OPTIMAL CONTROL IN THE MATHEMATICAL MODEL

DOI: 10.14529/jcem200105

- K. Yu. Kotlovanov¹, kotlovanovki@susu.ru,
- E. V. Bychkov¹, bychkovev@susu.ru,

OF INTERNAL WAVES

- A. V. Bogomolov², a.v.bogomolov@gmail.com
- ¹ South Ural State University, Chelyabinsk, Russian Federation
- ² St. Petersburg Institute for Informatics and Automation of RAS, Saint-Petersburg, Russian Federation

The paper presents the results of the study of the problem on the optimal control to solutions for a mathematical model of internal waves, which is based on a linear system of equations of hydrodynamics. This model describes the propagation of waves in a homogeneous incompressible stratified fluid. The mathematical model includes the Sobolev equation, the Cauchy and Dirichlet condition. We use a parallelepiped as a considered domain in the mathematical model. The paper shows existence and uniqueness of a strong solution to the Cauchy – Dirichlet problem for the Sobolev equation. Also, we obtain the sufficient conditions for existence and uniqueness of a solution to the problem on optimal control to such solutions in Hilbert spaces. Proof of existence and uniqueness of a strong solution is based on the theorem for an abstract incomplete inhomogeneous Sobolev type equation of the second order and the theory of relatively p-bounded operators. In this paper, we present the theorem on existence and uniqueness of the optimal control for the problem under study, which is based on the works of J.-L. Lyons.

Keywords: Sobolev type equations; relatively p-bounded operator; strong solution; optimal control.

Introduction

Dynamics of particle oscillations of a homogeneous incompressible fluid, which rotates with the constant angular velocity Ω , is described by the linear system of hydrodynamic equations (the system of Sobolev equations [1])

$$\begin{cases}
\nu_t + \frac{1}{\rho_0} \nabla p + 2[\Omega \times \nu] = f(x, t), \\
\rho_t = 0, \\
\nabla \nu = 0,
\end{cases} \tag{1}$$

where $\nu = \{u, v, w\}$, while ρ_0 = const is the equilibrium density and the buoyancy frequency is equal to zero. If we direct the axis Oz collinearly to the vector Ω , then we obtain the equation for the vertical component of the velocity of fluid particles (the Sobolev equation [1])

$$\Delta w_{tt} + F^2 w_{zz} = f(x, t), \tag{2}$$

where $2[\Omega \times \nu] = \{-Fv, Fu, 0\}$, and $F = 2\Omega$ is the Coriolis parameter. Wave solutions that satisfy equation (2) are called inertial or gyroscopic waves propagating on the surface of the rotating fluid. In the paper [1], a solution to equation (2) is obtained in an unbounded domain by the Green's function method. The paper [2] describes the behavior of solutions to two-dimensional Hamiltonian systems arising in the theory of small oscillations of a

rotating ideal fluid, and constructs a mathematical model of the generation of a vortex structure.

Let D be a bounded domain that belongs to \mathbb{R}^3 and has a smooth boundary ∂D . For the function w = w(x, t), we impose the Dirichlet condition

$$w(x,t) = 0, \quad (x,t) \in D \times \mathbb{R} \tag{3}$$

at the boundary of the domain D, and the Cauchy condition

$$w(x,0) = 0, \quad w_t(x,0) = 0.$$
 (4)

In this paper, we study the optimal control problem on finding the pair (\hat{w}, \hat{u}) , where \hat{w} is the solution to problem (2), (4), and $\hat{u} \in \mathfrak{U}_{ad}$ is the control that satisfies the relation

$$J(\hat{w}, \hat{u}) = \min_{(w,u) \in \mathfrak{X} \times \mathfrak{U}_{ad}} J(w, u). \tag{5}$$

Here J(w, u) is the quality functional constructed in a special way, and \mathfrak{U}_{ad} is the set, which is closed and convex in the control space \mathfrak{U} .

Let us find a solution to problem (2)–(5) in the framework of the theory of Sobolev type equations. First, consider the Cauchy problem for the incomplete inhomogeneous Sobolev type equation of the second order

$$A\ddot{w} = Bw + y, (6)$$

$$\dot{w}(0) = w_1, \ w(0) = w_1, \tag{7}$$

where the operators $A, B \in \mathcal{L}(\mathfrak{X}; \mathfrak{Y})$, the function $y : [0, \tau) \subset \mathbf{R}_+ \to \mathfrak{Y} \ (\tau < \infty)$, and $\mathfrak{X}, \mathfrak{Y}$ are Hilbert spaces.

