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The paper presents the results of the study of the problem on the optimal control
to solutions for a mathematical model of internal waves, which is based on a linear
system of equations of hydrodynamics. This model describes the propagation of waves in a
homogeneous incompressible stratified fluid. The mathematical model includes the Sobolev
equation, the Cauchy and Dirichlet condition. We use a parallelepiped as a considered
domain in the mathematical model. The paper shows existence and uniqueness of a strong
solution to the Cauchy — Dirichlet problem for the Sobolev equation. Also, we obtain the
sufficient conditions for existence and uniqueness of a solution to the problem on optimal
control to such solutions in Hilbert spaces. Proof of existence and uniqueness of a strong
solution is based on the theorem for an abstract incomplete inhomogeneous Sobolev type
equation of the second order and the theory of relatively p-bounded operators. In this paper,
we present the theorem on existence and uniqueness of the optimal control for the problem
under study, which is based on the works of J.-L. Lyons.
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Introduction

Dynamics of particle oscillations of a homogeneous incompressible fluid, which rotates
with the constant angular velocity €2, is described by the linear system of hydrodynamic
equations (the system of Sobolev equations [1])

vt LV 4210 x 1] = f(a.1),

Pt = 07 (]‘)
Vv =0,
where v = {u,v,w}, while py = const is the equilibrium density and the buoyancy

frequency is equal to zero. If we direct the axis Oz collinearly to the vector €2, then
we obtain the equation for the vertical component of the velocity of fluid particles (the
Sobolev equation [1])

Awy + Fw,, = f(x,t), (2)

where 2[Qxv] = {—Fwv, Fu,0}, and F' = 20 is the Coriolis parameter. Wave solutions that
satisfy equation (2) are called inertial or gyroscopic waves propagating on the surface of
the rotating fluid. In the paper [1], a solution to equation (2) is obtained in an unbounded
domain by the Green’s function method. The paper [2] describes the behavior of solutions
to two-dimensional Hamiltonian systems arising in the theory of small oscillations of a
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rotating ideal fluid, and constructs a mathematical model of the generation of a vortex
structure.

Let D be a bounded domain that belongs to R?® and has a smooth boundary 0D. For
the function w = w(x,t), we impose the Dirichlet condition

w(xz,t) =0, (x,t)e DxR (3)

at the boundary of the domain D, and the Cauchy condition
w(z,0) =0, w(x,0)=0. (4)

In this paper, we study the optimal control problem on finding the pair (w, @), where
w is the solution to problem (2), (4), and @ € 4,4 is the control that satisfies the relation

J(w,4) = min J(w, u). (5)

(w,u)eXxUgq

Here J(w,u) is the quality functional constructed in a special way, and 4 is the set,
which is closed and convex in the control space il.

Let us find a solution to problem (2)—(5) in the framework of the theory of Sobolev
type equations. First, consider the Cauchy problem for the incomplete inhomogeneous
Sobolev type equation of the second order

At = Bw + v, (6)

w(0) = wy, w(0) = wy, (7)

where the operators A, B € £(X;9)), the function y : [0,7) C Ry — 9 (7 < o0), and X,9)
are Hilbert spaces.

The paper is based on the theory of relatively bounded operators, degenerate
semigroups of operators [3] and the theory of incomplete Sobolev type equations of the
high order [4]. The monographs [3, 5] study in detail Sobolev type equations and equations
that are not resolved with respect to the highest time derivative. In the monograph [5],
various classes of Sobolev type equations are introduced and equation (2) is referred to
simple Sobolev type equations. Sobolev type equations represent a significant field of
non-classical equations of mathematical physics. Optimal control problems for models of
mathematical physics represent a promising direction. New statements of optimal control
problems arise. For example, we note optimal control of solutions to stochastic equations
[6], [7], optimal control of solutions to a multipoint initial-final value problem [8]. Optimal
control problems are considered in |9, 10] for first-order Sobolev type equations and in [11]
for high-order equations.

