is to construct an algorithm for the numerical study of optimal regulation
of the propagation of a nerve impulse in system of nerves (1) — (3), (5), (6). The need to
develop a numerical solution algorithm is due to the fact that it is not always possible
to obtain an analytical solution for degenerate reaction-diffusion models. Therefore, the
construction of algorithms for numerical methods of the studied problems is in demand.
In this case, the Galerkin method is the most suitable as the method that allows to take
into account the degeneracy of the equations for certain parameters. Using the Galerkin
method, we can construct approximate solutions of models, which coefficients satisfy a
system of algebra-differential equations with the corresponding initial conditions [17].
This article develops an algorithm based on the modified Galerkin method for degenerate
equations on a finite connected oriented graph. Based on the ideas and methods described
in [12, 18], we present the desired functions in the form of the Galerkin sum o;(s,t) =
ST vl(t)i(s), where {;(s)} are the eigenfunctions of the homogeneous Dirichlet problem of
=1
the Laplace operator A in the graph G, and v!(t) satisfy the system of algebraic-differential
equations and the corresponding initial conditions. Here it is necessary to mention the
decomposition method, which is described in [12], and, along with the Galerkin method, is
the basis of computational experiments. Using all of the above methods, we study system
of equations (1) — (3) on the finite connected oriented graph G with Showalter—Sidorov
condition (5). In order to illustrate the results obtained, we give examples of the two-
component model on the two-ribbed graphs.

1. Statement of the Problem

Consider the finite connected oriented graph G = G(V; ) with the vertex set V =

{Vi}L, and the edge set & = {E;} |, where each edge has the length [; > 0 and the

transverse cross-section area d; > 0. On G, consider FitzHugh-Nagumo system (1), where
each function v;; = v;;(s, t) satisfies flow balance condition (2) and continuity condition (3)
at each vertex Vj, for h = 1, M, for all E,, E; € E%(V}) and E,, E, € E“(V;). Conditions
(2), (3) and system (1) form the multicomponent mathematical model of neural signal
propogation. Endow (2), (3) with the Showalter—Sidorov conditions

vi(5,0) = vgi(s), i =1, k. (7)
Based on the results obtained in [8], introduce the Banach space
Lp(G> = {g = (g17g27 s gy 7gK) ‘g € Lp(07 l])}
Construct the Banach space

9 ={9=1(91,92 -9, 9K) : g; € W5 (0,1;) and condition (3) holds}.
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Consider the Hilbert space H = (Lo(G))™ endowed with the inner product [z,(] =
Z(Uia Cz>7 T = (’Ulana s 7Um>> C = (Cla CQ? ) Cm)a v € LQ(G)7 Cz € LQ(G)7 where <'7 > is

i=1
an inner product in the Hilbert space Ly(G) identified with its adjoint one. By analogy,
construct the space A = $H™ and denote by 2A* the adjoint space to 2 with respect
to the inner product in H. Write u = (uy,us, ..., u,) and define the operators L and
M = M1 + MQZ

[ang]:<’U17<1>+“'+<Ukagk>7 xacem

[Mi (), C] = a1(vis, Cis) + (Br101 + Srava + - - + BimUm, C1) + o (vas, Cos)+
+ (Borv1 + Bogva + -+ - + BomUm, C2) + -+ - + iy (Ums, Cns) +
+ <6m1vl + 6m2v2 + -+ ﬁmmvmy Cm)y I,C € Q[,

[Ms(@), (] = (v}, Q1) + (v3, Go) + -+ (0, G, 2, CER,
where v} = (v}, v}, ..., v3), i = 1,k.
Suppose that the matrix B = {f;;}{"_, has the property
305,C>0: COplz,r] <[Br,z] <CPlx,z]. (8)

Lemma 1. [16] (i) The operator L € L(A;A*) is self-adjoint and nonnegative definite.
(ii) Suppose that a; € Ry for i = 1,m and condition (8) is satisfied. Then the operator
M, € L(;20%)) is s-monotone and 2-coercive.

(iii) The operator My € C*(L4(G); L%(G)) is s-monotone and 4-coercive.

Therefore, problem (1) — (3), (7) is reduced to Showalter—Sidorov problem (4), (5).