The paper is based on the theory of relatively bounded operators, degenerate semigroups of operators [3] and the theory of incomplete Sobolev type equations of the high order [4]. The monographs [3, 5] study in detail Sobolev type equations and equations that are not resolved with respect to the highest time derivative. In the monograph [5], various classes of Sobolev type equations are introduced and equation (2) is referred to simple Sobolev type equations. Sobolev type equations represent a significant field of non-classical equations of mathematical physics. Optimal control problems for models of mathematical physics represent a promising direction. New statements of optimal control problems arise. For example, we note optimal control of solutions to stochastic equations [6], [7], optimal control of solutions to a multipoint initial-final value problem [8]. Optimal control problems are considered in [9, 10] for first-order Sobolev type equations and in [11] for high-order equations.

1. Relatively p-bounded Operators

Definition 1. The set $\rho^A(B) = \{\mu \in \mathbb{C} : (\mu A - B)^{-1} \in \mathcal{L}(\mathfrak{Y}; \mathfrak{X})\}$ is said to be the resolvent set of the operator B with respect to the operator A (in short, A-resolvent set of the operator B). The set $\mathbb{C} \setminus \rho^A(B) = \sigma^A(B)$ is called the spectrum of the operator B with respect to the operator A (in short, A-spectrum of the operator B).

Definition 2. The operator-functions

$$(\mu A - B)^{-1}$$
, $R^A_\mu = (\mu A - B)^{-1}A$, $L^A_\mu = A(\mu A - B)^{-1}$

with the domain $\rho^A(B)$ are called the resolvent, right resolvent, left resolvent of the operator B with respect to the operator A (in short, A-resolvent, right A-resolvent, left A-resolvent of the operator B), respectively.

Definition 3. The operator B is called spectrally bounded with respect to the operator A (in short, (A, σ) -bounded), if

$$\exists a > 0 \ \forall \mu \in \mathbb{C} : (|\mu| > a) \Rightarrow (\mu \in \rho^A(B)).$$

Lemma 1. [3] Let the operator B be (A, σ) -bounded. Then the operators

$$P = \frac{1}{2\pi i} \int\limits_{\Gamma} R^{A}_{\lambda}(B) d\lambda \ u \ Q = \frac{1}{2\pi i} \int\limits_{\Gamma} L^{A}_{\lambda}(B) d\lambda$$

are projectors with $P: \mathfrak{X} \to \mathfrak{X}$ and $Q: \mathfrak{Y} \to \mathfrak{Y}$. Here $\Gamma = \{\lambda \in \mathbb{C} : |\lambda| = r > a\}$.

Let $\mathfrak{X}^0 = \ker P$, $\mathfrak{Y}^0 = \ker Q$, $\mathfrak{X}^1 = \operatorname{im} P$, $\mathfrak{Y}^1 = \operatorname{im} Q$. Denote by $A_k(B_k)$ the restriction of the operator A(B) to the subspace \mathfrak{X}^k , k = 0, 1.

Theorem 1. [3] Let the operator B be (A, σ) -bounded. Then

- (i) the operators $A_k, B_k : \mathfrak{X}^k \to \mathfrak{Y}^k, k = 0, 1$;
- (ii) there exists the operator $B_0^{-1} \in \mathcal{L}(\mathfrak{Y}^0, \mathfrak{X}^0)$;
- (iii) there exists the operator $A_1^{-1} \in \mathcal{L}(\mathfrak{Y}^1, \mathfrak{X}^1)$;
- (iv) the operator $B_1 \in \mathcal{L}(\mathfrak{X}^1, \mathfrak{Y}^1)$.

Under the conditions of Theorem 1, we construct the operators $H = B_0^{-1} A_0 \in \mathcal{L}(\mathfrak{X}^0)$ and $S = A_1^{-1} B_1 \in \mathcal{L}(\mathfrak{X}^1)$. Then

$$(\mu A - B)^{-1} = \left(-\sum_{k=0}^{\infty} \mu^k H^k\right) B_0^{-1}(\mathbb{I} - Q) + \sum_{k=1}^{\infty} \mu^{-k} S^{k-1} A_1^{-1} Q.$$
 (8)

Definition 4. An infinitely distant point of the A-resolvent of the operator B is called

- (i) a removable singular point, if $H \equiv \mathbb{O}$;
- (ii) a pole of the order p, if $H^p \neq \mathbb{O}, H^{p+1} \equiv \mathbb{O}; p \in \mathbb{N}$,
- (iii) an essentially singular point, if $H^q \neq \mathbb{O}$, $\forall q \in \mathbb{N}$.