1. Relatively p-bounded Operators

Definition 1. The set pA(B) = {u € C : (uA — B)™t € L(2;X)} is said to be the
resolvent set of the operator B with respect to the operator A (in short, A-resolvent set
of the operator B). The set C\p?(B) = o?(B) is called the spectrum of the operator B
with respect to the operator A (in short, A-spectrum of the operator B).
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Definition 2. The operator-functions
-1 A 1 A -1
(WA—=B)", R, =WA—-B)" A L, =A(pA-B)

with the domain p*(B) are called the resolvent, right resolvent, left resolvent of the operator
B with respect to the operator A (in short, A-resolvent, right A-resolvent, left A-resolvent
of the operator B), respectively.

Definition 3. The operator B is called spectrally bounded with respect to the operator
A (in short, (A, 0)-bounded), if
Ja>0VueC: (Jjul >a)= (u e p?(B)).
Lemma 1. [3] Let the operator B be (A, o)-bounded. Then the operators
1 1
P=_— [ RYB)ANuQ = —_/Lf(B)dA

21 211
r r

are projectors with P: X — X and Q : Y — Y. HereI' ={A € C: |\ =17 > a}.

Let X° =ker P, 9% = ker Q, X' = im P, 9" = im Q. Denote by A.(By) the restriction
of the operator A (B) to the subspace X*, k =0, 1.

Theorem 1. [3] Let the operator B be (A, o)-bounded. Then
(i) the operators Ay, By : X¥ — 9% k=0, 1;
(ii) there exists the operator By' € L(°, X0);
(iii) there exists the operator A7' € L(D*, X1);
(iv) the operator By € L(X', D).

Under the conditions of Theorem 1, we construct the operators H = By Ay € £(X?)
and S = A;'B; € £(X'). Then

(nA —B)~ ( Zukﬂk> ([—-Q)+ Y u*s*Ar'Q. (8)
k=1

Definition 4. An infinitely distant point of the A-resolvent of the operator B is called
(i) a removable singular point, if H = O
(i) a pole of the order p, if H? # Q, HP™ = Q; p € N,
(iii) an essentially singular point, if H? # O, VYq € N.

Definition 5. The (A, o)-bounded operator B is called (A, p)-bounded, if the point oo is
a pole of the order p € {0} UN of its A-resolvent.

2. Abstract Problem

Let X, 9 be Hilbert spaces, £(X) be the space of linear operators acting on the
space X, the operators A, B € L(X;9)). Consider the inhomogeneous linear Sobolev type
equation

Aw = Bw + y. 9)
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Definition 6. The operator-function V* € C*(R;L(X)) is called the propagator of
inhomogeneous equation (9), if the vector function w(t) = Vv is a solution to (9) Vv € X.

Theorem 2. [4| Let the operator B be (A, o)-bounded. Then the formula

A= i p (A — B) Tt Aettdu, m =0, 1,
2mi
r
where the contour I' = {u € C: |u| = R > a}, defines the propagators of equation (6) for
allt € R.
Lemma 2. (i) V2 € C®(R; £(X;XY), (VI)P =Vt

m—10

where m =0,1,1=0,1;

() (VR| =0 form#1 (V™| =Vi=P.

Definition 7. The subspace P C X is called the phase space of homogeneous equation (6) if

(i) any solution w = w(t) to equation (6) belongs to P, i.e. w(t) € P,Vt € R;
(ii) there exists the unique solution to problem (6), (7) for any wg, w; € P.

Theorem 3. [4| Let the operator B be (A, p)-bounded. Let the wvector function
y: (—7,7) = be such that y° € C*((—7,7);9°), and y* € C((—7,7);D"). Suppose that
the initial values satisfy the relations

d2q+m

(I - V9w ZHqBO Y y°(0), m=0,1.

Then there exists a unique solution to problem (6),(7), which can be represented in the
form

1 t

==Y HB'(I- Q)™ (t)+ > Viw, + / VI AT Qy(s)ds, t € (=7, 7). (10)
q=0

m=0 0

Definition 8. The vector function w € H*(X) = {w € Ly(0,7;X) : W € Ly(0,7;X)} is
said to be a strong solution to equation (6), if w converts (6) into identity almost everywhere

n (0, 7). A strong solution w = w(t) to equation (6) is called a strong solution to problem
(6), (7) if w satisfies (7).