Remark 1. By construction of L, the sets ker L, coim L, coker L, and im L are defined as

kerL:;[O}x{O}x---x{O}/\xf)xf)x---xQ,

k m—k

coimL =H X H x---xHx{0} x {0} x --- x {0},

k m—k
coker L = {0} x {0} x --- x {0} xH" x H" x --- x H* |
‘kr mtk

imL:{)*xﬁ*><---><.§')*:3<{0}><{0}><---><{O}/.
k mtk

Construct the spaces
X = {33' = (’Ul, V2y oo oy Uy Upt1, - - - ,Um) v € LOO(O, T, L4(G)) N L4(O’T7 L4(G))),
d’UZ'

o € L20,T59), i = 1k v € Loo(0,T5.9) N Ly(0, T3 9)), i = k + 1, m};

U= {U: (Ul,UQ,...,Um) SU € L%(()?T)L%(G))?Z :L—k7
u; € L(0,T;9%), i =k+1,m}.
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By the Sobolev embedding theorem, the space Wy (0,1;) consists of absolutely
continuous functions, therefore, § is well-defined, dense, and compactly embedded into
Ly(G). Fix a > 0 and construct the operator

lj

(Ag, h) = Z d; /(gjs(s)hjs(s) + ag;j(s)hi(s))ds, g, h € 9.

Ejeg 0

The operator A € L£($;$*) is bijective, its spectrum is real, discrete, of finite multiplicity,
and accumulates only at 400, while its eigenfunctions form a basis for the space $ [19].
Denote by {¢;} a sequence of eigenfunctions of the homogeneous Dirichlet problem for the
operator A on the graph G.

Construct Galérkin approximations to the solution to problem (1) — (3) as

n

V(s t) = Y ai(t)pils), i =T1,m,

=1

where the coefficients a! are determined by the system

;

(], — qoly, + Brivl + Bravh + - - 4 Bl + (V1) 1) = (w1, 1),
</U£lt - 042?)385 + 621’0? + 622’03 +e Bvafn + (03)37 (Pl> = <u27 901>7

(U, — Vs, + Bra vl + Brovy + - - 4 Bemvl + (V)% 1) = (g, @), 9)
(= Q1004 1)5s + B 07 + Buer1)203 + -+ + Basym U, 1) = (Uier1), 91,

L <_04m’07r;155 + ﬁmlv? + Bmﬂ)g + -+ ﬁmmvgw 901> = <um7 901>

for : = 1, m, [ = 1,n and the Showalter—Sidorov conditions

<Ul(0) — Vo1, <Pl> =0,
(10)

<Uk?(0) _U0k7¢l> = 07 l= 17”7_
vy, = vo; form = ocoin $,i =1, k.

Note that equations (9) form a system of algebra-differential equations. Let T, € R,
T, = Th(x0), $Hn = span{@1, ©2, ..., ont, An = (9,)™. For all zy € $, there exists a unique
local solution z™ € C"(0,T,,;2,), r > 1, to problem (9), (10) [8].

Definition 1. By a weak generalized solution to (4) we mean the vector function z € X
satisfying the condition

/(p(t) [%Lx + M(x),w} dt = /gp(t) [u, w]dt, Yw € A Vp € Ly(0,T). (11)

A solution to equation (4) is called a solution to the Showalter—Sidorov problem whenever
the solution satisfies (5).

Theorem 1. [16| Suppose that a; € Ry for i =1, m and conditions (8) are satisfied. For
the given xq € A and u € 4, there exists a unique solution x = (vy,vs,...,v,) € X to
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problem (1) — (3), (7), and besides " = (v}, vy, ..., vl) — (v1, V9, ..., Uy) for n — oo in
the space X.

Choose a nonempty closed convex set i,; C L. Consider the optimal control problem
J(z,u) — inf (12)

for solutions to problem (1) — (3), (7), where the objective functional is defined as

kL m T
J(x,u) :ﬁZ/Hvi—zidHi(@ dt + v Z /Hvz—zldﬂgl dt+
i—1 ) i=k+17)
T w7
4
1= [l @i+ =9 > [lunliedr, ve @D, (13)
i=1 E i=k+17Y
and 2% = (2¢,24,...,2%) is the required state of the system. Functional (13) is a

compromise functional and allows to bring the desired solution x closer to the required
state 2¢ at the lowest control costs. Problem (1) — (3), (7), (12) describes the optimal
control problem of the propagation of a nerve impulse in the system of nerves and allows
to achieve the desired system response for the least external impact.

Definition 2. Refer to a pair (Z,4) € X X U,q as a solution to optimal control problem
J(z,u) = (inf) J(z,u),

where the pairs (z,u) € X X U,q satisfy (1) — (3), (7) in the sense of Definition 1; the

vector function w is called the optimal control.

Theorem 2. [16] Suppose that o; € Ry fori = 1,m and conditions (8) are satisfied. Then
there ezists a solution (,u) € X X yq to problem (1) —(3), (7), (12) for every xy € 2.