Definition 5. The (A, σ) -bounded operator B is called (A, p)-bounded, if the point ∞ is a pole of the order $p \in \{0\} \cup \mathbb{N}$ of its A-resolvent.

2. Abstract Problem

Let \mathfrak{X} , \mathfrak{Y} be Hilbert spaces, $\mathcal{L}(\mathfrak{X})$ be the space of linear operators acting on the space \mathfrak{X} , the operators $A, B \in \mathcal{L}(\mathfrak{X}; \mathfrak{Y})$. Consider the inhomogeneous linear Sobolev type equation

$$A\ddot{w} = Bw + y. \tag{9}$$

Definition 6. The operator-function $V^{\bullet} \in C^{\infty}(\mathbb{R}; \mathcal{L}(\mathfrak{X}))$ is called the propagator of inhomogeneous equation (9), if the vector function $w(t) = V^t v$ is a solution to (9) $\forall v \in \mathfrak{X}$.

Theorem 2. [4] Let the operator B be (A, σ) -bounded. Then the formula

$$V_m^t = \frac{1}{2\pi i} \int_{\Gamma} \mu^{1-m} (\mu^2 A - B)^{-1} A e^{\mu t} d\mu, \ m = 0, 1,$$

where the contour $\Gamma = \{ \mu \in \mathbb{C} : |\mu| = R > a \}$, defines the propagators of equation (6) for all $t \in \mathbb{R}$.

Lemma 2. (i) $V_m^{\bullet} \in C^{\infty}(\mathbb{R}; \mathcal{L}(\mathfrak{X}; \mathfrak{X}^1)), \ (V_m^t)_t^{(l)} = V_{m-l}^t, \ where \ m = 0, 1, \ l = 0, 1;$ (ii) $(V_m^t)_t^{(l)}\Big|_{t=0} = \mathbb{O} \ for \ m \neq l, \ (V_m^t)_t^{(m)}\Big|_{t=0} = V_0^0 = P.$

Definition 7. The subspace $\mathcal{P} \subset \mathfrak{X}$ is called the *phase space of homogeneous equation* (6) if

- (i) any solution w = w(t) to equation (6) belongs to \mathcal{P} , i.e. $w(t) \in \mathcal{P}, \forall t \in \mathbb{R}$;
- (ii) there exists the unique solution to problem (6), (7) for any $w_0, w_1 \in \mathcal{P}$.

Theorem 3. [4] Let the operator B be (A, p)-bounded. Let the vector function $y: (-\tau, \tau) \to \mathfrak{Y}$ be such that $y^0 \in C^2((-\tau, \tau); \mathfrak{Y}^0)$, and $y^1 \in C((-\tau, \tau); \mathfrak{Y}^1)$. Suppose that the initial values satisfy the relations

$$(I - V_0^0)w_m = -\sum_{q=0}^p H^q B_0^{-1} \frac{d^{2q+m}}{dt^{2q+m}} y^0(0), \quad m = 0, 1.$$

Then there exists a unique solution to problem (6),(7), which can be represented in the form

$$w(t) = -\sum_{q=0}^{p} H^{q} B_{0}^{-1}(\mathbb{I} - Q) y^{(2q)}(t) + \sum_{m=0}^{1} V_{m}^{t} w_{m}^{1} + \int_{0}^{t} V_{1}^{t-s} A_{1}^{-1} Q y(s) ds, t \in (-\tau, \tau).$$
 (10)

Definition 8. The vector function $w \in H^2(\mathfrak{X}) = \{w \in L_2(0,\tau;\mathfrak{X}) : \ddot{w} \in L_2(0,\tau;\mathfrak{X})\}$ is said to be a *strong solution to equation* (6), if w converts (6) into identity almost everywhere on $(0,\tau)$. A strong solution w = w(t) to equation (6) is called a *strong solution to problem* (6), (7) if w satisfies (7).

