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This paper considers methods of automatic cutter path choice for laser equipment.

Graphs are often used as mathematical models for different control problems or automated

design. Particularly, for automated system of cutting process preparation the mathematical

model of a cutting plan should be a topological plane graph. Nowadays a branch of graph

theory dealing with constructing some paths and trails with different restrictions is rapidly

developing. This research considers the following cutting problem formulated in the terms

of graph theory. We need define a shortest cutter trajectory so that part cut out a sheet

does not require further cuttings. If one considers the cutter trajectory to be a trail of a

plane graph, the requirement of eliminating the necessity of cutting of a piece separated

from the sheet can be formalized as the condition that internal faces of any initial part of

the given trail does not intersect the graph edges. The polynomial algorithms presented in

the paper allow to solve the routing problem either for connected or disconnected plane

graph.
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Introduction

Great number of industrial branches is dealing with cutting the material such as
metal, wood, plywood, glass and others. These materials are presented in industrial flow
as sheets, boards, pipes, profiled rolls etc. Obviously, the usage of these materials implies
their separation (or cutting) on parts of the given size and form (the samples of some
details).

That is why the significance of industrial cutting be a source of economy and it is
mentioned in technical literature and some industrial journals [1]. Theoretically this field
is rather unexplored. There are some researches devoted to maximization of wood volume
at lumbering process. The well known problem of circles placement on a plane is also
similar to a cutting problem for a infinity sheet and equal round billets.

The experience of advanced engineering plants shows that accurate planning of cutting
process allows to achieve the economy of materials [1].

Nowadays the problems of creation the high-effective technologies of social sphere
development, flexible automated enterprises on the base of information technologies,
particularly, clothes production for individuals are actual.

And the branch connected with flexible automated enterprises of customer goods on
the base of information technologies is officially proclaimed as one of the priority branches
of science development.

The process of any product development begins from a creation of some details being
their constructive parts. By the way the stage of their production is to be one of the most
laborious and complex of all production cycle. As a matter of fact the volume of details
nomenclature is rather big and there exist some problems of technological projecting of
cutting-and-preparing operations [2]. More than one half of technological equipment with
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computer numerical control (CNC) used for sheets cutting in Russia and some other
countries are the thermal cutting machines (TCM). This class of machines includes also
some equipment for gas (oxygen), plasma, laser and EDM cutting. So industrials and
projecting enterprises dealing with cutting and packing problems need usage of some
automated cutting systems for flat details. Usually such a system has unit structure and
each its unit allows to automate some stages of cutting process.

While cutting the material into some figured details one of the significant stages of
preparation the details is constructing of cutter movement trajectory. Optimization of
this trajectory may considerably reduce the cost of a cutting. Usually this optimization
means the minimization of idling length. One more optimization criterion is the number
of incuts on a sheet. It is shown in [2] that according to the type of material and cutting
technology the cost of one incut achieves 20–30% of cutting cost. Minimization of thermal
deformations is also one of significant optimization criteria. Convent heuristic rules used
for algorithm of automated generation of control programs for TCM are presented in [3].

A large number of technological equipment used for processing of a sheet material
consists of CNC laser cutting machines. Computer-Aided Manufacturing (CAM) systems
are used for development of control programs for these machines. They allow decreasing
time of programs development, increase the accuracy of processing and decrease the cost of
cutting. Modern САМ systems are oriented on automated development of control programs
and as usual include two modes, interactive and automatic. The researches held nowadays
in Russia concern basically optimization of a cutter moving path on a time criterion by
minimizing the idle path of a cutter with use of standard way of cutting where the number
of incuts is equal to number of details to be cut. However there is a lack of algorithms for
minimization of cost criteria (for example, saving the energy of a cutter). Summary time
of uncommon ways of cutting is also poorly explored. That is why this paper considers
methods of automatic cutter path choice for laser equipment.

Routing problems are often used as mathematical models for different control problems
or automated design. Particularly, for automated system of cutting process preparation
the mathematical model of a cutting plan should be a topological plane graph. The interest
to routing problems can be explained by their frequent usage as mathematical models of
different control problems.

Nowadays a branch of graph theory dealing with constructing some paths and trails
with different restrictions is rapidly developing.