2. Numerical Algorithm

Based on the theoretical results obtained in the article [16], we develop an algorithm
for the approximate solution of optimal control problem (1) — (3), (7), (12) based on the
modified decomposition, Galerkin and Ritz methods. Applying the decomposition method
described in [12]|, we linearize system (1) by introducing the function y;, i = 1,k, and
obtain equivalent Showalter — Sidorov problem (7) for the system of equations

( <U711t - Odlv?ss + Bllv? + 612’03 + e+ Blmvgm + (y?>37 <Pl> = <u17 901>7
(V3 — gVl + LotV + LBostlh + -+ + Lol + (Y5)%, 1) = (us, ¢1),

(Ui, — Vg + Bravl + Bravh + -+ Brmvis, + (i)°, 1) = (ug, @1), (14)
<—Oék:+1v&+1)ss + Be+1)107 + Bre+1)208 + -+ + Bt 1ym Uy 1) = (Uget1), 91) 5
(—omtngs + Bri0f + Brmavy + -+ 4 Baumtpy, 1) = (tms 1),

v =yt =1,k j=1,K,l=1,n, forall s € (0,1).
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Then the solution (z,u) to problem (1) — (3), (7), (12) is reduced to the unknown

triple (z,y,u), where x = (v,v9,...,Un), ¥ = (Y1,Y2, -, Uk), U = (U, Uy ..., Upy).
Following the Galerkin method, we construct an approximate solution & = (01, U2, ..., U ),
9 = (Y1, Yas -, Yx) to problem (2), (3), (7), (12), (14) in the form of the sums

n

@i(svt) = U?(S7t) = ng(t)(pl(s)7 t=1,m, gi(sv ) = yz Zyz 901

=1

H
o

Represent the right-hand side of the equation in the form

= uit)puls), i = T,m.
=1

Using the Ritz method, we represent the unknown functions yi(t), i = 1,k, ul(t),i =
H

1,m,l = 1,n, by the expansion y!(t, H) Zb Zc Jth. In order to

h=0
find the unknowns v!(t), use the Galerkin surns and then multiply the resulting equation

scalarly in H by the eigenfunctions ¢;(s). As a result, we obtain the algebra-differential
equations

(LEr, @u(s)) + (M1, oi(s)) + (Ma(5), u(s)) = (@, @i(s)), 1 =T, (15)

with Showalter—Sidorov conditions (10). Next, we construct an approximate solution to
optimal control problem (2), (3), (7), (12), (14) by the penalty method described in [12].
Consider an equivalent optimal control problem, where the relation v]' — y*,7 = 1, k for
n — oo is obtained for an approximate solution by introducing a new functional of the
form

P P
Tw,w) =00y / o= 22y e+ 91 = 0) S [ 1= 2y e+
=1 =1 0
k T
40 Z /||UZ 2 gt 4 (19 Z/HumllL o dt+ (1= Z /Huz 2. di+
1= k+1 i=17 1= k+1

T

k
+ 7. Z/ Hﬁl - QZHZI{AL(G) dt,0 € (07 1)7 (NS (07 1)7 (16)
=17

where the penalty parameter r. = é — 400 for e = +0.

Based on the theoretical results obtained, a program for numerical solution of problem
(1) — (3), (7), (12) was developed and implemented in the Maple 17.0 for Windows
environment in Maple programming language. The result of the program is shown in
Example.

Example. Consider problem (1) — (3), (7), (12) on the graph G (see Fig. 1) consisting
of three consecutively joined edges and four vertices, dy = dy = 1,1; = Iy = 7 in the case
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g

Fig. 1. The graph G

oszl,m:2,K—2,n:2 061:2,0[2:1,,311:1 612:1,1121,,321:1,
Poo =1, T=1,0=1%10=1:5 c= 15, 24(st) = \/thos—, 2y(s,t) = \/=3tcos s,
24 = —ft sin £, 24, = —ft sin £, and the initial functions
1 1
UOH(S) = \/;COS%,UOH(S) = —\/;t sin %
We apply the decomposition method and proceed to the problem
V15t — 20155 + V1 + Voj + YT = uay, (17)
—Uzjss — V1 T U2 = Ugjp j = 1,2,
with the continuity condition and the flow balance condition
’Uls(ﬂat) = UQS(Oat)a Uls(oat) =Y, (18)
’Ugs(ﬂ',t) = O,Ul(ﬂ',t) = ’UQ(O, )

On the graph G, the eigenfunctions of the Sturm—Liouville problem

XU = AXy, XJ = AXo,
Xi(m) = X3(0) = 0, Xy () = X(0),
X7(0) =0, X5(m) =0

o= (Y1)

1 s 1 s
P2 = (90%7903) = (; CcOos 5, ;COS 5) .