The concept of a "strong solution" used in Definition 6 is introduced to distinguish
the solution to equation (6) in this sense and the solution to (6), which is usually called
"classical" one. The embedding H?*(X) < C'([0, 7]; X) is continuous, therefore Definition 8
is correct. Note that the classical solution to (6), (7) is also a strong solution to the problem.

Let us construct the space H*(Q)) = {v € Ly(0,7;9) : © € Ly(0,7;2). The space
H?(9) is a Hilbert space with the scalar product

2 T
[v,w] = Z / <U(Q),w(‘”>@ dt.
q=0 0
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Theorem 4. [11] Let the operator B be (A, p)-bounded. Then there exists a unique strong
solution to problem (7) for equation (6) for any wo,w; € X and y € H*().

Let us consider the optimal control problem for the solutions to problem (6), (7) with
the penalty functional of the form

2 2 7
mwﬂ):}:/ﬂw@—ﬂwm%u+§:/KNﬂ@ﬂm»wm (11)
(1:00

where N, € L(H), ¢ = 0,1, 2, are positive definite and self-adjoint operators, w is a solution
to problem (6), (7), w(t) is the desired state of the system, and the heterogeneity function
y is a control denoted by y = wu. The vector function @& € H3({) minimizing functional
(11) is called the optimal control to problem (6), (7).

Define the control space

H?*(U) = {u € Ly(0,7;4) : it € Ly(0, 75 40)}.

The space H?(4) is Hilbert, due to the Hilbert property of i, with the scalar product

2 T
(v, w] = Z/<U(Q),w(@>udt.
q=0 0

In the space H?(4l), consider the closed and convex subset U, = H3(4l), which is the
set of admissible controls.
In the paper [11], the following theorem on the uniqueness of optimal control is proved.

Theorem 5. Let the operator B be (A, p)-bounded. Then there exists the unique optimal
control of solutions to problem (7) for equation (6) for any wy,w; € X and y € H*(Y)).

3. Mathematical Model of Internal Waves

Let the domain D be the parallelepiped [0,a] x [0,b] x [0, ¢]. Mathematical model
(2)—(4) can be reduced to Cauchy problem (7) for equation (6).
Introduce the spaces X = Wit?(D), 2 = W(D) and define the operators

2 O
022"

For any [ € {0} UN, the operators A, B € L(X,9)). Denote by

e ((TRY () ()
k,mon a b c
the eigenvalues of the Laplace operator A, which are numbered in non-increasing order
with respect to multiplicity. Denote by

' (W/m) ' (mny) ' <7Tnz>
Okmn = sin | —— | sin sin
a b c

66 Journal of Computational and Engineering Mathematics

A=A, B=_F




COMPUTATIONAL MATHEMATICS

2

the orthogonal eigenfunctions that correspond to {—X\{,, .,

product in L?(Q).
Since {@k.mn} C C®(D), then

} in the sense of the scalar

o0
PA=B= " [ uit— FPA2 < Qranns > Cranins
k,m,n=1
where < - - > is the scalar product in the space L?(D). Construct the equation to

determine the relative spectrum:

A ntt + F2A2 =0,

k,m,n

and we obtain the relative spectrum in the form
F2)\?
Mk mmn = _)\2 =

k,mmn

The relative spectrum o4 (B) = {s.mn} is bounded, because |y m,| < F. Since the
operator A is continuously invertible in the given spaces, then the point oo is a removable
singular point of the A-resolvent of the operator B. As a result, the conditions of Lemma 1
hold. We construct propagators by Theorem 2. Since the relative spectrum of the operator
B is discrete, we obtain

- F2)2
t
Viwg = ) cos o ] < P, Wo > Prmony

k,m,n

kmmn=1

Viw, =

[o@)
F22 [ F2\2
5 sin 32 U] < @kamn, W1 > Premon-

kmn=1 kmn k,mmn

Solution to problem (2)-(4) has the form

- F2)\2
w(z,t) = Z coS 32 21| < Qkmns Wo > Ckmont

k,m,n

k,m,n=1

(12)

[e.o]

t
222 [ P2\ L
+ D o sin ( 32 ”t> < Prmns W1 > Phymon + / VIS AT Qy(s)ds.

kmn=1 km,n k,mmn

0

By virtue of Theorem 4, the solution given by formula (12) is strong. Define the control
space
H?*(U) = {u € Ly(0,7;80) = ii € Ly(0, 7540},

and consider the closed and convex subset i, = H3(4), which is the set of admissible
controls. The main result of the paper is the proof of the existence of the unique control
@ € H3(40) minimizing the functional J(w,u). Fix wy, w; € X and consider (13) as the
map D : u — w(u). Then the map D : H*({) — H?*(X) is continuous. Therefore, the
quality functional depends only on u, i.e. J(w,u) = J(u).