Let’s consider the following cutting problem. We need define a shortest path of cutter
trajectory so that part cut out a sheet does not require further cuttings. If one considers
the cutter trajectory to be a trail of a plane graph, the requirement of eliminating the
necessity of cutting of a piece separated from the sheet can be formalized as the condition
that internal faces of any initial part of the given trail does not intersect the graph edges.
In [4], the author formulates and solves the problem of constructing (in a plane Eulerian
graph) Eulerian cycles that satisfies the given condition. These are formally defined as
cycles with v-ordered enclosing where v is a vertex incident to the external (infinite) face
of the graph. This paper considers the most common case of this problem where graph is
non-Eulerian and disconnected. The algorithms presented in the paper allow to solve the
routing problem for any type of plane graph. As a matter of fact, there exist many models
and algorithms for constructing Eulerian trails in a graph. Lots of them can be derived from
one general algorithm [5] called Splitting algorithm. Speaking about constructing Eulerian
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trails for digraphs or trails with some restrictions, there are some other algorithms for
solving these problems not based on Splitting algorithm. The restrictions on the order of
vertices and edges in a trail can be classified as local (the next edge of a path is defined
by conditions established at the current vertex or edge [5]–[8]), and global (Eulerian,
Hamiltonian cycles, bidirectional double tracing etc.).

1. Main Definitions and Conceptions

Let’s consider S as a plane; G = (V,E) as a plane graph. Let f0 be the outer face of
G. Let for any part of this graph J ⊆ G the set-theoretic union Int (J) of its inner faces
be defined (i.e. the union of all connected components S \ J not containing outside face
f0). The sets of vertices, edges, and faces of graph J let be designated as V (J), E(J), and
F (J) correspondingly, and |M | be the number of elements of a set M .

To avoid loss of generality let’s consider some basic definitions and proved earlier
properties of Eulerian cycles and covers with ordered enclosing.

Definition 1. [9] Let cycle C = v1e1v2e2 . . . vk for Eulerian graph G be called as a cycle

with ordered enclosing (or OE-cycle for short) if Int (Cl)∩E = ∅ for Cl = v1e1v2e2 . . . vl,
l ≤ |E|.

For example, cycle e1e3e2e4e5e6 in fig.1 has ordered enclosing, and cycle e4e5e6e1e3e2
has not because its first three edges e4e5e6 enclose the three edges that are not passed yet.

Fig. 1. The example of an Eulerian graph

Definition 2. [10] Let minimal cardinality sequence of such edge-disjoint OE-trails
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be an Eulerian cover with ordered enclosing for plane graph G = (V,E) (or OE-cover
for short).

The most interesting are the covers with minimal number of trails with minimal length
of edges connecting these trails.

Definition 3. [11] Let minimal cardinality sequence of edge-disjoint trails with ordered
enclosing in plane graph G be called Eulerian cover with ordered enclosing (Eulerian
OE-cover).

All algorithms presented below use the following representation of plane graph
G = (V,E) up to homeomorphism. Graph G is unambiguously defined by the following
functions for each edge e ∈ E [12]:

1) v1(e), v2(e) be the vertices incident to edge e;

2) fk(e) be a face laying at left when one moves by edge e from vertex vk(e) to vertex
v3−k(e), k = 1, 2,

3) lk(e) be an edge belonging to face fk(e) and incident to vertex vk(e), k = 1, 2.

Fig. 2. The representation of plane graph

Illustration of defined functions is represented in fig. 2. Construction of these functions is
rather easy. In fact they are defined and used on the stage of graph G projecting. Spatial
complexity of this representation is O (|E| · log2 |V |).

The existence of Eulerian OE-cycles for plane Eulerian graphs is proved in papers [12],
[9]. Recursive algorithms for constructing of such cycles are represented in paper [12]. The
problem of constructing the OE-path for any plane graph is reviewed in [10, 13]. There the
algorithm for constructing of such paths is presented and it is proved that the computing
complexity of this algorithm is not more than O

(

|E|2
)

. The paper [9] presents the effective
algorithm for constructing OE-cycles for plane Eulerian graphs. This algorithm computing
complexity is O (|E| · log2 |V |). Abstract [11] and paper [14] are devoted to construction
of optimal Eulerian OE-cover for a plane connected graph. As for Eulerian OE-cover for
a disconnected plane graph the polynomial algorithm for constructing of such trails was
presented on the Seventh Czech-Slovak Symposium on Graph Theory, Combinatorics and
Applications [15].