have the form [18|

As a result of calculations, we find the control coefficients shown in Table, for which
the value of the functional is J = 0, 18162266 (accurate to 107®), and the solution to the
problem is shown in Figs. 2 — 6. We show changes in concentrations in the first link of the
tubular reactor in (0, 7), in the second link of the system of nerves in (7, 27), and in the
third link of the system of nerves in (27, 37).
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Table
The control coefficients (accurate to 1078)
bi1 = 0,00390231 | by 2 = —0,00471158 | by 1 = —0,00678036 | beo = —0,00891264
cly = 0,00000514_| e}, = =0, 00370847 | e}, = 0,004606%0 | c},, = 0, 00004497
c, = 0, 00GTI085 | b, = =0,00900876 | ¢, =0, 00398598 | f, = =0, 00587379
ct,=—0,00425381 | ¢35, = —0,00689106 | c3, = 0,00992757 | 3, =0,01041112

The difference between the obtained solution z = (v, v5) and the required solution y
is as follows:

1

4
— g5 DIyt

I i (s, 1) = 2,2986301 - 10,

=

= (] (o) = 5D )
s = (S lly(s. ) = 245 D11 yt)”
=

I va(s, ) — 24(s, t)\\§4(G)dt>4 = 0,0011103445.

N

=0,019204719,

= 0,019194064,

=

0.1+

=|a

|~_:|;=] -
L)
=l

-0.14 .

-02+

0.3+ a

Fig. 2. Graphs of the optimal control uy;(s,1) fort =1, j =1,2
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Fig. 3. Graphs of the optimal control ug;(s,1) fort =1, j =1,2

Fig. 4. Graphs of vy(s, 1), zfj(s, fort=1,j5=1,2
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Fig. 5. Graphs of y;(s, 1),2%(5, fort=1,j5=1,2

Fig. 6. Graphs of vy,(s, 1), zgj(s, )fort=1,j=1,2
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YN CJIEHHOE UCCJIEJTOBAHUE 3AJAYN
OIITUMAJIBHOI'O VIIPABJIEHUSA 1JIS1 BBIPOYK/IEHHOM
MHOTOKOMITIOHEHTHOM MATEMATNYECKOY MOJIEJIN
PACIIPOCTPAHEHU Y HEPBHOTI'O UMITVJIBCA

B CUCTEME HEPBOB

O. B. I'aspunosa

CraTbsi MOCBSIIIEHa YUCJIEHHOMY HCCJIeJJOBAHUI0 MHOTOKOMIIOHEHTHOM MOJIEIN 3a1a9u
ONITUMAJILHOTO PErYJIUPOBAHUST PACIPOCTPAHEHHEM HEPBHOTO UMILYJIbCA B CHCTEME HEPBOB
Ha OCHOBe cucTeMbl ypaBHenuit @urnxpio — Harymo. 9ra Moessb OTHOCHTCS K KJIACCY MO-
qesieit peakiuu-iuddy3un, KOTOpble MOJEIUPYIOT MUPOKUN KJIaCC MPOIECCOB, TAKUX KaK
XuMudeckue peaknuu ¢ auddysueil u pacmpocTpaHeHHe HEPpBHOIO HMITyJibca. B ciydae
ACHMIITOTUIECKON YCTONINBOCTH UCCTIEYEMOI MOJEIN U [IPU YCJIOBUH, YTO CKOPOCTh MU3Me-
HEHWs OJ[HUX KOMIIOHEHT 3HAYUTEJILHO MPEBBIINAET CKOPOCTD JAPYTHUX, UCCIeayeMast 3a1a49a
MOKeT OBITH CBEJIEHA K 33Jia9€ ONTUMAJILHOTO YIIPABJIEHUS JJIs MOJIYJIMHEHOTO yPaABHEHUS
cobOJIEBCKOTO THITA ¢ HadabHbIM ycstoBueM [lloyosrepa — Cumoposa. B crarbe pazpaboran
aJITOPUTM YHCJIEHHOTO UCCJIeI0OBaHus 3aa49u B cpeje Maple. AjiropurM 0CHOBaH Ha METOJIE
lajiepkuHa 1 METOJIE JIEKOMITO3UIINH, YTO IO3BOJISIET YIECTh BBIPOXKIEHHOCTD ypaBHEHUsI. B
cTaThbe MPUBEJIEH IPUMED, WIIIOCTPUPYIOIIUX PE3YJIbTAThI BRIYUCIATEILHOTO IKCIEPUMEH-
Ta, MOJIy9IeHHbIe JJIs JBYXKOMIIOHEHTHOM MoJiesin Ha JByXpebepHoM rpade.

Karoueswie crosa: ypasuerus coboresckozo muna; 3adaua Ioyoamepa — Cudoposa;

3a0aMa ONMUMANDHO20 YynpasaeHuA.
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