The concept of a "strong solution" used in Definition 6 is introduced to distinguish the solution to equation (6) in this sense and the solution to (6), which is usually called "classical" one. The embedding $H^2(\mathfrak{X}) \hookrightarrow C^1([0,\tau];\mathfrak{X})$ is continuous, therefore Definition 8 is correct. Note that the classical solution to (6), (7) is also a strong solution to the problem.

Let us construct the space $H^2(\mathfrak{Y}) = \{v \in L_2(0,\tau;\mathfrak{Y}) : \ddot{v} \in L_2(0,\tau;\mathfrak{Y})\}$. The space $H^2(\mathfrak{Y})$ is a Hilbert space with the scalar product

$$[v,w] = \sum_{q=0}^{2} \int_{0}^{\tau} \left\langle v^{(q)}, w^{(q)} \right\rangle_{\mathfrak{Y}} dt.$$

Theorem 4. [11] Let the operator B be (A, p)-bounded. Then there exists a unique strong solution to problem (7) for equation (6) for any $w_0, w_1 \in \mathfrak{X}$ and $y \in H^2(\mathfrak{Y})$.

Let us consider the optimal control problem for the solutions to problem (6), (7) with the penalty functional of the form

$$J(w,u) = \sum_{q=0}^{2} \int_{0}^{\tau} ||w^{(q)} - \tilde{w}^{(q)}||^{2} dt + \sum_{q=0}^{2} \int_{0}^{\tau} \langle N_{q} u^{(q)}, u^{(q)} \rangle_{\mathfrak{U}} dt,$$
 (11)

where $N_q \in \mathcal{L}(\mathfrak{U})$, q = 0, 1, 2, are positive definite and self-adjoint operators, w is a solution to problem (6), (7), $\tilde{w}(t)$ is the desired state of the system, and the heterogeneity function y is a control denoted by y = u. The vector function $\hat{u} \in H^2_{\partial}(\mathfrak{U})$ minimizing functional (11) is called the optimal control to problem (6), (7).

Define the control space

$$H^2(\mathfrak{U}) = \{ u \in L_2(0, \tau; \mathfrak{U}) : \ddot{u} \in L_2(0, \tau; \mathfrak{U}) \}.$$

The space $H^2(\mathfrak{U})$ is Hilbert, due to the Hilbert property of \mathfrak{U} , with the scalar product

$$[v,w] = \sum_{q=0}^{2} \int_{0}^{\tau} \left\langle v^{(q)}, w^{(q)} \right\rangle_{\mathfrak{U}} dt.$$

In the space $H^2(\mathfrak{U})$, consider the closed and convex subset $\mathfrak{U}_{ad} = H^2_{\partial}(\mathfrak{U})$, which is the set of admissible controls.

In the paper [11], the following theorem on the uniqueness of optimal control is proved.

Theorem 5. Let the operator B be (A, p)-bounded. Then there exists the unique optimal control of solutions to problem (7) for equation (6) for any $w_0, w_1 \in \mathfrak{X}$ and $y \in H^2(\mathfrak{Y})$.

3. Mathematical Model of Internal Waves

Let the domain D be the parallelepiped $[0, a] \times [0, b] \times [0, c]$. Mathematical model (2)–(4) can be reduced to Cauchy problem (7) for equation (6).

Introduce the spaces $\mathfrak{X} = W_2^{l+2}(D)$, $\mathfrak{Y} = W_2^l(D)$ and define the operators

$$A = \Delta, \quad B = -F^2 \frac{\partial^2}{\partial z^2}.$$

For any $l \in \{0\} \cup \mathbb{N}$, the operators $A, B \in \mathcal{L}(\mathfrak{X}, \mathfrak{Y})$. Denote by

$$-\lambda_{k,m,n}^2 = -\left(\frac{\pi k}{a}\right)^2 - \left(\frac{\pi m}{b}\right)^2 - \left(\frac{\pi n}{c}\right)^2$$

the eigenvalues of the Laplace operator Δ , which are numbered in non-increasing order with respect to multiplicity. Denote by

$$\varphi_{k,m,n} = \sin\left(\frac{\pi kx}{a}\right) \sin\left(\frac{\pi my}{b}\right) \sin\left(\frac{\pi nz}{c}\right)$$

the orthogonal eigenfunctions that correspond to $\{-\lambda_{k,m,n}^2\}$ in the sense of the scalar product in $L^2(\Omega)$.