The aim of this paper is presentation of algorithms for constructing of OE-covers for
any plane graph without end-vertices. But first of all let’s consider optimal algorithm for
connected plane graphs (for proofs of its correctness see [10]) because it is cited later at
the text of algorithm for a disconnected graph.
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2. The Shortest Length OE-Cover

An optimal Eulerian OE-cover can be constructed by algorithm OptimalCover. This
algorithm uses three procedures: Initialisation, Ordering, and Forming. To review this
algorithm we need the definition of edge e rank.

Definition 4. The rank of edge e for graph G(V,E) can be defined recursively:

1. All the edges restricting the outside face f0 of graph G(V,E) are forming a set of
edges

E1 = {e ∈ E : e ⊂ f0}

with rank (∀e ∈ E1) (rank(e) = 1).

2. Edges with rank 1 for graph

Gk

(

V,E \

(

k−1
⋃

l=0

El

))

are forming a set Ek of edges with rank k for initial graph G, i.e.
(∀e ∈ Ek) (rank(e) = k).

The rank of each edge (the example of ranking is shown in fig.3) of plane graph can be
defined by the time O(|E|) using procedure Ordering quoted in [10] and other algorithms
for OE-trails constructing.

Fig. 3. Ranking the edges of graph

Let’s designate a set of odd vertices as Vodd. Obviously, complexity of such set
construction with used graph representation is not more than O(|E|).

The functional aim of Forming procedure is construction of a trail with ordered
enclosing ending in vertex v ∈ Vodd. As a result of this procedure one will have a simple
trail C = v0e1v1e2...ekvk where

v1, v2, ...vk−1 /∈ Vodd, v0, vk ∈ Vodd,

ei = arg max
e∈E(vi)\{el|l<i}

rank(e), vi+1 = v1(ei), i = 1, 2, . . . , k,
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moreover for any its initial part Cl = v0e1v1e2v2 . . . el, l ≤ k and for any vertex v ∈ V the
following inequality takes place:

min
e∈E(v)

⋂
E(Cl)

rank(e) > max
e∈E(v)\E(Cl)

rank(e).

The possibility for effective constructing of optimal OE-cover gives the following
theorem.

Theorem 1. Let G = (V,E) be a plane connected graph topologically represented on a
plane S. Let G has no end-vertices. For any such a set M being a matching on the set Vodd

of G that M : (M ∩ S)\V = ∅ there exists such an Eulerian cycle C = v1e1v2e2...env1,
n = |E| + |M | that for any its initial part Cl = v1e1v2e2...vl, l ≤ |E| + |M | the condition
Int(Cl) ∩ E = ∅ holds.

The proof of this theorem is also constructive and consists of proof of effectiveness for
the following algorithm. To construct the optimal cover it’s enough to take the shortest
matching on set Vodd as M .

Algorithm OptimalCover

Input:

• plane graph G represented by a list of edges with defined functions vk(e), lk(e), fk(e),
k = 1, 2;

• the shortest matching M on a set of odd degree vertices Vodd.

Output: Cj, j = 1, ..., |Vodd|/2 be an Eulerian OE-cover of G by trails.
Step 1. Initialization

• Define the initial values of all variables (the first edge and vertex, all edges be
unmarked, and all lists be empty).

Step 2. Ordering

• ∀e ∈ E(G) define rank(e) (eg., fig.3);

• ∀v ∈ V (G) form a list of adjacent edges. Sort the edges e by decreasing of rank(e).

Step 3. Let j = 1. Let vertex v0 ∈ f0 be the current one and let vj0 = v0.
Step 4. Proceed construction of trail Cj by procedure Forming using v0 as initial:

construct a trail beginning at this vertex and ending at another vertex of odd degree. Let
v0 be the last vertex of a trail constructed. If v0 /∈ Vodd go to step 8; otherwise go to step
5.