Rewrite quality functional (11) in the form

J(u) = flw(t,u) — w”?{?(}:) + [v, ],
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where v@(t) = Nu@(t), ¢ =0,1,2. Hence

J(u) = m(u, w) = 2A(w) + [ — w(t, 0) |2 )

where

m(u, u) = [lw(t, u) — w(t7O>H§{2(3€) + [v, 4]

is a bilinear continuous coercive form on H?(4), and

Au) = (@ —w(t,0), w(t,u) — w(t,0)) oz

is a linear continuous form on H?(4). Therefore, the conditions of Theorem 1.1 proved in
[12] are satisfied.
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OIITUMAJIBHOE VIIPABJIEHUE B MATEMATITYECKOI
MOJEJIN BHYTPEHHUX BOJIH

K. IO. Komaosanos, E. B. Bwuiukos, A. B. Bozomonos

B crarpe mpejicraBiieHbl pe3ysbTaThl UCCIEIOBAHUs 33aa9U OINTUMAJBHOIO YIIpaBJie-
HUsl PEIIeHUsIMU JIJIsT MATEMATHIECKON MOJe/ I BHYTPEHHUX BOJIH, IIOCTPOEHHOII Ha, OCHOBE
JINHEHON CUCTEeMBbI ypaBHEHUN THAPOINHAMUKHA. J|aHHAS MOJIEIh OMUCHIBAET PACIPOCTPA-
HEHWsI BOJIH B OJIHOPOJIHOM HECXKUMAaeMOoil cTparudununpoBaHHON Kuakoctu. Maremarude-
cKast MOJIeJTh BKJIodaeT B cebs ypasaenne Coboliesa, yeaosue Komm u [Tupuxie. B kagecrse
paccMaTpuBaeMoil 00JIACTH B MAaTEMATUYIECKON MOJIEIN UCIIOJIB3YeTCs napaJuiesenume]. B
JIaHHO# paboTe MOKa3aHO CYIECTBOBAHUE U €IUHCTBEHHOCTb CHJILHOI'O PEIICHUS 3aJadu
Komm — Tupuxiie miis ypasaenusi CobosieBa. Ilosrydennl mocraTodnbie yCIOBHS CYIIECTBO-
BaHUS U eJMHCTBEHHOCTH DEIIEHUS 33,191 ONTUMAIBLHOTO YIIPABJICHUS TAKUMU PEITeHUSIME
B THJILOEPTOBBIX IPOCTPAHCTBaX. JloKa3aTeIbCTBO CYIIECTBOBAHIS €MHCTBEHHOTO CHJIHHO-
'O PelieHus OCHOBAHO Ha TeopeMe JJIs aOCTPAKTHOTO HEIIOJIHOIO HEOJHOPOIHOT'O yPABHEHUS
€0DO0JIEBCKOT'O THIIA BTOPOr'O MOPSIJIKA U TEOPUU OTHOCUTEIBHO P-OrPAHUIEHHBIX OIIEPATOPOB.
ITpuBenennast B JaHHOI paboTe TeopeMa CyIIeCTBOBAHNS U €IMHCTBEHHOCTHU OIITUMAJILHOTO
VIIpaBJIEHUS [IJIsI UCCJIeLyeMOii 3a1a4u ocHoBana Ha paborax 2K.-JI. Jluomca.

Karouesvie caosa: ypasuerus coboae8ckozo mMuna; OMHOCUMEALHO D-02DAHUNEHHDLT

0Nepamop; CuAbHOE PEULEHUE; ONMUMAALHOE YNPABAEHUE.
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