Since $\{\varphi_{k,m,n}\}\subset C^{\infty}(D)$, then

$$\mu A - B = \sum_{k,m,n=1}^{\infty} \left[-\lambda_{k,m,n}^2 \mu - F^2 \lambda_n^2 \right] < \varphi_{k,m,n}, \cdot > \varphi_{k,m,n},$$

where $\langle \cdot, \cdot \rangle$ is the scalar product in the space $L^2(D)$. Construct the equation to determine the relative spectrum:

$$\lambda_{k,m,n}^2 \mu + F^2 \lambda_n^2 = 0,$$

and we obtain the relative spectrum in the form

$$\mu_{k,m,n} = -\frac{F^2 \lambda_n^2}{\lambda_{k,m,n}^2}.$$

The relative spectrum $\sigma^A(B) = \{\mu_{k,m,n}\}$ is bounded, because $|\mu_{k,m,n}| \leq F$. Since the operator A is continuously invertible in the given spaces, then the point ∞ is a removable singular point of the A-resolvent of the operator B. As a result, the conditions of Lemma 1 hold. We construct propagators by Theorem 2. Since the relative spectrum of the operator B is discrete, we obtain

$$V_0^t w_0 = \sum_{k,m,n=1}^{\infty} \cos\left(\frac{F^2 \lambda_n^2}{\lambda_{k,m,n}^2} t\right) < \varphi_{k,m,n}, w_0 > \varphi_{k,m,n},$$

$$V_1^t w_1 = \sum_{k,m,n=1}^{\infty} \frac{F^2 \lambda_n^2}{\lambda_{k,m,n}^2} \sin\left(\frac{F^2 \lambda_n^2}{\lambda_{k,m,n}^2} t\right) < \varphi_{k,m,n}, w_1 > \varphi_{k,m,n}.$$

Solution to problem (2)–(4) has the form

$$w(x,t) = \sum_{k,m,n=1}^{\infty} \cos\left(\frac{F^{2}\lambda_{n}^{2}}{\lambda_{k,m,n}^{2}}t\right) < \varphi_{k,m,n}, w_{0} > \varphi_{k,m,n} +$$

$$+ \sum_{k,m,n=1}^{\infty} \frac{F^{2}\lambda_{n}^{2}}{\lambda_{k,m,n}^{2}} \sin\left(\frac{F^{2}\lambda_{n}^{2}}{\lambda_{k,m,n}^{2}}t\right) < \varphi_{k,m,n}, w_{1} > \varphi_{k,m,n} + \int_{0}^{t} V_{1}^{t-s} A_{1}^{-1} Qy(s) ds.$$
(12)

By virtue of Theorem 4, the solution given by formula (12) is strong. Define the control space

$$H^2(\mathfrak{U}) = \{ u \in L_2(0, \tau; \mathfrak{U}) : \ddot{u} \in L_2(0, \tau; \mathfrak{U}) \},$$

and consider the closed and convex subset $\mathfrak{U}_{ad} = H_{\partial}^2(\mathfrak{U})$, which is the set of admissible controls. The main result of the paper is the proof of the existence of the unique control $\hat{u} \in H_{\partial}^2(\mathfrak{U})$ minimizing the functional J(w,u). Fix $w_0, w_1 \in \mathfrak{X}$ and consider (13) as the map $D: u \to w(u)$. Then the map $D: H^2(\mathfrak{U}) \to H^2(\mathfrak{X})$ is continuous. Therefore, the quality functional depends only on u, i.e. J(w,u) = J(u).

Rewrite quality functional (11) in the form

$$J(u) = \|w(t, u) - \tilde{w}\|_{H^2(\mathfrak{X})}^2 + [v, u],$$

where $v^{(q)}(t) = N_q u^{(q)}(t), q = 0, 1, 2$. Hence

$$J(u) = \pi(u, u) - 2\lambda(u) + \|\tilde{w} - w(t, 0)\|_{H^{2}(\mathfrak{X})}^{2},$$

where

$$\pi(u, u) = \|w(t, u) - w(t, 0)\|_{H^{2}(\mathfrak{X})}^{2} + [v, u]$$

is a bilinear continuous coercive form on $H^2(\mathfrak{U})$, and

$$\lambda(u) = \langle \tilde{w} - w(t,0), w(t,u) - w(t,0) \rangle_{H^2(\mathfrak{X})}$$

is a linear continuous form on $H^2(\mathfrak{U})$. Therefore, the conditions of Theorem 1.1 proved in [12] are satisfied.