Step 5. If v0 is a dead end then go to step 7, otherwise go to step 6.
Step 6. If rank(v1) < rank(v0) then let v0 = v0 and go to step 4 (keep constructing

the trail Cj from the current vertex).
Step 7. Define v1 : (v0, v1) ∈ M . Finish constructing the current trail: vj1 = v0,

j = j + 1, Vodd = Vodd \ {v
0, v1}, M = M \ {(v0, v1)} let vj0 = v1 be a curret vertex of the

next trail and go to step 4 (begin constructing a new trail Cj from vertex v0 = vj0).
Step 8. End of algorithm.
Computing complexity of algorithm OptimalCover is less than O(|V |3) (i.e. matching

problem complexity for a complete graph).
Let’s consider the example of this algorithm execution (fig.4).
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Fig. 4. Optimal Eulerian OE-cover for a connected graph. The trails are: T1 = {11−12−
3− 1− 2− 3− 4}; T2 = {10− 2− 1− 5− 6}; T3 = {5− 7}; T4 = {12− 13− 7− 6− 9};
T5 = {8− 10− 9− 8− 11− 13}.

3. Algorithms for a Disconnected Graph

The most interesting is the case of optimal cover with minimal length of additional
edges connecting the ends of trails for a disconnected graph. Algorithm for constructing
the allowed Elerian cover with ordered enclosing for this type of graphs is suggested in
[16]. Let’s present the algorithm for constructing such an OE-trail. This algorithm applies
the concept of ranking as in earlier papers (for example, in [17]).

Definition 5. Let the rank of connected component be the minimal rank of this
component’s edges.

Definition 6. Let the enclosed union n be a family of connected components Sn of
plane graph where a component of rank k contains (encloses) only the components of rank
more than k.

So for graph in fig.5 the components bounded by cycles 1-2-3-4-1 and 8-9-10-11-8 have
ranks equal to 1, and components 5-6-7-5 and 12-13-14-12 have ranks equal to 2.

Fig. 5. The example of enclosed unions
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Algorithm AllowedMultiComponentCover

Input:

plane graph G.
Output: Graph G covering Cs

j , j = 1, ..., |Vodd|/2 by trails with ordered enclosing,
s = 1, 2, ... be the index of component.

Step 1. Recognize a set S of all components of graph G and ∀s ∈ S define the nesting
value K(s).

Step 2. Sort the elements of set S by decreasing of K(s).
Step 3. Let i(s) be an index of a component s, and s(i) be the component of index i.

Run algorithm OptimalCover 1 ≤ i ≤ |S| and get the OE-covering C i
j of i-th component

by trails.
Step 4. End of algorithm.
Computing complexity of this algorithm is O(|V 2|).
Unfortunately, algorithm allows constructing only permissible cover with mentioned

properties. It passes the components from the most inserted one and includes components
to a cover set sequentially according to their rank (fig.6). Nevertheless, it is obvious that
the better result can be received if one passes components not only according to their
rank but also according to the distance between different components. That is why let’s
consider some algorithms optimizing the distance between components. So the main idea
is that it’s impossible to switch over to another enclosed union if there are some edges of
the current one not included to any trail of being constructed covering. The problem of
enclosed unions definition can be solved on the stage of components recognition. So it has
the same computing complexity as well known wave algorithm.

Fig. 6. Constructing of allowed Eulerian OE-cover for a disconnected graph

Let’s introduce the algorithm allowing to get the better solution.
Algorithm DisconnectedCover

Input:

plane graph G.
Output: Cs

j , j = 1, ..., |Vodd|/2 be OE-covering of graph G by trails, s = 1, 2, ... be an
index of a component.

Step 1. Recognize a set S of all components of graph G and ∀s ∈ S define the nesting
value K(s).

Step 2. ∀s ∈ S define the shortest matching on the set of odd degree vertices.
Step 3. Construct an abstract graph Im : let its vertices be the components S of G,

and lengths of edges are equal to the distance between the nearest vertices of corresponding
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components.
Step 4. Define minimal spanning T (Im ).
Step 5. Add a digon for each edge of MST to graph G: GIm = G ∪ T (Im ).
Step 6. Run algorithm OptimalCover for graph GIm .
End of algorithm DisconnectedCover.

The computing complexity of this algorithm is also O(|V |3). The example of this
algorithm implementation is shown in fig.7. It is obvious that the length of additional
edges is better than for allowed algorithm (fig.6).

Fig. 7. The example how algorithm OptimalDisconnectedCover runs

Conclusion

So the research gives different polynomial algorithms for constructing the cover with
ordered enclosing for a disconnected graph.
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