References

- 1. Sobolev S. L. On a New Problem of Mathematical Physics. *Izv. Akad. Nauk SSSR. Ser. Mat.*, 1954, vol. 18, issue. 1, pp. 3–50. (in Russian)
- 2. Fokin M. V. Hamiltonian Systems in the Theory of Small Oscillations of a Rotating Ideal Fluid. I. *Mat. Tr.*, 2001, vol. 4, no. 2, pp. 155–206. (in Russian)
- 3. Sviridyuk G. A., Fedorov V. E. *Linear Sobolev Type Equations and Degenerate Semi*groups of Operators. Utrecht; Boston; Köln; Tokyo, VSP, 2003.
- 4. Zamyshlyaeva A. A. The Phase Space of a High Order Sobolev Type Equation. *The Bulletin of Irkutsk State University. Series Mathematics*, 2011, vol. 4, issue 4, pp. 45–57. (in Russian)
- 5. Demidenko G. V., Uspenskii S. V. Partial Differential Equations And Systems Not Solvable With Respect To The Highest-Order Derivative. New York, Basel, Marcel Dekker, 2003.
- 6. Sviridyuk G. A., Zamyshlyaeva A. A., Zagrebina S. A. Multipoint Initial-Final Problem for One Class of Sobolev Type Models of Higher Order with Additive "White Noise". Bulletin of the South Ural State University. Series: Mathematical Modeling and Programming, 2018, vol. 11, no. 3, pp. 103–117. DOI: 10.14529/mmp180308.
- 7. Bogomolov A. V., Dragan S. P., Kharitonov V. V., Sviridyuk G. A., Manakova N. A. Acoustic Safety Assessment Method. *The Patent for Invention RU No. 2699737*, registration date 2019-09-09; the priority to RU2018134860A on 2018-10-02. (in Russian)
- 8. Sagadeeva M. A., Zagrebina S. A., Manakova N. A. Optimal Control of Solutions of a Multipoint Initial-Final Problem for Non-Autonomous Evolutionary Sobolev Type Equation. *Evolution Equations and Control Theory*, 2019, vol. 8, no. 3, pp. 473–488. DOI: 10.3934/eect.2019023.
- 9. Sviridyuk G. A., Efremov A. A. Optimal Control of Sobolev-Type Linear Equations with Relatively *p*-spectorial Operators. *Differ. Equ.*, 1995, vol. 31, no. 11, pp. 1882–1890.

- 10. Sviridyuk G. A., Manakova N. A. An Optimal Control Problem for the Hoff Equation. *J. Appl. Industr. Math.*, 2007, vol. 1, no. 2, pp. 247–253. DOI: 10.1134/S1990478907020147.
- 11. Tsyplenkova O. N. Optimal Control in Higher-Order Sobolev-Type Mathematical Models with (A, p)-Bounded Operators. Bulletin of the South Ural State University. Series: Mathematical Modeling and Programming, 2014, vol. 7, issue 2, pp. 129–135. DOI: 10.14529/mmp140213. (in Russian)
- 12. Lyons J. L. Optimal Control of Systems Governed by Partial Differential Equations. Berlin, Springer-Verlag, 1971.

Konstantin Yu. Kotlovanov, PhD Student, Department of Mathematical Equations Physics, South Ural State University, Chelyabinsk, Russian Federation, kotlovanovki@susu.ru.

Evgeniy V. Bychkov, PhD (Math), Associate Professor, Department of Mathematical Equations Physics, South Ural State University, Chelyabinsk, Russian Federation, bychkovev@susu.ru.

Alexey V. Bogomolov, DSc (Techn), Professor, Intelligent Systems Laboratory, St. Petersburg Institute for Informatics and Automation of RAS, Saint-Petersburg, Russian Federation, a.v.bogomolov@gmail.com.

Received February 7, 2020.

УДК 517.9

DOI: 10.14529/jcem200105

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ В МАТЕМАТИЧЕСКОЙ МОДЕЛИ ВНУТРЕННИХ ВОЛН

К. Ю. Котлованов, Е. В. Бычков, А. В. Богомолов

В статье представлены результаты исследования задачи оптимального управления решениями для математической модели внутренних волн, построенной на основе линейной системы уравнений гидродинамики. Данная модель описывает распространения волн в однородной несжимаемой стратифицированной жидкости. Математическая модель включает в себя уравнение Соболева, условие Коши и Дирихле. В качестве рассматриваемой области в математической модели используется параллелепипед. В данной работе показано существование и единственность сильного решения задачи Коши — Дирихле для уравнения Соболева. Получены достаточные условия существования и единственности решения задачи оптимального управления такими решениями в гильбертовых пространствах. Доказательство существования единственного сильного решения основано на теореме для абстрактного неполного неоднородного уравнения соболевского типа второго порядка и теории относительно *p*-ограниченных операторов. Приведенная в данной работе теорема существования и единственности оптимального управления для исследуемой задачи основана на работах Ж.-Л. Лионса.

Ключевые слова: уравнения соболевского типа; относительно р-ограниченный оператор; сильное решение; оптимальное управление.

Литература

- 1. Соболев, С. Л. Об одной новой задаче математической физики / С. Л. Соболев // Изв. АН СССР. Сер. матем. -1954. Т. 18, № 1. С. 3-50.
- 2. Фокин, М. В. Гамильтоновы системы в теории малых колебаний вращающейся идеальной жидкости. І. / М. В. Фокин // Матем. тр. 2001. Т. 4, № 2. С. 155–206.
- 3. Sviridyuk, G. A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators / G. A. Sviridyuk, V. E. Fedorov. Utrecht; Boston; Köln; Tokyo: VSP, 2003.
- 4. Замышляева, А. А. Фазовое пространство уравнения соболевского типа высокого порядка / А. А. Замышляева // Известия Иркутского государственного университета. Серия Математика. 2011. Т. 4, вып. 4. С. 45–57.
- 5. Демиденко, Г. В. Уравнения и системы, не разрешенные относительно старшей производной / Г. В. Демиденко, С. В. Успенкий. Новосибирск: Научная книга, 1998.
- 6. Sviridyuk, G. A. Multipoint Initial-Final Problem for One Class of Sobolev Type Models of Higher Order with Additive «White Noise» / G.A. Sviridyuk, A. A. Zamyshlyaeva, S. A. Zagrebina // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. 2018. Т. 11, № 3. С. 103–117.
- 7. Богомолов, А. В. Способ оценивания акустической безопасности: патент на изобретение RU № 2699737 / А. В. Богомолов, С. П. Драган, В. В. Харитонов, Г. А. Свиридюк, Н. А. Манакова. Дата регистрации 09.09.2019. Заявка № 2018134860 от 02.10.2018.
- 8. Sagadeeva, M. A. Optimal Control of Solutions of a Multipoint Initial-Final Problem for Non-Autonomous Evolutionary Sobolev Type Equation / M. A. Sagadeeva, S. A. Zagrebina, N. A. Manakova // Evolution Equations and Control Theory. − 2019. − V. 8, № 3. − P. 473–488.
- 9. Свиридюк, Г. А. Оптимальное управление линейными уравнениями типа Соболева с относительно *p*-секториальными операторами / Г. А. Свиридюк, А. А. Ефремов // Дифференц. уравнения. 1995. Т. 31, № 11. С. 1912–1919.
- 10. Свиридюк, Г. А. Задача оптимального управления для уравнения Хоффа / Г. А. Свиридюк, Н. А. Манакова // Сиб. журн. индустр. матем. 2005. Т. 8, № 2. С. 144—151.
- 11. Цыпленкова, О. Н. Оптимальное управление в математических моделях соболевского типа высокого порядка с (*A*, *p*)-ограниченными операторами / О. Н. Цыпленкова // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. 2014. Т. 7, № 2. С. 129–135.
- 12. Лионс, Ж.-Л. Оптимальное управление системами, описываемыми уравнениями с частными производными / Ж.-Л. Лионс. М.: Мир, 1972.

Котлованов Константин Юрьевич, аспирант, кафедра уравнений математической физики, Южно-Уральский государственный университет (г. Челябинск, Российская Федерация), kotlovanovki@susu.ru.

Бычков Евгений Викторович, кандидат физико-математических наук, кафедра уравнений математической физики, Южно-Уральский государственный университет (г. Челябинск, Российская Федерация), bychkovev@susu.ru.

Богомолов Алексей Валерьевич, доктор технических наук, профессор, Лаборатория автоматизации научных исследований, СПИИРАН (г. Санкт-Петербург, Российская Федерация), a.v.bogomolov@gmail.com.

Поступила в редакцию 7 февраля 2020 г.